
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 53 (5) (2024), 1291 – 1304

DOI : 10.15672/hujms.1272122

Research Article

Torsion pairs and related modules over trivial
ring extensions

Lixin Mao

School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

Abstract
Let R⋉M be a trivial extension of a ring R by an R-R-bimodule M . We first study how
to construct torsion pairs over R ⋉M from torsion pairs over R. Some characterizations
of finitely generated (presented) modules, flat modules and coherent rings relative to a
torsion pair over R⋉M are obtained. Then we discuss the transfers of torsion pairs over
R⋉M to R. Finally, some applications are given in Morita context rings.
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1. Introduction
The notion of a torsion pair (torsion theory) was introduced by Dickson in 1966 [2] and

is a fundamental topic in ring theory and the representation theory of algebras [18]. Ding
and Chen investigated relative flatness of modules and coherence of rings with respect
to torsion pairs [3]. Ma and Huang investigated torsion pairs in recollements of abelian
categories [10]. Fan and Yao studied the properties of torsion pairs in a triangulated
category [5]. Recently, Peng, Ma and Huang described torsion pairs over triangular matrix
artin algebras [16].

On the other hand, the notion of a trivial extension of a ring by a bimodule is an
important extension of a ring and has played a crucial role in ring theory. Let R be an
associative ring and M an R-R-bimodule, the Cartesian product R×M , with the natural
addition and multiplication, given by (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2), becomes a
ring. This ring is called the trivial extension of the ring R by the bimodule M [6, 17],
and denoted by R ⋉M . When R is a commutative ring, this construction is also called
idealization [14]. The class of trivial ring extensions covers Morita context rings with
zero bimodule homomorphisms, particularly, covers formal triangular matrix rings. Many
scholars have focused on trivial ring extensions. For example, Palmér and Roos gave some
explicit formulae for the global homological dimensions of trivial ring extensions [15].
Fossum, Griffith and Reiten studied the categorical aspect and homological properties
of trivial ring extensions [6]. Dumitrescu, Mahdou and Zahir investigated the radical
factorization for trivial ring extensions [4].
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The main objective of the present paper is to extend some known results about torsion
pairs to a more general setting. We deal with the descent and ascent of torsion pairs
between the category of left R-modules R-Mod and the category of left R ⋉M -modules
R⋉M -Mod.

In Section 2, we recall some basic concepts and facts about trivial ring extensions.
In Section 3, we study how to construct (hereditary) torsion pairs over R ⋉M from

(hereditary) torsion pairs over R. It is proven that (C1,C2) is a hereditary torsion pair in
R-Mod if and only if (AC1 ,KC2) is a hereditary torsion pair in R⋉M -Mod (see Theorem
3.3). It is also shown that torsion pairs over R⋉M can be created by tilting and cotilting
R-modules (see Corollary 3.5). In addition, we characterize finitely generated (presented)
modules, flat modules and coherent rings relative to a torsion pair over R⋉M (see Theorem
3.9).

In Section 4, we investigate how (hereditary) torsion pairs over R ⋉M induce (hered-
itary) torsion pairs over R. It is proven that, if (D1,D2) is a hereditary torsion pair in
R⋉M -Mod, then (ZD1 ,HD2) is a hereditary torsion pair in R-Mod (see Theorem 4.3).

Section 5 is devoted to torsion pairs over Morita context rings with zero bimodule ho-
momorphisms, which are special examples of trivial ring extensions. We describe explicitly
(hereditary) torsion pairs over Morita context rings with zero bimodule homomorphisms
(see Theorems 5.1 and 5.2).

2. Preliminaries and notations
Throughout this paper, all rings are nonzero associative rings with identity and all

modules are unitary. For a ring R, R-Mod stands for the category of left R-modules. pd(X)
and id(X) denote the projective and injective dimensions of a module X respectively. All
classes of modules are assumed to be closed under isomorphisms and contain 0.

Let R ⋉M be the trivial extension of a ring R by an R-R-bimodule M . Recall from
[6] that the category R ⋉ M -Mod is isomorphic to the category Ξ whose objects are
couples (X, f) with X ∈ R-Mod and f ∈ HomR(M ⊗R X,X) such that the composition
M⊗RM⊗RX

M⊗Rf−→ M⊗RX
f→ X is 0 and a morphism γ : (X, f) → (Y, g) is a morphism

γ : X → Y in R-Mod such that the following diagram commutes.

