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ABSTRACT

In this paper, we give a classification of Codazzi hypersurfaces in a Lie group (Nil4, g̃). We also give
a characterization of a class of minimal hypersurfaces in (Nil4, g̃) with an example of a minimal
surface in this class.
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1. Introduction

Let (Mm, g) be a Riemannian manifold, ∇, R, S and τ denote the Levi-Civita connection, the Riemannian
curvature, the Ricci curvature, and the scalar curvature of (M, g), respectively. Thus

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, (1.1)

S(X,Y ) =

m∑
i=1

g(R(X, ei)ei, Y ), (1.2)

τ =

m∑
i,j=1

g(R(ei, ej)ej , ei), (1.3)

where {ei}1≤i≤m is an orthonormal frame on (M, g), and X,Y, Z ∈ X(Mm). A symmetric (0, 2)-tensor field T on
(Mm, g) is said to be a Codazzi tensor if it satisfies the Codazzi equation

(∇XT )(Y,Z) = (∇Y T )(X,Z), ∀X,Y, Z ∈ X(Mm), (1.4)

(see [7, 8]).
Let (Nn, g) be a hypersurface in a Riemannian manifold (Mn+1, g̃), where g is the induced Riemannian metric
by g̃. We denote by ∇ (resp. ∇̃) the Levi-Civita connection of (Nn, g) (resp. of (Mn+1, g̃)), R (resp. R̃) the
Riemannian curvature of (Nn, g) (resp. of (Mn+1, g̃)), B(·, ·) = h(·, ·)ξ the second fundamental form of the
hypersurface (Nn, g), Aξ the shape operator with respect to the unit normal vector field ξ, H = (1/n) traceg B
the mean curvature of (Nn, g) (see [7]). Under the notation above, we have

∇̃XY = ∇XY + h(X,Y )ξ, (1.5)

AξX = −∇̃Xξ, ∀X,Y ∈ X(Nn), (1.6)
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Note that, the components of the second fundamental form B are given by

h(X,Y ) = g(AξX,Y ) = −g(∇̃Xξ, Y ), ∀X,Y ∈ X(Nn). (1.7)

The equations of Gauss and Codazzi are given respectively by

g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + h(X,W )h(Y,Z)− h(X,Z)h(Y,W ), (1.8)

g̃(R̃(X,Y )Z, ξ) = (∇Y h)(X,Z)− (∇Xh)(Y,Z), (1.9)

where (∇Xh)(Y, Z) = X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ) called the cubic form, and X,Y, Z,W ∈ X(Nn). The
hypersurface (Nn, g) is said to be parallel if the cubic form vanishes identically, i.e., ∇h = 0. A special case of
parallel hypersurfaces are totally geodesic hypersurfaces, for which the second fundamental form B = 0. The
hypersurface (Nn, g) is called Codazzi (resp. minimal) if the symmetric (0, 2)-tensor field h is a Codazzi tensor
(resp. if H = 0) (see [7]).
The 4-dimensional lie group Nil4 is a well known nilpotent lie group. It is also one of the 4-dimensional
thurston model geometries, [3]. As the Nil4 space are well know and one of its left invariant Riemannian
metric is well known and also used in many research works, we will begin with an explicit calculus of this
metric and its geometric proprieties, (that one of the autors has do a part of it, in [4], based on the definition of
Nil4 and its most used left invariant metric), only to let the reader follow us easily.

The nilpotent Lie group Nil4 = R3 ⋉U R, where U(t) = exp(tL), with

L =

0 1 0
0 0 1
0 0 0

 , exp(tL) = I3 + tL+
t2

2
L2 =

1 t t2

2
0 1 t
0 0 1

 . (1.10)

The semidirect product in Nil4 is given by

(V, t)(V ′, t′) = (V + exp(tL)V ′, t+ t′)

=

x
y
z

+

1 t t2

2
0 1 t
0 0 1

x′

y′

z′

 , t+ t′


=

x+ x′ + ty′ + t2

2 z
′

y + y′ + tz′

z + z′

 , t+ t′

 , (1.11)

for all V =

x
y
z

 , V ′ =

x′

y′

z′

 ∈ R3, and t ∈ R. We have the parameterization

ϕ : Nil4 −→ R4.x
y
z

 , t

 7−→ (x, y, z, t) (1.12)

Taking the left-invariant frame fields

e1 =
∂

∂x
,

e2 = t
∂

∂x
+

∂

∂y
,

e3 =
t2

2

∂

∂x
+ t

∂

∂y
+

∂

∂z
, (1.13)

e4 =
∂

∂t
.
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So that, the dual coframe fields are given by

θ1 = dx− tdy +
t2

2
dz,

θ2 = dy − tdz,

θ3 = dz, (1.14)
θ4 = dt.

