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ABSTRACT. Let Q be a bounded domain in R” with C%:1 boundary, and let do : © — R be the distance function
dg (x) := dist (z, Q) . Our aim in this paper is to study the existence and properties of principal eigenvalues of self-
adjoint elliptic operators with weight function and singular potential, whose model problem is —Au + bu = Amu in
Q,u=00n0Q u > 0in, whereb : @ — R is a nonnegative function such that d3,b € L (Q), m : @ — Risa
nonidentically zero function in L>° (€2) that may change sign, and the solutions are understood in weak sense.
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1. INTRODUCTION

Let Q be a bounded domain in R" with C'! boundary if n > 1, let m be a real valued
function defined on (2, let A € R, and let £ be a second order elliptic linear operator on €.
We recall that X is said a principal eigenvalue of the operator £ with weight function m and
Dirichlet boundary condition, if there exists a solution u to the problem

Lu = dmu in €,
(1.1) u = 0 on 01,
u>0inQand v #Z 0in Q.

These problems have received a lot of attention in the literature, in part because they appear
naturally when one studies semilinear bifurcation problems via the implicit function theorem
(for details see e.g., [8], Chapter 5, Section 5.3). Let us recall some works related to problem
(1.1).

Manes and Micheletti in [15] studied the problem (with the solutions understood in weak
sense and belonging to H} () N C (Q))

—div (AVu) = dmu in €,
(1.2) u = 0on 0%,
u>01inQ

in the case when m € L" (Q) for some r > % and A = (a;; (x)) is a symmetric uniformly

elliptic n x n whose coefficients belong to C%! () . They proved, by variational methods, the
following facts:
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a) If m > 0, then problem (1.2) has a principal eigenvalue A\, (m), which is positive and
simple, and that it is the first positive eigenvalue of the problem

{ —div (AVu) = Mmuin Q,

(13) u = 0 on 01,

that is, if A is any other eigenvalue X of (1.3), then A > A\ (m).

b) If m < 0, then problem (1.2) has a principal eigenvalue A_; (m), which is negative and
simple, and satisfies that A < A_; (m) for any other eigenvalue X of problem (1.3).

¢) If m* # 0and m~ # 0, then problem (1.2) has two principal eigenvalues \; (m) and
A_1(m), with A; (m) > 0 and A_; (m) < 0; both of them are simple eigenvalues, and
A ¢ (A1 (m), A (m)) for any eigenvalue A of problem (1.3).

They proved also a maximum principle with weight, which reads as: If h € L?(2) for some
g>mnand 0 < h # 0, and if either m™ # 0,m~ £ 0and A_1(m) < A < A;(m), orm > 0 and
A < Ai(m),orm < 0and A > A_;(m), then the problem

(1.4)

—div (AVu) = dmu + hin Q,
u = 0on 0N

has a unique solution, and it is positive in 2.

On the other hand, motivated by problems of genetic population dynamics, Brown and Lin
in [4] studied the existence and properties of principal eigenvalues for problem (1.2) in the case
of the Laplace operator with homogeneous Neumann boundary condition, Hess and Kato in
[13] investigated principal eigenvalue problems with weight for a general uniformly elliptic
second order linear operator

Lu:=— Z ij () axzax]—i— Zaz

1<i,5<n 1<i<n

(z) u.

Indeed, they studied the problem

Lu = Admu in €,
(1.5) u = 0 on 092,
u > 0in €,

where the weight m may change sign and belongs to C7 () for some v € (0,1) , and with the
solutions understood in classical sense (i.e., u € C*(Q) N C (2)). Under standard regularity
assumptions on the coefficients of £ (among them that ay € C7 () for some v € (0, 1)), they
proved, by using the Krein Rutman theorem, that if ¢y > 0 in , and m™* # 0 (respectively
m~ # 0), then problem (1.5) admits a unique positive (resp. negative) principal eigenvalue
A1 (m) (resp A1 (m)) which is simple. They also showed that the solutions u of (1.5) belong to
C! (Q) and satisfy, for some positive constants ¢; and ¢z,

c1da < u < cadg in €.

They proved also the following maximum principle with weight: If ap > 0 in ©, and if m™ # 0
(respectively m~ # 0) and if 0 < X < A\q (m) (resp. A_; (m) < A < 0) then, for any nonidenti-
cally zero h such that 0 < h € C7 (Q2) , the problem

{Eu:)\mu—I—hinQ,

(1.6) u = 0 on 09
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has a unique (classical) solution u and it is positive in 2.

Hess and Senn in [18] studied problem (1.5) with the Dirichlet replaced by the Neumann
boundary condition.

Lopez-Gomez in [14] addressed problem (1.5) in the case when a is not necessarily non-
negative and, by using arguments relying on the maximum principle, they stated sufficient
conditions for the existence and the nonexistence of principal eigenvalues.

Hernandez, Mancebo and Vega (see [10], Section 2), studied problem (1.5) in situations
where some coefficients of £ and the weight m are allowed to have a certain kind of singu-
larity along 02. They assumed that:

1) Qis a bounded domain in R™ with C3™ boundary for some v € (0, 1),
2) A(z) = (a;; (z)) is a symmetric n x n matrix, uniformly and strongly elliptic in 2, and
foreach i, j,a;; € C3(Q)NC (Q),

3) a; € C?(Q) and there exists a constant K and a € (—1,1) such that %2: + Ja;| <
K (1+4d3) and 33,2%2 + gg’f < Kd?fl forallz € Qand 1 < 4,5 < n; and their

assumptions on the functions a¢ and m were:
4)aoeClﬁnamiﬁﬂaHk:1J“wn¢%ﬂﬂ%%’EL“Gﬂ,wﬂhaasm3L
5) m is strictly positive in 2 and satisfies the conditions in 4).

Under the hypothesis 1)-5), they proved (see [10, Theorem 2.6]), that there exists a unique real
eigenvalue A with an associated eigenfunction u in the interior of the positive cone of C* (Q)
(i.e., such that v > 01in £ and % < 0 on 912, where v denotes the unit outward normal to 01?),
and that such a ) is a simple eigenvalue of problem (1.5).

Let us mention also that Berestycki, Varadhan an Nirenberg in [2] studied, in a generalized
sense, problem (1.5) in the case where each a;; € C (), ap € L™ (), and a; € L* (Q) fori =
1,2,...,n. Additional results and more references concerning principal eigenvalues for elliptic
problems can be found in [6].

Principal eigenvalue problems for periodic parabolic operators with Dirichlet boundary con-
dition were studied by Beltramo and Hess in [1], and applications to semilinear periodic para-
bolic problems were given in [11]. A very good exposition of these results, including problems
with either Neumann or Robin boundary conditions and its nonlinear applications, as well as
additional references, can be found in the book [12].

Problems of the form

—Au + bu = Amu in €,
(1.7) u = 0 on 01,
u > 0in €,
were studied in [9] in the case when m is a nonnegative and nonidentically zero function be-
longing to L> (2) , and b is a singular potential of the form b = av=*~!, where:

1) 0<a<3,
2’) a € L™ (Q) and there exists 6 > Osuch thatessinf4, a > 0,, with A; := {z € Q : dq (z) < 6},
3) v € Dy := {veH}(Q):9;'ve L>(Q) and essinfo I v > 0}, where ¥, = dg if

1
0<a<l, ¥ :=dq (log (%)) *, where w is an arbitrary constant greater than the

2
diameter of 2, and ¥, :=d,"" if 1 < a < 3.