M ⊗R X

f
��

M⊗Rγ// M ⊗R Y

g

��
X

γ // Y

A sequence in Ξ is exact if and only if the sequence of codomains in R-Mod is exact.
By the adjointness isomorphism, the category R⋉M -Mod is also isomorphic to the cate-

gory Υ whose objects are couples [X,α] withX ∈ R-Mod and α ∈ HomR(X,HomR(M,X))
such that the composition X α→ HomR(M,X) HomR(M,α)−→ HomR(M,HomR(M,X)) is 0 and
a morphism φ : [X,α] → [Y, β] is a morphism φ : X → Y in R-Mod such that the following
diagram commutes.

X

α
��

φ // Y

β
��

HomR(M,X)
HomR(M,φ) // HomR(M,Y )

A sequence in Υ is exact if and only if the sequence of domains in R-Mod is exact.
There are some important functors as follows.
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The functor T : R-Mod → Ξ is given, for every object X ∈ R-Mod, by T(X) =

(X ⊕ (M ⊗R X), µ) with µ =
(

0 0
1 0

)
: (M ⊗R X) ⊕ (M ⊗R M ⊗R X) → X ⊕ (M ⊗R X)

and for morphisms by T(α) =
(
α 0
0 M ⊗R α

)
.

The functor U : Ξ → R-Mod is given, for every object (X, f) ∈ Ξ, by U(X, f) = X and
for morphisms by U(α) = α.

The functor Z : R-Mod → Ξ is given, for every object X ∈ R-Mod, by Z(X) = (X, 0)
and for morphisms by Z(α) = α.

The functor C : Ξ → R-Mod is given, for every object (X, f) ∈ Ξ, by C(X, f) =
coker(f) and for morphisms by C(α) = the induced morphism.

The functor H : R-Mod → Υ is given, for every object X ∈ R-Mod, by H(X) =

[HomR(M,X) ⊕X,ϑ] with ϑ =
(

0 0
1 0

)
: HomR(M,X) ⊕X → HomR(M,HomR(M,X))

⊕ HomR(M,X) and for morphisms by H(β) =
(

HomR(M,β) 0
0 β

)
.

The functor U : Υ → R-Mod is given, for every object [X, g] ∈ Υ, by U[X, g] = X and
for morphisms by U(α) = α.

The functor Z : R-Mod → Υ is given, for every object X ∈ R-Mod, by Z(X) = [X, 0]
and for morphisms by Z(α) = α.

The functor K : Υ → R-Mod is given, for every object [X, g] ∈ Υ, by K[X, g] = ker(g)
and for morphisms by K(α) = the induced morphism.

We note that the functors T and C are right exact, H and K are left exact, U and
Z are exact. There exist important pairs of adjoint functors (T,U), (C,Z), (Z,K) and
(U,H) for which CT = idR−Mod, UZ = idR−Mod and KH = idR−Mod.

R−Mod
T //

Ξ
U
oo

C//
R−Mod,

Z
oo R−Mod

Z //
Υ

K
oo

U//
R−Mod,

H
oo

In the rest of the paper, we always identify R⋉M -Mod with Ξ and Υ.

3. Transfers of torsion pairs over R to R ⋉ M

Let R ⋉M be a trivial extension of a ring R by an R-R-bimodule M and C a class of
left R-modules. We write

C⊥0 = {L ∈ R-Mod: HomR(C,L) = 0 for all C ∈ C},
⊥0C = {L ∈ R-Mod: HomR(L,C) = 0 for all C ∈ C},
T(C) = {T(C) ∈ R⋉M -Mod: C ∈ C},
H(C) = {H(C) ∈ R⋉M -Mod: C ∈ C},
Z(C) = {Z(C) ∈ R⋉M -Mod: C ∈ C},
AC = {(X,α) ∈ R⋉M -Mod: X ∈ C} = {[Y, β] ∈ R⋉M -Mod: Y ∈ C},
LC = {(X,α) ∈ R⋉M -Mod: coker(α) ∈ C},
KC = {[Y, β] ∈ R⋉M -Mod: ker(β) ∈ C}.
Clearly, C ⊆ ⊥0(C⊥0), C ⊆ (⊥0C)⊥0 , C⊥0 = (⊥0(C⊥0))⊥0 , ⊥0C = ⊥0((⊥0C)⊥0), T(C) ⊆ LC

and H(C) ⊆ KC.