The matrix of a Riemannian metric g̃ = θ21 + θ22 + θ23 + θ24 is given by

(g̃ij) =


1 −t t2

2 0

−t 1 + t2 −t(1 + t2

2 ) 0
t2

2 −t(1 + t2

2 ) 1 + t2 + t4

4 0
0 0 0 1

 ,

In this paper, we study some geometric properties of a Riemannian manifold (Nil4, g̃). We also give a
characterization of a minimal hypersurfaces in (Nil4, g̃) which have a normal vector field depend only on,
last coordinate, t.

2. Geometric properties of (Nil4, g̃)

Proposition 2.1. The non-zero of the Levi-Civita connection ∇̃ of (Nil4, g̃) are given by

∇̃e1e2 =
1

2
e4 , ∇̃e1e4 = −1

2
e2

∇̃e2e1 =
1

2
e4 , ∇̃e2e3 =

1

2
e4

∇̃e2e4 = −1

2
(e1 + e3) , ∇̃e3e2 =

1

2
e4

∇̃e3e4 = −1

2
e2 , ∇̃e4e1 = −1

2
e2

∇̃e4e2 =
1

2
(e1 − e3) , ∇̃e4e3 =

1

2
e2.

Proof. Note that, the non-zero of Christoffel symbols Γ̃k
ij for i, j, k ∈ {1, 2, 3, 4} are given by

Γ̃4
12 =

1

2
, Γ̃4

13 = − t

2

Γ̃1
14 = − t

2
, Γ̃2

14 = −1

2

Γ̃4
22 = −t , Γ̃4

23 =
1

2
+

3t2

4

Γ̃1
24 = −1

2
+

t2

4
, Γ̃3

24 = −1

2

Γ̃4
33 = −t(1 +

t2

2
) , Γ̃2

34 = −1

2
+

t2

4

Γ̃3
34 =

t

2
.

Proposition 2.1 follows from (1.13).

Corollary 2.1. The non-zero Lie brackets of the basis {ei}1≤i≤4 are given by

[e4, e2] = e1 , [e4, e3] = e2.

Proof. Follows directly by Proposition 2.1, with [ei, ej ] = ∇̃eiej − ∇̃ejei for all i, j = 1, 2, 3, 4.

709 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Classification of Codazzi and Note on Minimal Hypersurfaces in Nil4

Proposition 2.2. The only non-zero components of Riemannian curvature of (Nil4, g̃) are given by

g̃(R̃(e1, e2)e1, e2) = −1

4
, g̃(R̃(e1, e2)e2, e3) =

1

4

g̃(R̃(e1, e4)e1, e4) = −1

4
, g̃(R̃(e1, e4)e3, e4) =

1

4

g̃(R̃(e2, e1)e2, e3) = −1

4
, g̃(R̃(e2, e3)e2, e3) = −1

4

g̃(R̃(e2, e4)e2, e4) =
1

2
, g̃(R̃(e3, e4)e3, e4) =

3

4
.

Proof. Using the definition of Riemannian curvature (1.1), the Proposition 2.1, and the Corollary 2.1.

According to Proposition 2.2, we have the following Corollary.

Corollary 2.2. The matrix of Ricci curvature of (Nil4, g̃) is given by

(Sij) =


1
2 0 0 0
0 0 0 0
0 0 − 1

2 0
0 0 0 −1

 ,

where Sij =

n∑
a=1

g̃(R̃(ei, ea)ea, ej) for all i, j = 1, 2, 3, 4. Thus, the scalar curvature of (Nil4, g̃) is τ = −1.

3. Codazzi hypersurfaces in Nil4

Let (M3, g) be a hypersurface in (Nil4, g̃). We have, ξ = ae1 + be2 + ce3 + de4 the unit normal vector field on
(M3, g), where a, b, c, d are local functions on M3. Thus

X1 = be1 − ae2 , X2 = ce1 − ae3

X3 = de1 − ae4 , X4 = ce2 − be3

X5 = de2 − be4 , X6 = de3 − ce4

are tangent vectors fields to the hypersurface (M3, g). Now, assume that the hypersurface (M3, g) is Codazzi,
that is

(∇Xh)(Y, Z) = (∇Y h)(X,Z), ∀X,Y, Z ∈ X(M3). (3.1)

Then it follows from the equation of Codazzi (1.9) that

g̃(R̃(Xi, Xj)Xk, ξ) = 0, ∀i, j, k ∈ {1, ..., 6}. (3.2)

By using the curvature components given in Proposition 2.2, we get the following

g̃(R̃(X1, X2)X3, ξ) =
1

4
abd(a− c) = 0,

from the which we prove that a = 0 or b = 0 or d = 0 or a = c.
• If a = 0, we have the following equations

g̃(R̃(X1, X4)X1, ξ) = −1

4
b3c = 0,

g̃(R̃(X2, X4)X4, ξ) =
1

4
c2b2 +

1

4
c2 = 0,

g̃(R̃(X1, X5)X4, ξ) =
1

2
b3d+

1

4
bc2d = 0.