Under these assumptions, Lemmas 4.3 and 4.4 in [9] state the existence of a positive principal
eigenvalue for problem (1.7), and a maximum principle with weight.
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Our aim in this paper is to study principal eigenvalue problems with singular potential and
bounded weight function of the form
—div (AVu) + bu = Amu in €,
(1.8) u = 0 on 0,
u > 0in €,
where the solution u is understood in weak sense (see Definition 1.1 below), and 2, A, band m
satisfy the following assumptions:

H1) Qis a bounded domain in R", with C*! boundary if n > 1.

H2) A:Q — M, (R), with A = (a;; (z)) uniformly elliptic (i.e., there exists a constant v > 0
such that (A (z)¢&,€) > v[¢|? for any z € Q and € € R") and such that a;; € C%! (Q),
Qi :ajiforl SZ,] <n.

H3) The potential b : Q@ — R is nonnegative and bd3 € L™ (), where dg, :  — R denotes
the distance function given by

(1.9 dg (x) = dist (x,00).
H4) me L* (Q)and m £Z0in Q, i.e., |[{z € Q : m(z) # 0} > 0.
Observe that H3) allows b to be singular along 02 and H4) allows m to change sign in €2. The

notion of weak solution we use is the usual one, given by the following;:

Definition 1.1. Let f : Q — R be such that fo € L' (Q) forany o € HE (Q), and let u : Q@ — R. We
say that w is a weak solution of the problem

—div(AVu) = fin Q,
u=0o0n 9N

ifue HY (Q)and [, (AVu, V) = [, f forany p € H ().

The paper is organized as follows: In Section 2, we present some general facts need later. In
Section 3, following the approach of [13] we study, for each A € R and under the assumptions
H1)-H4), the principal eigenvalue problem without weight (i.e., with weight 1)

—div (AVu) + bu = Amu + pu in Q,
(1.10) u = 0 on 01,
u > 0in €.

We prove that, for each A € R, problem (1.10) has a unique principal eigenvalue p = i (A),
which has the variational characterization

(1.11) s (V) o= o Jo (AVw, Vw) + [, (b — Am) w? |
’ weHL()\{0} Jo w?

We prove also that the eigenspace V), , () corresponding to fi,,, 5 (\) is one dimensional, and
thatif 0 # u € V,,,, ) then u € Hj () N C* (Q) and either u = 0in Q, or u > 0in Q, or
u < 0in Q. In addition, we show that p,, ; is a concave function which satisfies (i, 5 (0) > 0,
Mmoo fimp (A) = —o0 if m™ # 0, and limy—, oo fmp (A) = —o0 if m™ # 0. We show also
that if m > 0in Q then p,,,, (A) > 0 for any A < 0, and that if m < 0 in Q then g, (A) >
0 for any A > 0. From these facts, it follows that if m changes sign in 2 then the equation
tmp (A) = 0 has exactly two roots, A = A_;1 (m,b) < 0and A = Ay (m,b) > 0, whereas if
m > 0 (respectively m < 0) the same equation has a unique solution A = Ay (m,b) > 0 (resp.
A = A_1(m,b) < 0). From these facts, and since the principal eigenvalues of problem (1.8)
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are exactly the roots of the equation y,, , (A\) = 0, we state, in Section 4 (see Theorem 4.1) the
corresponding results for the principal eigenvalues of (1.8). A maximum principle with weight
is given in Theorem 4.2, the variational formula for the principal eigenvalues of problem (1.8)
is given in Theorem 4.3. In Theorem 4.4 we prove that the eigenfunctions corresponding to
these eigenvalues belong to H{ () N C* (2) N C (Q) and we give lower and upper estimates
for them (in terms of powers of dg), and in Theorem 4.5 we study the continuity of the maps
(m,b) = A1 (m,b) and (m,b) — P, 5, where &, ; is the positive eigenfunction associated to
A1 (m, b) and normalized by || @y, p| 2y = 1-

2. PRELIMINARIES

For 1 < p < oo, we will write p’ for the Holder conjugate exponent defined by % + ; =1
(with the convention that é = 0); and p* will denote the Sobolev critical exponent defined by
L =1 1ifp<nandbyp* := oo otherwise.

p*  p
For a measurable function v : @ — R such that vp € L' (Q) for any » € H} (), we will
write S, to denote the functional S, : Hj (2) — R defined by S, (¢) := [, ve; and we will
say v € (H} () to mean that S, € (Hg () and, in this case, if no confusion arises, we will
write sometimes v instead of S,,. We will denote by dq, the distance to the boundary function
do : Q — R defined by

dq (x) = dist (z,09) .
From now on, £, will denote the operator £y : Hj (Q) — (Hg (Q))/ defined by Lou :=

—div (AVu) and, for ¢ € (H} (), £5* (¢) will denote the unique weak solution u € H{ ()
(given by the Riesz theorem) to the problem Lou = { in §2, u = 0 on 992,

Remark 2.1. Let us recall the following well known facts:

i) (Poincaré’s inequality, see e.g., [16], Proposition 1.9.6) If n > 2 then there exists a positive
constant ¢ such that ||¢[| 2 o) < c|[Vellp2(q) forall ¢ € H} (Q) and, if n = 2 then for
each q € [1,00) there exists a positive constant cq such that ||¢| L. q) < ¢q V@l p2(q) for all
v € Hy (Q).

ii) (Hardy’s inequality, see e.g., [3], p. 313) There exists a positive constant ¢ such that ‘
clIVell L2 (o) for all ¢ € Hg ().

iii) (weak maximum principle, see e.g., [8], Theorem 1.3.7) If g : @ — R is nonnegative and belongs
to (H¢ ()", then L5'g > 0.

iv) (weak comparison principle) If g : Q@ — Rand h : Q — R belong to (H} (Q))/ and g < hin
Q, then Ly g < Lo h.

P
da

L2(Q)

Remark 2.2. Let v : Q@ — R. From the Poincaré’s and Hardy’s inequalities of Remark 2.1, it follows
immediately that if either v € L") (Q) or dov € L? (Q) , then:

i) The functional S, : H{ () — R is well defined, belongs to (H} ()", and there exists a
positive constant ¢, independent of v, such that: If v € L") (Q) then || S, < ¢ [v]l g~y and
if dov € L? (Q) then ||S,|| < c||dqvll, -

ii) The problem Loz = v in Q, z = 0 on 99Q, has a unique weak solution z € H} (), and
it satisfies, for some positive constant c independent of v, ”Z”Hé(ﬂ) < c|lvll gy when v €

LY (Q), and 12l 2 0y < clldeull, when dov € L? (Q).
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Remark 2.3. Ifv: Q — R be a measurable function such that vp € L' (Q) for any ¢ € H{ (Q) and if
S, € (H} ()", then, by the Riesz theorem, the problen
Loz=vinQ, z=0o0no

has a unique weak solution z € H () , and it satisfies HZHHg(m = ||SUH(H1(Q))/.
0

If g and h are real functions defined a.e. in 2, we will write sometimes f = g to mean that there
exist positive constants ¢; and ¢, such that ¢, f < g < cof a.e. in Q. We will write also f < g to
mean that there exists a positive constant ¢ such that f < cg a.e. in Q.