Lemma 3.1. Let C be a class of left R-modules. Then
(1) ⊥0Z(C) = L

⊥0C.
(2) Z(C)⊥0 = KC⊥0 .
(3) ⊥0H(C) = A

⊥0C.
(4) T(C)⊥0 = AC⊥0 .
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Proof. (1) Let (N, g) ∈⊥0Z(C) and C ∈ C. Then
HomR(coker(g), C) ∼= HomR⋉M ((N, g),Z(C)) = 0.

Hence coker(g) ∈⊥0C. Thus (N, g) ∈ L
⊥0C and so ⊥0Z(C) ⊆ L

⊥0C.
Conversely, let (X, f) ∈ L

⊥0C and C ∈ C. Then
HomR⋉M ((X, f),Z(C)) ∼= HomR(coker(f), C) = 0.

Thus (X, f) ∈⊥0Z(C) and so L
⊥0C ⊆⊥0Z(C). Hence ⊥0Z(C) = L

⊥0C.
(2) Let [N, g] ∈ Z(C)⊥0 and C ∈ C. Then

HomR(C, ker(g)) ∼= HomR⋉M (Z(C), [N, g]) = 0.

Hence ker(g) ∈ C⊥0 . Thus [N, g] ∈ KC⊥0 and so Z(C)⊥0 ⊆ KC⊥0 .
Conversely, let [Y, β] ∈ KC⊥0 and C ∈ C. Then

HomR⋉M (Z(C), [Y, β]) ∼= HomR(C, ker(β)) = 0.

Thus [Y, β] ∈ Z(C)⊥0 and so KC⊥0 ⊆ Z(C)⊥0 . Hence Z(C)⊥0 = KC⊥0 .
(3) Let (Y, β) ∈ ⊥0H(C) and C ∈ C. Then

HomR(Y,C) ∼= HomR⋉M ((Y, β),H(C)) = 0.

So Y ∈ ⊥0C. Thus (Y, β) ∈ A
⊥0C. Hence ⊥0H(C) ⊆ A

⊥0C.
Conversely, let (X,α) ∈ A

⊥0C and C ∈ C. Then
HomR⋉M ((X,α),H(C)) ∼= HomR(X,C) = 0.

Hence (X,α) ∈ ⊥0H(C). Thus A
⊥0C ⊆ ⊥0H(C). So ⊥0H(C) = A

⊥0C.
(4) Let (N, g) ∈ T(C)⊥0 and C ∈ C. Then

HomR(C,N) ∼= HomR⋉M (T(C), (N, g)) = 0.

Hence N ∈ C⊥0 . Thus (N, g) ∈ AC⊥0 and so T(C)⊥0 ⊆ AC⊥0 .
Conversely, let (X,α) ∈ AC⊥0 and C ∈ C. Then

HomR⋉M (T(C), (X,α)) ∼= HomR(C,X) = 0.

So (X,α) ∈ T(C)⊥0 . Thus AC⊥0 ⊆ T(C)⊥0 . Hence T(C)⊥0 = AC⊥0 . □
Recall that a pair (C1, C2) of classes of left R-modules is a torsion pair (torsion theory)

if C⊥0
1 = C2 and C1 = ⊥0C2. In the situation, C1 is called the torsion class and C2 is called

the torsionfree class. It is known that a class of left R-modules is a torsion class of some
torsion pair if and only if it is closed under extensions, direct sums and quotients; a class
of left R-modules is a torsionfree class of some torsion pair if and only if it is closed under
extensions, direct products and submodules.

The following theorem shows that trivial ring extensions can produce rich torsion pairs.