Thus c = 0 and bd = 0. So that, ξ = e2 or ξ = e4. Note that, in the case where ξ = e2, the Lie bracket [e4, e3] = e2
is not tangent vector field on M3 despite e2 and e4 are tangent vectors fields on M3. So, by Frobenius Theorem
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(see [8]), this case is unacceptable. Then we have ξ = e4.
• If b = 0, we obtain the equations

g̃(R̃(X1, X2)X1, ξ) =
1

4
a2(a2 − c2) = 0,

g̃(R̃(X1, X3)X1, ξ) = −1

4
a2d(3a+ c) = 0.

For a = 0, we get c = 0. Thus ξ = e4. For a = ±c, we find that ad = 0. Hence ξ = e4 or ξ = 1√
2
(e1 ± e3). Note that,

in the case where ξ = 1√
2
(e1 ± e3), the Lie bracket [e4, e2] is tangent vector field on M3 because e2 and e4 are

tangent vectors fields on M3. But g̃([e4, e2], ξ) = g̃(e1, ξ) =
1√
2
̸= 0, we obtain a contradiction with the fact that ξ

in normal to M3. Therefore, ξ = e4.
• If d = 0, we have the equations

g̃(R̃(X1, X2)X2, ξ) = −1

4
ab(a− c)2 = 0,

g̃(R̃(X1, X4)X1, ξ) =
1

4
b(a− c)(a2 + b2 + ac) = 0,

g̃(R̃(X2, X4)X4, ξ) = −1

4
c(a− c)(b2 + c2 + ac) = 0,

g̃(R̃(X1, X2)X1, ξ) =
1

4
a(a− c)(a2 + b2 + ac) = 0,

g̃(R̃(X6, X2)X3, ξ) = −a2c2 − 1

4
ac(a2 − c2) = 0.

Hence a = c = 0. Thus, ξ = e2. It is unacceptable, because in this case e3 and e4 are tangent vectors fields on M3

but [e4, e3] = e2 is not tangent vector field on M3.
• If a = c, we get the following equations

g̃(R̃(X6, X2)X3, ξ) = −c2(c2 +
1

2
d2) = 0,

g̃(R̃(X1, X5)X6, ξ) =
1

2
b2(c2 − d2) = 0.

we obtain c = 0 and bd = 0. Hence, ξ = e4. Here, ξ = e2 is unacceptable.

Theorem 3.1. A hypersurface (M3, g) in the Lie group (Nil4, g̃) is Codazzi if and only if the unit normal vector field to
(M3, g) is ξ = e4.

Proof. According to the previous calculations, it suffices to show that

g̃(R̃(X,Y )Z, ξ) = (∇Y h)(X,Z)− (∇Xh)(Y, Z) = 0, (3.3)

for all X,Y, Z ∈ X(M3) for ξ = e4. You can easily check the equations

g̃(R̃(ei, ej)ek, e4) = 0, i, j, k = 1, ..., 3.

Remark 3.1. (1) According to (1.13), a Codazzi hypersurface (M3, g) in (Nil4, g̃) which is given by

f : (M3, g) −→ (Nil4, g̃),

(x, y, z) 7−→ (x, y, z, t0)

where t0 ∈ R.
(2) Since B(X,Y ) = (∇̃XY )⊥ for all X,Y ∈ X(M3). By using the Proposition 2.1, the second fundamental form
h of the hypersurface (M3, g) in (Nil4, g̃) is given by

(hij) =

0 1
2 0

1
2 0 1

2
0 1

2 0

 ,
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where hij = h(ei, ej) for all i, j = 1, ..., 3. In this case, (M3, g) is not totally geodesic because h ̸= 0, and minimal
hypersurface in (Nil4, g̃), that is H = 0. It is also parallel in (Nil4, g̃) because ∇h = 0.
(3) The principal curvatures of (M3, g) in (Nil4, g̃) are − 1√

2
, 0, 1√

2
.

One can compute the matrix of Ricci curvature of (M3, g) and get

(Sij) =

 1
4 0 1

4
0 1

2 0
0 0 1

4

 .

So the scalar curvature of (M3, g) will be by
τ = 1.

From the second fundamental form we can get the matrix of shape operator of (M3, g) in (Nil4, g̃) as so

Aξ =

0 1
2 0

1
2 0 1

2
0 1

2 0

 .