For o > 0,weset Qs :={z € Q:dq(z) > d}.

Lemma 2.1. If w and  belong to H} (), then dg*wp € L' (Q) and there exists a positive constant,
independent of w and ¢, such that
2.12) ldg*well, < cllwll gy Il e -
Proof. The lemma follows immediately from the Hardy’s inequality. O
Lemma 2.2. Let b : Q — R be a nonnegative function such that dyb € L> (Q), and let h : Q@ — R
be such that h € (H} (Q))" . Then:
i) There exists a unique weak solution u € H} (Q) to the problem
Lou+ bu = hin Q,
{ u = 0 on 09Q.

ii) If h > 0, and if u is the weak solution of (2.13), then v > 0 a.e in €.

iii) If h > 0 and h # 0, and if u is the weak solution of (2.13), then, for any § > 0 such that
Qs # @, there exists a positive constant c such that u > cdq; a.e in Q5. In particular, w > 0
a.e. in Q.

Proof. Let B : H} () x Hj () — R be defined by

B(pt) = /Q (A, Vi) + bt

By Lemma 2.1, B is a continuous bilinear form on H} (Q) x H{ () and, since b > 0, B is also
coercive. Then i) follows from the Lax Milgram theorem. Suppose now i > 0. By taking —u~
as a test function in (2.13), we get

(v vu)y +5 @) = [ (AVa=Vur) b)) = = [ h <o,

Q

(2.13)

which gives u~ = 0 a.e. in Q. Thus 7) holds.

To prove iii), observe thatif h > 0 a.ein Q and i # 0 in Q, then, for ¢ positive and small
enough, there exist ¢ > 0 and a measurable set E C 5 such that |E| > 0 and h > exg in 5.
For such a ¢, let O’ be a regular domain such that 25 CC Y ccC Q, and consider the problem

—Loz +bz=exgin (Y,
z=0o0no.

Since 0 < bjgr € L™ (') and exp € L™ ('), by the inner elliptic estimates in ([7], Theorem
9.11), we have 2 € W2 (Q')NW,** () forany ¢ € [1,00) and so 2 € C' (') . By the maximum
principle (as stated e.g., in [7, Theorem 9.1]) we have z (z) > 0 for any « € €, and by the Hopf’s
boundary lemma (as stated e.g., in [17, Theorem 1.1]), we have also % < 0 on 09 and from
these two facts it follows that z belongs to the interior of the positive cone of C* (V) , and so
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there exists a constant ¢ > 0 (which may depend on ') such that z > c¢dgq in €. Therefore,
since dgy > dg, in {15, we have z > cdq; in Q5. Now,
Lo(u—2)+bu—2)=h—exrg>0in D' (),
u—z>0ono,
with the inequality on 0§’ understood in the sense of the trace. Thus, by the maximum princi-
ple (as stated, e.g., in [7, Theorem 9.1]), © > zin Q' and then u > cdg; a.e. in 5. Thus ii7) holds

for ¢ positive and small enough, and so 7ii) holds also for any ¢ > 0 such that 25 # @ (because
if 0 < 01 < 02 and Qs, # @ then dg, < dg, in Qs,). O

Remark 2.4. Let b : Q — R be a nonnegative function such that d3b € L> (), and let (Lo + b)~":
L2 (Q) — H} (Q) be the solution operator of problem (2.13), i.e., the operator defined by (Lo + b) ™" h =
u, where u is the weak solution of (2.13). Then (Lo +b)"" : L2 (Q) — H} () is continuous and

(Lo+b)~" : L2(Q) — L2 (Q) is a compact operator. Indeed, for h € L? () and u = (Lo +b) "' h,
we have

el < [ AV + [ 00 = [ b <ol fellgyo
where c is the ellipticity constant of A and cp is the constant of the Poincaré’s inequality, and so, if
u # 0, then ||u||H3(Q) < ¢ Yep ||hl|, . Since clearly this inequality holds also when u = 0, it follows
that (Lo +b)~" : L2(Q) — HE (Q) is continuous. Then, since HL () has compact inclusion in
L2 (Q) , we conclude that (Lo +b) ™" : L2 (Q) — L2 (Q) is a compact operator.

3. A ONE PARAMETER EIGENVALUE PROBLEM WITH SINGULAR POTENTIAL

From now on, b and m will denote, respectively, a nonnegative function b : & — R such that
dib € L™ (Q), and a nonidentically zero function m € L> (2), which (except if otherwise is
explicitly stated) may change sign.
Definition 3.2. For A € R, let

" Jo (AVw, V) + [, (b — Am) w?

in .
weH} (2)\{0} Jo w?

(3.14) i (V) =
Notice that, by the Hardy’s inequality,

2
w 2 2
(3.15) os/ﬁbw%/ﬂdéb? < Jld&l| o vl @) < ellwliay @)
Q

for any w € Hj (2) , where ¢ is a positive constant independent of w. Also,
Jo (AVw, Vw) + [, (b— Am) w?
Jow?
N Jo (AVw, V) + [, bw?
a Jow?

and then p,,,  (A) is well defined and finite for any A € R.

Proposition 3.1. For any A € R, we have:
i) If p € R and if u is a weak solution of the problem
{ —div (AVu) + bu = dmu + pu in Q,

(3.16) u = 0on o
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then u € C* (Q) and iy () < p.
it) The infimum in (3.14) is achieved at some nonnegative and nonidentically zero u € H} (Q2).

Proof. To prove i), it is enough to see that: if u is a weak solution of (3.16), and if €’ is an
arbitrary regular domain such that ' cC Q, then u € C' (€’). We consider first the case
n = 2. For Q' as above, let Uj be a regular domain such that @ >> Uy D> . Since n = 2,
we have u € H} () € L4(Q) for any q € [1,00), and so u € LI (Up), Amu + pu € L7 (Uyp)
for some ¢ > 2. Also, b € L™ (Up). Then, taking into account (3.16), and the inner elliptic
estimates in ([7], Theorem 9.11), we get u € W27 (Q’) C C'(Q'). Suppose now n > 2, and
let {5} ooy and {U;} ey oy Pe two sequences of regular domains such that £ = € and
Q; DD U; DD Q41 DD ¥ forall j € NU {0} . For j € NU {0}, let ¢; be inductively defined by
qo = 2,and by ¢; 41 = ¢} (with ¢} := o0 if ¢; > n). Let jo = max {j € NU{0} : ¢} < oo} . Thus
¢j, < nand gj, > n. Let us show, inductively, that

(3.17) u € W% (Qj41) for j =0,1,..., jo.