Theorem 3.2. Let (C1,C2) be a torsion pair in R-Mod. Then
(1) (LC1 , (LC1)⊥0) is a torsion pair in R⋉M -Mod.
(2) (⊥0(KC2),KC2) is a torsion pair in R⋉M -Mod.
(3) (AC1 , (AC1)⊥0) is a torsion pair in R⋉M -Mod.
(4) (⊥0(AC2),AC2) is a torsion pair in R⋉M -Mod.

Proof. (1) By Lemma 3.1(1), we have
⊥0((LC1)⊥0) = ⊥0((L⊥0C2)⊥0) = ⊥0((⊥0Z(C2))⊥0) = ⊥0Z(C2) = L

⊥0C2 = LC1 .

Therefore (LC1 , (LC1)⊥0) is a torsion pair in R⋉M -Mod.
(2) By Lemma 3.1(2), we have

(⊥0(KC2))⊥0 = (⊥0(KC
⊥0
1 ))⊥0 = (⊥0(Z(C1)⊥0))⊥0 = Z(C1)⊥0 = KC

⊥0
1 = KC2 .
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Therefore (⊥0(KC2),KC2) is a torsion pair in R⋉M -Mod.
(3) By Lemma 3.1(3), we have

⊥0((AC1)⊥0) = ⊥0((A⊥0C2)⊥0) = ⊥0((⊥0H(C2))⊥0) = ⊥0H(C2) = A
⊥0C2 = AC1 .

Therefore (AC1 , (AC1)⊥0) is a torsion pair in R⋉M -Mod.
(4) By Lemma 3.1(4), we have

(⊥0(AC2))⊥0 = (⊥0(AC
⊥0
1 ))⊥0 = (⊥0(T(C1)⊥0))⊥0 = T(C1)⊥0 = AC

⊥0
1 = AC2 .

Therefore (⊥0(AC2),AC2) is a torsion pair in R⋉M -Mod. □
Recall that a torsion pair (C1, C2) is hereditary (resp. cohereditary) if C1 is closed under

submodules (resp. C2 is closed under quotients).

Theorem 3.3. Let C1 and C2 be two classes of left R-modules. Then
(1) (C1,C2) is a hereditary torsion pair in R-Mod if and only if (AC1 ,KC2) is a hered-

itary torsion pair in R⋉M -Mod.
(2) (C1,C2) is a cohereditary torsion pair in R-Mod if and only if (LC1 ,AC2) is a

cohereditary torsion pair in R⋉M -Mod.

Proof. (1) “ ⇒ ” By Theorem 3.2(3), (AC1 , (AC1)⊥0) is a torsion pair in R⋉M -Mod.
Let [Y, β] ∈ AC1 and [X,α] ∈ KC2 . Then Y ∈ C1 and ker(α) ∈ C2. Since (C1,C2) is a

hereditary torsion pair, we have im(β) ∈ C1 and ker(β) ∈ C1.
There exists an exact sequence in R⋉M -Mod

0 → Z(ker(β)) → [Y, β] → Z(im(β)) → 0,
which induces the exact sequence
0 → HomR⋉M (Z(im(β)), [X,α]) → HomR⋉M ([Y, β], [X,α]) → HomR⋉M (Z(ker(β)), [X,α]).
Note that

HomR⋉M (Z(im(β)), [X,α]) ∼= HomR(im(β), ker(α)) = 0
and

HomR⋉M (Z(ker(β)), [X,α]) ∼= HomR(ker(β), ker(α)) = 0.
So HomR⋉M ([Y, β], [X,α]) = 0. Thus KC2 ⊆ (AC1)⊥0 .

Next let [N, γ] ∈ (AC1)⊥0 and C1 ∈ C1. Then
HomR⋉M (C1, ker(γ)) ∼= HomR(Z(C1), [N, γ]) = 0.

So ker(γ) ∈ C
⊥0
1 = C2. Thus (AC1)⊥0 ⊆ KC2 . Therefore (AC1)⊥0 = KC2 .

Since C1 is closed under submodules, AC1 is closed under submodules. It follows that
(AC1 ,KC2) is a hereditary torsion pair in R⋉M -Mod.

“ ⇐ ” Since AC1 is closed under extensions, direct sums, quotients and submodules, we
have that C1 is closed under extensions, direct sums, quotients and submodules.

Let C1 ∈ C1 and C2 ∈ C2. Then
HomR(C1, C2) ∼= HomR⋉M (Z(C1),H(C2)) = 0.