From the previous remarks we can conclude the following Corollary.

Corollary 3.1. A hypersurface (M3, g) in the Lie group (Nil4, g̃) is Codazzi if and only if it is parallel. The Lie group
(Nil4, g̃) do not have any totally geodesic hypersurface.

4. Minimal hypersurfaces in Nil4

Let (M3, g) be a hypersurface in (Nil4, g̃). In this section, we search the conditions for the hypersurface
(M3, g) to be minimal in (Nil4, g̃), where the unit normal vector field on (M3, g) is given by ξ = ae1 + be2 + ce3 +
de4, and assume that {Xi}1≤i≤3 is a local orthonormal frame on (M3, g), where Xi = aie1 + bie2 + cie3 + die4
for some local functions {a, b, c, d, ai, bi, ci, di}1≤i≤3 on M3 depends only on the variable t.

Theorem 4.1. The hypersurface (M3, g) is minimal in (Nil4, g̃) if and only if

3∑
i=1

[ai (bid− bdi) + bi (cid− cdi) + di (aa
′
i + bb′i + cc′i + dd′i)] = 0.

Proof. Let i = 1, 2, 3. We compute

∇̃Xi
Xi = ∇̃aie1+bie2+cie3+die4 (aie1 + bie2 + cie3 + die4)

= ai

(
ai∇̃e1e1 + bi∇̃e1e2 + ci∇̃e1e3 + di∇̃e1e4

)
+bi

(
ai∇̃e2e1 + bi∇̃e2e2 + ci∇̃e2e3 + di∇̃e2e4

)
+ci

(
ai∇̃e3e1 + bi∇̃e3e2 + ci∇̃e3e3 + di∇̃e3e4

)
+di

(
a′ie1 + ai∇̃e4e1 + b′ie2 + bi∇̃e4e2 + c′ie3 + ci∇̃e4e3

+d′ie4 + di∇̃e4e4

)
. (4.1)

From Proposition 2.1, and equation (4.1), we obtain

∇̃Xi
Xi = ai

(
bi
2
e4 −

di
2
e2

)
+ bi

(
ai
2
e4 +

ci
2
e4 −

di
2
(e1 + e3)

)
+ci

(
bi
2
e4 −

di
2
e2

)
+ di

(
a′ie1 −

ai
2
e2 + b′ie2 +

bi
2
(e1 − e3)

+c′ie3 +
ci
2
e2 + d′ie4

)
,

dergipark.org.tr/en/pub/iejg 712

https://dergipark.org.tr/en/pub/iejg


N. Djellali, A. Hasni, A. Mohammed Cherif, M. Belkhelfa

it is equivalent to the following equation

∇̃XiXi = a′idie1 + di(b
′
i − ai)e2 + di(c

′
i − bi)e3 + [did

′
i + bi(ai + ci)]e4. (4.2)

By equation (4.2), we have

g̃(∇̃Xi
Xi, ξ) = aa′idi + bdi(b

′
i − ai) + cdi(c

′
i − bi) + d[did

′
i + bi(ai + ci)].

(4.3)

Note that, B(Xi, Xi) = (∇̃XiXi)
⊥, that is h(Xi, Xi) = g̃(∇̃XiXi, ξ). Thus, the hypersurface (M3, g) is minimal if

H =
1

3

3∑
i=1

g̃(∇̃XiXi, ξ) = 0. (4.4)

The Theorem 4.1 follows by equations (4.3) and (4.4).

Example 4.1. We consider the following vector fields

ξ =
2√

5(2 + t2)
e1 +

2t√
5(2 + t2)

e2 +
t2√

5(2 + t2)
e3 −

2√
5
e4,

X1 = − t√
1 + t2

e1 +
1√

1 + t2
e2,

X2 = − t2

(2 + t2)
√
1 + t2

e1 −
t3

(2 + t2)
√
1 + t2

e2 +
2
√
1 + t2

2 + t2
e3,

X3 =
4√

5(2 + t2)
e1 +

4t√
5(2 + t2)

e2 +
2t2√

5(2 + t2)
e3 +

1√
5
e4.

It is easy to verify that these vector fields satisfy

g̃(ξ, ξ) = 1, g̃(ξ,Xi) = 0, g̃(Xi, Xj) = δij , ∀i, j = 1, 2, 3,

and the condition of Theorem 4.1. Thus the hypersurface (M3, g) defined by these vector fields is minimal.
According to (1.13), this hypersurface (M3, g) is given by

f : (M3, g) −→ (Nil4, g̃).

(y, z, t) 7−→ (2t+
t3

3
, y, z, t)
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