Since u € L?(Q), we have u € L% (Uy), Amu + pu € L? (Up). Also, b € L* (Up) and thus,
by (3.16) and ([7], Theorem 9.11), u € W22 (Q;) = W?2% (Qy). Then (3.17) holds for j = 0.
Suppose now that (3.17) holds for some j € {0,1,...,jo — 1} . Thenu € L% (Uj41), Amu+ pu €
L% (Uj41), and also b € L (Uj41), and so, again now from (3.16) and ([7], Theorem 9.11),
u € W29 (Qjua) = W9+ (Qj,9) , which completes the inductive proof of (3.17). Then u €
W20 (9j,41) and so, by using again now the above argument, u € W*%o (Q;,12) . If g, >n
then W2%o (Qjy+2) C C' (Qj,42) € C* () and we are done. If ¢}, = n then W2 %o (Qjo42) C
L" (Qj,+2) forany r € [1,00) . We take r > n to obtain, proceeding as above, u € W2" (Q,13) C
C! (Qj,+3) C C' (). Thus the first assertion of ) holds.
On the other hand, from (3.16),

/Q(<AVU,VU>+(b7>\m)u2) :u/qﬁ

Q

and so pu = (g, u2)_1 Jo ((AVu, Vu) + (b — Am) u?) > i (A), the last inequality by (3.14),
which completes the proof of ). To prove i) consider a minimizing sequence {w; } ;.\ for (3.14).
After normalizing it, and by replacing, if necessary, w; by |w;| we can assume that w; > 0 and
|wjl|, = 1 for each j. From (3.14), we have

(3.18) tmp (A) = lim (/ (AVw;, Vw;) +/ (b — Am) w?)
3.19) > liminf [ (AVw;, Vw;) — |A| |m]|
j—oo Jo

and so, after pass to a further subsequence if necessary, we can assume that {w; } ;. is bounded
in H; () . Thus there exist u € H (2) and a subsequence, still denoted by {w;}, y , such that
{Vw;},cy converges weakly in L? (Q,R"™) to Vu and {w, }jen converges strongly in L?(Q) to
u. Thus ||u|, = 1. After pass to a further subsequence if necessary, we can assume also that
{w;},cn converges to u a.e.in 2 and so, since each w; is nonnegative, we have u > 0. Let k € R
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such that b — Am + k > 0. From the equality in (3.18) and since ||w; ||, = 1, we have

tmp (A) + k= lim </ (AVw;, Vw;) +/
Q

Jj—00 Q

(b— Am+k)wl2>

> lim inf/ (AVw;, Vw;) + lim inf/ (b—Am + k) w}
Q j—00

J—00 Q

Z/Q(AVU,VW—F/Q(IJ—/\m—&-k)zf

:/ <Avu,vu>+/ (b—Am)u® +k,
Q Q

where in the last inequality it was used the Fatou’s Lemma and the fact that ||(AVu, Vu)||, <
liminf;_, o [(AVw;, Vw;)|l, . Then ppp (A) > [ (AVu, Vu) 4+ [, (b —Am)u?. On the other
hand, from the definition of /i, 5 (A) , we get the opposite inequality. Then /i, (A) = [, (AVu, Vu)+
Jo (b= Am)u? and so i) holds. O

Proposition 3.2. For any A € R, we have:

i) If uis a minimizer of (3.14), then w is a weak solution of the problem

—div (AVu) + bu = dmu + pimp (A win Q,
(3:20) { u = 0on ON.

ii) For p € R, if wis a nonidentically zero weak solution of the problem

{ —div (AVu) + bu = dmu + pu in Q,

(3.21) u = 0on 0N

such that w > 0in Q, then p = p, p (X) and w is a minimizer of (3.14).
Proof. To prove i), consider a minimizer w of (3.14). Thus
B Jo ((AVw, Vw) + (b— Am) w2)

Jow?

Let ) € H} (Q2) . Then there exists g > 0 such that w + ¢ty € H{ (Q) \ {0} for any ¢ € (—eo, o) -
Then, for such a ¢,

(3.22) fim,b (A)

(3.23) ) < Ja ((AV (w+ 1),V (w+tp)) + (b — Am) (w + tz/))Q)
| e Joo (w +1)? '

From (3.23), a computation using gives that, for ¢ € (0, <o),

s ) ([ wo 5 [ 02)

t t
< / (<AVw, Vi) + 3 (AVY, Vi) + (b — Am) (ww + 2w2>) ,
Q
and so, by taking lim;_,o+ we get fim b (A) [, w < [, (AVw, Vip) + (b — Am) wip) . By replac-
ing ¢ by —1, the reversed inequality is obtained, and thus ) holds.
To prove ii), suppose that u € H} () is a nonidentically zero weak solution of (3.16) such

thatw > 0in Q. Let w € C° (2) and let ¢ > 0. Then % € H} (). We take % as a test
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function in (3.16) to obtain

a2
/ AV, (u+e) 2wVw2 w*Vu +/ pw? Y
Q (u+e) o ute

:A/mwa u +/w2ﬂ7
o) u—+e Q u-—+e

that is
2
/<AVU, 2wVw>/ AVU,LVUQ +/bw2 u
Q u+e Q (u+e) Q u+e
:>\ mw2 u +\/w2ﬂ’
Q u—+e Qo u-+e
ie.,
/2<AwV1n(u+5),Vw>f/ <AwV1n(u+5),wV1n(u+5)>+/bw2 4
Q Q o ute
:)\/mw2 “ +/w27/¢u
QO u—+e Q U/+E’
that is
—/<A(wV1n(u—|—6)—Vw),len(u+5)—Vw)—|—/(AVw,Vw>+ buw? —~
Q o o ute
= /mw2L+u/w2 Y ,
Q u+e o u-+e
and so

(3.24) /wzﬂ g/ (AVw, Vw) +/ buw? — —)\/ mw? ——.

o u-te Q Q u—+e Q u—+e
From (3.24), by taking lim. o+ and using the Lebesgue’s dominated convergence theorem, we
get

(3.25) u/ w? < / (AVw,Vw)—i—/ bwz—/\/ mw?.
Q Q Q Q

Since this holds for any w € C2° (), and taking into account Lemma 2.1, a density argument
gives that (3.25) holds also for any w € Hj (Q) . Therefore,
- Jo (AVw, V) + [ bw? = X [, mw?
"= Jow?
forany w € H} (92)\ {0} . On the other hand, by taking w = w as a test function in (3.14), we get

1= (fou?) [ ((AVu, Vu) + bu? — Amu?) . Thus, from this fact and (3.26), y = fim5 (A) . Then
i) holds. 0

(3.26)

Proposition 3.3. For any A € R, we have:

i) If wis a nonidentically zero weak solution of problem (3.20), then either u > 0in Q or u < 0 in
Q.
ii) The space of the weak solutions v of (3.20) is one dimensional.
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Proof. To prove i) we follow, partly, [15] (see also [5, Theorem 1.13]). We proceed by the way of
contradiction. Suppose that u € Hg () \ {0} is a weak solution of (3.20), and that u™ # 0 and
u~ # 0. Let

a ::/ ((AVu, Vu) + (b — Am)u?), B = / u?,
Q Q
2 2
o ::/Q <<AVu+7Vu+> + (b—Am) (u+) ) , By = /Q (u+) ,
Qo ::/Q <<AVu_,Vu_> + (b—Am) (u_)z) , By = /Q (u_)Q.