Hence C2 ∈ C⊥0
1 and so C2 ⊆ C⊥0

1 .
Let W ∈ C⊥0

1 and [Y, β] ∈ AC1 . Then
HomR⋉M ([Y, β],H(W )) ∼= HomR(Y,W ) = 0.

Hence H(W ) ∈ (AC1)⊥0 = KC2 and so W ∈ C2. Thus C⊥0
1 ⊆ C2. Therefore C⊥0

1 = C2.
It follows that (C1,C2) is a hereditary torsion pair in R-Mod.
(2) “ ⇒ ” By Theorem 3.2(4), (⊥0(AC2),AC2) is a torsion pair in R⋉M -Mod.
Let (Y, β) ∈ AC2 and (X,α) ∈ LC1 . Then coker(α) ∈ C1 and Y ∈ C2. Since (C1,C2) is a

cohereditary torsion pair, we have im(β) ∈ C2 and coker(β) ∈ C2.
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There exists an exact sequence in R⋉M -Mod
0 → Z(im(β)) → (Y, β) → Z(coker(β)) → 0,

which induces the exact sequence
0 → HomR⋉M ((X,α),Z(im(β))) → HomR⋉M ((X,α), (Y, β)) → HomR⋉M ((X,α),Z(coker(β))).
Note that

HomR⋉M ((X,α),Z(im(β))) ∼= HomR(coker(α), im(β)) = 0
and

HomR⋉M ((X,α),Z(coker(β))) ∼= HomR(coker(α), coker(β)) = 0.
So HomR⋉M ((X,α), (Y, β)) = 0. Thus LC1 ⊆⊥0(AC2).

Next let (N, γ) ∈⊥0(AC2) and C2 ∈ C2. Then
HomR(coker(γ), C2) ∼= HomR⋉M ((N, γ),Z(C2)) = 0.

So coker(γ) ∈⊥0C2 = C1. Thus ⊥0(AC2) ⊆ LC1 . Consequently ⊥0(AC2) = LC1 .
Since C2 is closed under quotients, AC2 is closed under quotients. So (LC1 ,AC2) is a

cohereditary torsion pair in R⋉M -Mod.
“ ⇐ ” Since AC2 is closed under extensions, direct products, submodules and quotients,

we have that C2 is closed under extensions, direct products, submodules and quotients.
Let C1 ∈ C1 and C2 ∈ C2. Then

HomR(C1, C2) ∼= HomR⋉M (T(C1),Z(C2)) = 0.

Thus C1 ∈⊥0C2 and so C1 ⊆⊥0C2.
Let W ∈⊥0C2 and (Y, β) ∈ AC2 . Then

HomR⋉M (T(W ), (Y, β)) ∼= HomR(W,Y ) = 0.

Hence T(W ) ∈⊥0(AC2) = LC1 and so W ∈ C1. Thus ⊥0C2 ⊆ C1. Therefore ⊥0C2 = C1.
It follows that (C1,C2) is a cohereditary torsion pair in R-Mod. □

Next, we provide a way to construct torsion pairs over R⋉M by some R-module.
Let X be a left R-module. Write X⊥1 = {L ∈ R-Mod: Ext1

R(X,L) = 0} and ⊥1X =
{L ∈ R-Mod: Ext1

R(L,X) = 0}, Gen(X) = the class consisting of quotients of direct sums
of copies of X and Cogen(X) = the class consisting of submodules of direct products of
copies of X.

According to [7], X is called tilting if Gen(X) = X⊥1 , equivalently, if pd(X) ≤ 1,
Ext1

R(X,X(κ)) = 0 for each cardinal κ and X⊥1
⋂
X⊥0 = {0}. X is called cotilting if

Cogen(X) = ⊥1X, equivalently, if id(X) ≤ 1, Ext1
R(Xκ, X) = 0 for each cardinal κ and

⊥0X
⋂⊥1X = {0}.

Lemma 3.4. Let X and Y be left R-modules. Then
(1) X is a tilting left R-module if and only if (X⊥1 , X⊥0) is a torsion pair in R-Mod.
(2) Y is a cotilting left R-module if and only if (⊥0Y , ⊥1Y ) is a torsion pair in R-Mod.