Thus a = a1 + as and 8 = (81 + (2. Now,

o1 + Qo
m A) = ;
fm.b (A) 5 B,

and so, since u™ and v~ belong to H} () \ {0},

aptax o

B+ B2 _E

ap+ oy Qg

B1+ B2 _57

and

that is

(3.27) a1B1 + azfr < Brag + Baay,

a1f2 + azfe < fraz + faraz,
ie., % > % and % < % Then% = % and so %iigg = % = % Thus pm.p (A) = % = %
Therefore ut and u~ are nonnegative minimizers of (3.14) and then, by Proposition 3.1 i), they
are nonnegative and nonidentically zero weak solutions of (3.20) and so, for ¢ € R such that
b—Am+q > 0and g (A) + ¢ > 0 we have, in weak sense,

{ —div (AVu®) + (b= 2dm+ q)ut = (ttmp (A) + @) ut in Q,

3.28
(328) u™ = 0 on 9.

Thus, from Lemma 2.2 (used with b replaced by b—Am-+q and with h replaced by (pm b (A) + ¢) u),
we get that, for any 6 > 0 such that 25 # @, there exists a positive constant ¢ such that
ut > cdg, in Q. In particular, vt > 0 in 2, and so u~ = 0 in 2, which contradicts our as-
sumptions. Then 7) holds.

To prove ii), suppose that v and w are two linearly independent solutions of (3.20) and
let zp € €. Taking into account i) and Proposition 3.1, we can assume (by replacing, if
necessary, v and/or w by —v and/or —w respectively) that v (z¢) > 0 and w (z9) > 0. Let

to = (v (:co))_1 w (xp) and let z := tyv — w. Then ¢, > 0 and z is a solution of (3.20) such
that z (z9) = 0. Thus, by %), z is identically zero on 2, which contradicts the assumed linear
independence of v and w. O

Proposition 3.4. Let b : Q — R be a nonnegative function such that d4b € L> (Q), let m € L> ()
be a nonidentically zero function, and, for A\ € R, let i, ,, (N) be defined by (3.14). Then:

i) The map A\ — b (N) is concave and fiy, p (0) > 0.
ii) Ifm™* % 0 then limy_s o0 fim,p (A) = —o0; and there exists a unique X > 0 such that fi, p (\) =
0. If, in addition, m > 0 in Q, then fiy, 5 (A) > 0 for any X < 0.
iif) If m™ # 0 then limy_,_o b (A) = —oo; and there exists a unique A < 0 such that
b (X) = 0. If, in addition, m < 0 in Q, then fiy, , (X) > 0 for any X > 0.
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Proof. The first assertion of i) follows from the facts that p,, , (A) is finite for any A € R, and that
A= (fo w2)71 (Jo (AVw, Vw) + [, (b — Am) w?) is an affine function for any w € Hg (2)\ {0}.
Observe also that, from Proposition 3.1 ii), Proposition 3.2 ¢) and Proposition 3.3 7), all of them
used with A = 0, the problem
—div (AVu) + bu = iy, (0) win €,
(3.29) u = 0on 0,
u > 0in

has a weak solution . By taking u as a test function in (3.29), we get

/Q<AVU,VU>+/Qbu2:um (0)/Qu2

which gives p,, (0) > 0. Thus ) holds.

To see ii), suppose m™ # 0 and let wy € Hg () \ {0} such that [, mw3 > 0. By nor-
malizing wy, if necessary, we can assume that fQ mwg = 1. Then, for any A\ € R, i, (A) <
Jo (AVw, Vwe) + [, bwi — A [, mw§. From this fact, and since fi,,, is concave and i, (0) > 0, it
follows that lim o fhm. b (A) = —00; and that there exists a unique A > 0 such that i, 5, (A) = 0.
On the other hand, if m > 0in Q and A < 0, and if w is a positive solution of the problem

—div (AVu) + bu = Amau + fimp (A) win Q,
u = 0 on 01,
u > 0in €,

then, by taking u as a test function, we get

/Q(<AVU,VU)+bu2) :)\/QmuQ—&-um,b ()\)/Qu2

and so [, u? > 0, which implies fi,, 5 (A) > 0. Thus ii) holds.
Finally, ii7) follows from i7) by using that, by (3.14), tim,p (A) = pi—m (=) . O

4. PRINCIPAL EIGENVALUES PROBLEMS WITH SINGULAR POTENTIAL AND BOUNDED WEIGHT

Definition 4.3. Let b : Q — R be a nonnegative function such that d3b € L* () and let m €
L> () \ {0}. We say that X € R is a principal eigenvalue of the operator Ly + b on Q, with weight
function m and homogeneous Dirichlet boundary condition, if the problem

{ —div (AV¢) + bp = Ame in Q,

(4-30) ¢ =00n0Q

has a weak solution ¢ € Hy (Q) such that ¢ > 0 a.e. in Q and ¢ # 0 in Q. In such a case, any
nonidentically zero solution of (4.30) will be called a principal eigenfunction associated to the principal
eigenvalue \.

Theorem 4.1. Let b: Q — R be a nonnegative function such that d3b € L> (Q) and let m € L> (Q2)
be such that m # 0. Then:
i) X € Ris a principal eigenvalue for problem (4.30) if, and only if, i, (A) = 0.
ii) If m™ # 0 (respectively if m~ # 0) there exists a unique positive (resp. a unique negative)
principal eigenvalue for problem (4.30), which will be denoted by Ay (m, b) (resp. by A_1 (m)).
iit) If m > 0 (respectively if m < 0), then Ay (m,b) (resp. A_1 (m)) is the unique principal
eigenvalue for problem (4.30).
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iv) If A € R is a principal eigenvalue for problem (4.30), and if w is an associated eigengunction,
then uw € H} () N C (Q) . Moreover, if u € H} () nonidentically zero then either u > 0 in
Qoru < 0in .

v) The space of solutions of (4.30) is one dimensional.

Proof. The proposition follows directly from Propositions 3.1, 3.2, 3.3, and 3.4. O

The following form of the maximum principle for problems with singular potential and weight
function holds:

Theorem 4.2. Let b : Q@ — R be a nonnegative function such that d3b € L> (Q) and let m € L> ()
be a nonidentically zero function. For A € R, let i, (\) be defined by (3.14) and let h : Q@ — R be

such that h € (H§ (). Then:
i) If b (X) > 0, the problem

{ —div (AVu) 4 bu = Amu + h in €,

(4.31) u = 0on o0

has a unique weak solution.
ii) If pimp (A) > 0and 0 # h > 0, then the solution w of (4.31) is positive a.e in .
iii) If0 # h > 0 and if (4.31) has a nonnegative solution, then iy, , (A) > 0.
iv) If0 £ h > 0and i, p (A) = 0, then (4.31) has no weak solutions.

Proof. To prove i), suppose ftm, (A) > 0 and let k& € [0,00) be such that b — Am + k > 0. Let
T: L2 (Q) — L2 (Q) be defined by T := (Lo + b — Am + k)" . Thus T is a continuous, compact,
linear and it is self-adjoint operator on L? () . Notice that p is an eigenvalue of 7T if and only
if p = ﬁ with p an eigenvalue of £y + b + k — Am with (homogeneous Dirichlet boundary
condition). By Proposition 3.1 ), we have u > fiy b4k (A) = pmp () +k > 0, and so p < %
Thus, by the Fredholm alternative theorem, +1 — T : L*(Q) — L*(Q) is bijective, and so the

problem ;u — Tu = +Th has a unique weak solution u € H} (2), that is, the problem

%(£0+b—/\m+k)u—u:%hin9,
u = 0on 00

has a unique weak solution u. Then ¢) holds.
To see ii) observe that if ., (A) > 0 and if u € H} () is a weak solution of
—div (AVu) + (b— dm)u = hin Q,
u =0 on 0N

then, by taking —u~ as a test function,
Hm,b ()\)/ (U7)2 < / (<AVU7,Vu7> + (b—AIm) (u7)2> =— [ hu” <0
Q Q Q

and so u~ = 0. Thus u > 0. In addition, since —div (AVu) + (b—AIm +k)u = h + ku and
0 # h+ ku > 0, Lemma 2.2 gives u > 0 in Q. Thus i) holds.

To see iii) suppose that 0 # h > 0 and that u is a nonnegative solution of (4.31). Take k& as in
the proof of i), to get

—div(AVu) + (b—Adm+k)u=h+ kuinQ,
u = 0 on 90
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Then, by Lemma 2.2 i), u > 0 a.e. in Q. Now we can repeat, line by line, the first part of the
proof of Lemma 3.2 ii), replacing there, in each appearance, jiu by h, to obtain, instead of (3.24),
that for any w € C2° () and € > 0,

/w2 h /(AVU} Vw) + /bw2 ¢ f)\/mwQ 4
Q u-+e Q u+e Q u+e

and so, by taking lim inf, o+

(4.32) 0§/<AVw,Vw)+liminf (/ bw? —~ —)\/mwQ u )
Q e—=0t Q u—+e Q u—+e

Notice that u > 0 a.e. in Q, lim._,+ bw?® ;7 = bw? a.e. in Q, and lim._,o+ mw? 1 = mw? a.e.

in . Also, bw? # < bw? and mw ﬁrs < muw?. Observe also that, by Lemma 2.1 and that,
from our assumption on b, bw? € L' (Q2). Also, clearly mw? € L' (Q). Thus, from (4.32) and
the Lebesgue’s dominated convergence theorem,

0§/(AVw,Vw>+/bw2—)\/mw2
Q Q Q

Jo ((AVw, V) + bw? — Amw?)
Jow?
and thus, since w — [, bw? and w — [, mw? are continuous on Hj (2) , the same inequality
holds for any w € H} (22) \ {0}. Thus iy, (A) > 0. If f1,,,5 () = 0, then there exists ¢ € H{ (Q2)
such that

and so

>0

—div (AV¢) + b = Am¢ in Q,
(4.33) ¢ = 0 on 09,
¢ >0in Q.
Then , [, ((AV®, Vu) + bou) = A [, mpu and also [, ((AVu, Vo) + bug) = A [, mou + [, hqb
Then fQ h¢ = 0, which is impossible.
Remark 4.5. From Proposition 3.4, it follows immediately that:
D) Ifm>0inQ, then{\€R: pymp (A) >0} = (—00,A1 (m, b)) .
i) Ifm <0inQ, then {A\ € R: pyp (A) >0} =(A_1(m),0).
iti) m* £ 0and m~ £ 0, then {\ € R : pp (A) >0} = (A1 (m), A\ (m,b)).

Theorem 4.3. If m™* # 0, then

(4.34) A1 (m, b) = inf fQ ((AVw, Vw2> + bw2)
{wEH&(Q):fQ mw2>0} fQ muw

ot, equivalently,

(4.35) A1 (m,b) = inf ((AVw, Vw) + bw?),
weW,m, Q

where W, := {w € H} (Q) : [mw® =1}.
Proof. For A > 0, from (3.14), we have i, 5 (A) = 0 if and only if
nf Jo (AVw, Vw) + (b — Am) w?
{weH} (@): mu?>0} J rw?

i.e., if and only if (4.34) holds. ]

),
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Remark 4.6. From proposition 4.3, it is clear that the following three facts follow:
i) Let b; : Q — R, i = 1,2, be nonnegative functions such that dab; € L> (), i = 1,2 and let
m € L> (Q) \ {0} be such that m™ 2 0. If by < by in Q, then Ay (m,b1) < Ay (m, ba).
ii) Letb: Q — R, i = 1,2, be a nonnegative function such that d4b € L*> (), and let m; : Q@ —
R, i = 1,2, be functions in L> () such that mf Z 0. Ifmy < mgin ), then Ay (my,b) >
)\1 (’I”I”LQ7 b) .
iii) Let 1, Qo be bounded domains in R™ such that Oy C Qq, let m € L () be such that
m* # 0in Qy and let b : Qy — R be a nonnegative function such that dg, b € L™ () . Let
A1 (m,b,Q), @ = 1,2, be the positive principal eigenvalue of the operator Ly + b on §; with
weight function m. Then {w € Hy () : Jo, mw? = 1} C {w € Hy (Q) @ [, mw? = 1}
and so A1 (m7 b, Qg) <X\ (m, b, Q ) .
For § > 0, we set Ay := {x € Q : dist (z,00) < d}.
Remark 4.7. Let b : Q — R be a nonnegative function such that dab € L™ (), and let § > 0 be such
that Qs # @. If v € H* (Q) N C (Q) and Lov + bv > 0in D' (As), v > 0 0on OAs then v > 0 in
Ajs. Indeed, we have v~ € H' (A5) N C (Q) and v= = 0 0n A5, and so v~ € Hj (As) . Let {9}y
be a sequence in CZ° (As) such that {¢;} .\ converges to v~ in H{ (As) . By replacing {p; Fien by

{ /% + L - %} - if necessary, we can assume that each y; is nonnegative. Then
je

/ <<AVU7, Vo ) +b (v7)2) = lim ((AVo™, Vi) + v~ g;))

5 J]—00 As
=—lim | ((AVu,Vg;) +bvp;) <0
j—o Jo

and sov~ = 0on As.

In the case when 0 < b € L™ (Q2) (and m such that m € L>® () and m™ # 0), it is well
known that any positive eigenfunction u associated to A; (b, m) satisfies u ~ dq in 2 (because
u € C (Q) and 2% < 0 on 9, see e.g., [5], Proposition 1.6 and the Remark immediately before
it). Let us mention that, if we require only that b > 0 and d3b € L™ (Q2), the assertion that
u = dg in 2 may not hold, as the following example shows:

Example 4.1. Let v1 > 1 and let o1 be a principal eigenfunction for the problem without weight
—Ap1 = M1 in Q, o1 = 00n 09, g1 > 0in Q. A computation shows that —A (¢]) = yA\1p] —
Yy =1 @] 2 Vel ie, —A(]) + bp] = yhig] in Q, where b= (y—1) ¢ |Vei|?, and,
since 1 = dq in Qand |V, € L™ (Q), we have b > 0 and djb € L> (). It is easy to see that
©] € H} () and that o] satisfies, in weak sense, —A (¢]) + bp] = v 1] in Q, ] = 0o0n O, and
so @] is a principal eigenfunction corresponding to the potential b and the weight m = 1, and clearly
gOiy "75 dg in .
In order to prove the next theorem, we need the following elementary lemma:

Lemma 4.3. For § > 0 such that Qs # &, we have

(4.36) {r € Q:dist(x,00) =3} CQs.

2

Proof. If x € Q and dist (x, 0Q2) = 0, then dist (z, 893) =L foranyz € 99 , and so there exists
p. € Q such that |z — p,| = g. Now,
J

N O

1
\x—z|=\x—pz—(z—pz)\Z\x—pz|—|z—pz|:|x—pz|—§25—
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then, since z € 92 5 was arbitrary, we conclude that dist (x, o0 g ) > %. Thus (4.36) holds. O

Theorem 4.4. Let b : Q — R be a nonnegative function such that dab € L™ (Q), let m € L™ (Q)
such that m % 0in Q, and let X € R. If u € H{ (Q) is a weak solution of the problem

—div (AVu) + bu = dmu in Q,
(4.37) u = 0on 09,
u>0in§,

then:
i) There exists a positive constant ¢y such that u < cidq in ).
i) ue C(Q).
iit) If, in addition, dgb € L> () for some 3 < 2, then for any v > 1 there exists a positive
constant ¢y such that w > cody, in Q.

Proof. Since Am = —\ (—m) it is enough to consider the case when A > 0. Notice that, for & > 0,
the equation Lou + bu = Amu can be written as Lou + (b + A\k) u = A (m + k) v and that b + Ak
satisfies the condition on b assumed in the statements of the lemma. Therefore, by taking &
positive and large enough, we can assume that m > 1.

We first prove ¢) and ii). For § > 0 such that Q5 # @ let b5 := bxq,. Then 0 < bs € L* (Q)
and, in weak sense, Lou + bsu < Lou + bu = Amu in Q. Thus

(4.38) 0<u<(Lo+bs) " (Amu) in Q.

If 2 = oo (ie., if n = 1,2) then (Lo +bs) " (Amu) € L7 (Q) for any r € [1,00) (because
Amu € L? (Q)) and thus, by (4.38), u € L" (Q2) for any r € [1,00) . In particular, Amu € L" ()
for some r > n which implies (Lo + bs)~' (Amu) € C* (). Then, by (4.38), u is continuous
at 99 and, since by Proposition 3.1 i), u € C () we conclude that u € C (Q). Also, since
(Lo +b5) " (Amu) € C* (Q) and (Lo + bs) ™" (Amu) = 0 on 99, there exists a positive constant
¢ such that (Lo + b(s)_1 (Amu) < edg in 2, and then, by (4.38), u < cdg in .

In the case when 2* < oo, since u € H} (Q) we have u € L? (). Thus Amu € L? (Q) and
then (Lo + bs)~" (Amu) € L2 (Q) (when 2** < c0) and thus, from (4.38), u € L*”" (Q2) and so
Mmu € L2 (). By iterating this procedure, we get that Amu € L (Q) for some r > n. Then
(Lo +b5)"" (Amu) € O (Q) and thus, as above, we get that u € C () and that there exists a
positive constant ¢ such that u < cdg in Q. Thus ¢) and 4¢) hold.

To prove iii), assume that dgb € L™ () for some 3 < 2. Notice that if v > r then (since Q is
bounded) there exists a constant ¢, ; such that d}, < ¢, dg, in Q. Therefore it is enough to prove
i7i) when 1 < 7 < 2. Consider the solution ¢ € NM;<y<0 W29 (Q) N W, (Q) of the problem

Eo(ﬁ =lin Q,
{ 1 =0 on 01.

The regularity of 1) and the Hopf’s boundary lemma give that there exist § > 0 and a constant
c3 > 0 such that

(4.39) (AVY, Vip) > c§ in As.

From this fact, the strong maximum principle and the fact that ¢ € C*' (©2) , it follows that, for
some positive constants ¢4 and cs,

(4.40) cado < P < esdg in €.
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Let ¢ € (0,00) be such that d3b < ¢ in . A computation shows that
Lo (W7) + b7 =771 =5 (y = 1) (AVY, Vi) + b7 in ©,
and so, for § as above,
Lo(47) + by <73y = (y = 1) T dy T + oy
= dy? (—7 (v —1) el %2 + v tda + CGnggﬁH)
and thus, by diminishing ¢ if necessary,
Lo (7)) +byY” < 0in As.
Then, for any € > 0,
{Lo(u—e?)+b(u—e?)>0in D' (As).

Let us show that, for ¢ small enough, u — 9™ > 0 on 0A;. Indeed, clearly v — e = 0 on 0f2.
Also, by Lemma 2.2 i3i), there exists a positive constant c¢7 such that

(4.41) U > C7ng in Q%

Thus, since u € C (€2) we have

(4.42) u > 073 in Qig

Then, by (4.42), (4.36) and (4.40), for € small enough (perhaps depending on ) we have

] )
u—e? > Cog — ecidf, > o5~ ecld”

=5 (2 —ectg!) > 0i Q: dist (z,00) =

=0(5 —ecs >0in {z € Q: dist (x,00) = §}.
Then, by Remark 4.7,

u—ey? > 0in As.

On the other hand, since ¢y < M := csdiam () in Q, by diminishing ¢ if necessary we have
u—ep? > cgd —eM? > 0in Qs and sou —e¢)” > 0in Q5). Then u — €0 > 0 in Q and the
Proposition follows from (4.40). |

Let us to introduce some convenient notation. We set
B:={b:Q—R:djbe L™ (Q)}

and for b € B, we set ||b]| 5 := Hd%b“oo and BT := {be€ B:b>0}. Thus (B, ) is a Banach
space and B™ is its positive cone. We set also P := {m € L*> (Q) : m™ # 0} .

For m € P and b € Bt, we will write \; (m,b) for the (unique) positive principal eigen-
value of problem (4.33), and we will denote by ¢,, ; the (unique) associated positive principal
eigenfunction, normalized by || ¢y ||, = 1.

Lemma4.4. Let (m,b) € PxB* and let {(m;, bj)},en be asequencein PxB* such that {(m;, bj)}jen
converges to (m, b) in P x B (with P endowed with the topology of the norm of L>° (Q) and B* endowed
with the topology of the norm ||.|| z). Then:

1) {1 (my, b5)} e is bounded.

ii) {bm,; ., }jeN is bounded in H} (£2) .
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Proof. To see i), consider an arbitrarily chosen function z € H{ () N L> (Q2) such that z > 0
a.e.in Q. Since {b; },_ converges to b in B, there exists a positive constant c such that b; < cdy, 2

a.e.in Q for any j € N and, by Lemma 2.1, fQ d5222 < 0o. Then, for j € N,
(4.43) bzt <’
Q

with ¢ a positive constant independent of j. Also, taking into account that {m;},_y con-
verges to m in L (Q2) and that z? € L' (Q), the Lebesgue’s dominated convergence gives

lim; o0 [, mjz* = [, mz? > 0. Then there exists a positive constant ¢’ such that, for any
Jjen,
(4.44) / m;z* > "

Q

then i) follows from (4.43), (4.44) and from the fact that

I [|VZ|2 + bj,z?}

fQ m;z?

/\1 (mj, bj S

To prove ii), observe that

/‘V(bmj,b’ = A1 (my, b, /mj¢m b, /ijféfnj,bj <M (mjvbj)/gmjdﬁilj,bj’

and so, since {m;},\ is bounded in L* (12) , ii) follows from ). O

Theorem 4.5. i) The map (m,b) — A1 (m, b) is continuous from P x By into R.
ii) The map (m,b) — ¢u,.p is continuous from P x By into HE ().

Proof. To prove the lemma, it is enough to see that if (m,b) € P x By and if {(m;,b;)},cy
is a sequence in P x Bi which converges to (m,b) in P x B, then there exists a subsequence

{0 b5) b epy stch that iy o Ay (mg,, b3,) = At (m,b) and limy o |6, b, = G

H(Q
0. To do it, consider a pair (m,b) € P x By and a sequence {(m;,b;)},.y C P x By such Ech)a’c
lim;_, o (my,; ) = (m, b) with convergence in P x . From Lemma 4.4 z) and 1), after pass to a
subsequence if necessary (still denoted by {(m;, b )}JGN, we can assume that {A; (m;,b;)};
converges to some p € [0, 00) , and that there exists ¢ € H{} (€2) such that { ¢y, s, }j oy converges
to ¢ strongly in L? () and a.e. in Q, and {V ¢, », }jeN converges weakly to V¢ in L? (Q,R™) .
In particular, this implies |4, = 1, and then ¢ is nonnegative (because each ¢,,, ., is positive)
and nonidentically zero in ).

Let us show that {¢y,, 5, }j oy converges to ¢ strongly in Hg (). For j,k € N we have, in

weak sense,

445) Lo (dmy 5, — Do) = — (b0, 6, — bkbmy )
+ M (mj’ b]) mj¢mj,bj -\ (mk, bk) mk¢mk7bk in Q’
¢mj7bj - d)mk.,bk = 0on 012,

and so, by taking ¢, 5, — dm, b, as a test function in (4.45), we get

/Q (AV (dm; 0, — P bn) > (P by — Gmeson) ) = Lisk + 1L 1,
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where

Ik = _/Q (bj¢mj,bj - bk(bmk,bk) ((bmj,bj - ¢mk,bk) )

IIj,k: = / ()\1 (m]‘, b_]) mj¢mj,bj - )\1 (mk, bk) mkdjnzk,bk) (d)?nj,bj - (bmk,bk) .
Q

Now, b; = f;dg,? in Q, with 8; € L> () such that, for some positive constant ¢ and for all
JjeEN, ||5J|| < c¢. Thus

446) L= /Q (b — b) Suns s (D ) — s — /Q b (s 0, — D)’

S / (bmj,bj |bj - bk‘ |¢m]',b]' - ¢mk,bk‘
/ sy g2 1y | Sty = ma
do

_ ¢mj, b; ‘Qsmj U ¢mk ug
B / do il '

Then, by the Hardy’s inequality,

Prm; b,
L < cllf = Bl s
2 2

< B = Brll H‘bmj’bj - ¢mk’kaH§(Q) H‘bmj,bj HH(}(Q)

d)Mj,bj - (bmk,bk
do

< e (5, k) || 6m, b, (bmkvkaHé(Q)’
where € (j, k) := ||3; — Bk||, and where ¢, ¢ and ¢” are positive constants independent of j and
k. Therefore
(447) I] k < C E ]7 ||¢m] ] d)mkvkaH&(Q) .
On the other hand,
(4.48) 11 < / | (A1 ( m]ab ) = A1 (mu, b)) m]¢m], by (¢7nj,bj - ¢mk,bk)|
/ | A1 (M, bi) (mj — mp) b, b, (Gmy by — )|

n /Q A (M o) e (Dm0 — Do) (D s — Do)
<84, k) || dm; .0, ¢mkabk||H5(Q)’
where ¢ is a positive constant independent of j and & and
8 (j, k) = || (A1 (my, bs) = A1 (m, b)) Mg b, b, ||
A (mi i) (5 = 100 [+ A (b e (S, = S| -

Now, lim; 00 (A1 (M, b5) = A1 (my, b)) = 0, {m;}, isbounded in L () , and {du, s, }jeN
converges to ¢ in L? (Q) . Then

Jim (| (m,b5) = M (mas 1)) 13 Syl =
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Also, {\1 (my, b) } ey is bounded, lim;_, o m; = m with convergence in L™ (Q) ,and { ¢y, u, }
is bounded in L? () . Thus

jEN
j)llcigloo H)\1 (mp, br) (Mj — M) G, HQ =0,

and, since {\1 (my,, bx) },cy and {my } .y are bounded in R and L (Q2) respectively, and { ¢y, 5, }jeN

converges to ¢ in L? (Q) , we have

Hm || Ay (m, b) 1k (G, b, — Gmir) ||, = 0

J,k—o00
Thenlim; ;0 0 (4, k) = 0 and, since {b, }jGN converges to bin B, we have also thatlim; .. € (4, k) =
0. Now,
2

Hqﬁmjvbj — P by ||H3(Q)

= Ljk + 1k

< Cgjk H(bmj,bj — Omy. by HH(}(Q) + 0'6.7-,;@ "¢mj>bj = Omy by HH&(Q)
and so

i [ Gus.0; = G| 1y ) = 0

Thus {¢,,Lj7bj }j o converges in H} () to some <;~S Since ¢, p, converges a.e. in ) to ¢, we
conclude that 5 = ¢. Therefore,

(4.49) {&m,.b, } ;e converges to ¢ in H)(Q).

To complete the proof of the lemma, it only remains to see that u = Ay (m,b) and ¢ = ¢y, 5. For
v € H} (Q) and j € N, we have

(450) A (<Av¢’rnj 050 V(p> + bj¢mj7bj 80) = Al (m.77 b]) /;2 mj¢77Ljvbj L)

and, by (4.49), lim; o0 [, (Vm, ;- V@) = [ (V, V) . Also, bjdm, ;¢ converges to by a.e.
in Q and, by Lemma 4.4 ¢), we have

bjdp| < edgo |9

with ¢ a positive constant independent of j and, by Lemma 2.1, d;,>¢ |¢| € L* (Q2) . Thus, by the
Lebesgue’s dominated convergence theorem,

i [ im0 = [ bos.
Q

Jj—o0 Jo
Also, since lim;j oo A1 (M, b;) = p, lim; oo m; = m with convergence in L>° (), and lim; o0 ¢, b, =

¢ with convergence in H} (2), we have

lim A\ (mj,bj)/ M Pm; b, P = /,6/ moop.
Then, from (4.50),
/Q ((AV9, Vo) + bdp) = u/ﬂ mep

and so = A1 (m,b) and ¢ = @y p- a
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