Proof. (1) If X is tilting, then it is clear that (X⊥1 , X⊥0) = (Gen(X), X⊥0) = (Gen(X),
Gen(X)⊥0) is a torsion pair in R-Mod (see [7, p. 226]).

Conversely, if (X⊥1 , X⊥0) is a torsion pair in R-Mod, then pd(X) ≤ 1 since X⊥1 is
closed under quotients. It is easy to see that Ext1

R(X,X(κ)) = 0 for each cardinal κ and
X⊥1

⋂
X⊥0 = {0}. So X is a tilting left R-module.

The proof of (2) is dual. □

Corollary 3.5. Let X and Y be left R-modules.
(1) If X is tilting, then (LGen(X), (LGen(X))⊥0) and (AGen(X), (AGen(X))⊥0) are torsion

pairs in R⋉M -Mod.
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(2) If Y is cotilting, then (⊥0(KCogen(Y )),KCogen(Y )) and (⊥0(ACogen(Y )),ACogen(Y )) are
torsion pairs in R⋉M -Mod.

Proof. It is an immediate consequence of Theorem 3.2 and Lemma 3.4. □
Proposition 3.6. Let X be a left R-module such that TorR

i (M,X) = 0 for i = 1, 2, Y a
left R-module such that Exti

R(M,Y ) = 0 for i = 1, 2. Then
(1) (X⊥1 , X⊥0) is a torsion pair in R-Mod and M ⊗R X ∈ Gen(X) if and only if

(T(X)⊥1 ,T(X)⊥0) = (AGen(X), (AGen(X))⊥0) is a torsion pair in R⋉M -Mod.
(2) (⊥0Y , ⊥1Y ) is a torsion pair in R-Mod and HomR(M,Y ) ∈ Cogen(Y ) if and only

if (⊥0H(Y ), ⊥1H(Y )) = (⊥0(ACogen(Y )),ACogen(Y )) is a torsion pair in R⋉M -Mod.

Proof. (1) “⇒” By Lemma 3.4(1), X is a tilting left R-module. So T(X) is a tilting
left R ⋉M -module by [11, Corollary 3.5]. Thus (T(X)⊥1 ,T(X)⊥0) is a torsion pair in
R⋉M -Mod by Lemma 3.4(1).

Next we prove that Gen(T(X)) = AGen(X).
Let (Y, α) ∈ Gen(T(X)). Then there is an epimorphism

(X ⊕M ⊗R X)(I) → Y

for some cardinal I. Since M ⊗RX ∈ Gen(X), we have Y ∈ Gen(X). Thus Gen(T(X)) ⊆
AGen(X).

Conversely, let (N, β) ∈ AGen(X). Then there is an epimorphism X(J) → N for some
cardinal J , which induces the epimorphism T(X)(J) → T(N).

Define h : N ⊕ (M ⊗R N) → N by
h(x, y) = x+ β(y), x ∈ N, y ∈ M ⊗R N.

It is easy to see that h is an epimorphism. Let z⊗ (x, y) ∈ M ⊗R (N ⊕ (M ⊗R N)). Then
β(M⊗Rh)(z⊗(x, y)) = β(z⊗h(x, y)) = β(z⊗(x+β(y))) = β(z⊗x)+β(z⊗β(y)) = β(z⊗x).
Also hµ(z ⊗ (x, y)) = h(0, z ⊗ x) = β(z ⊗ x). So the following diagram commutes.

M ⊗R (N ⊕ (M ⊗R N))

µ

��

M⊗Rh // M ⊗R N

β

��

// 0

N ⊕ (M ⊗R N) h // N // 0.

Hence we get an epimorphism T(N) → (N, β), which means that (N, β) ∈ Gen(T(X)).
Hence AGen(X) ⊆ Gen(T(X)) and so Gen(T(X)) = AGen(X). Thus

(T(X)⊥1 ,T(X)⊥0) = (Gen(T(X)),T(X)⊥0) = (AGen(X), (AGen(X))⊥0).
“⇐” It holds by [11, Corollary 3.5] and Lemma 3.4(1).
The proof of (2) is dual to that of (1) by [11, Corollary 3.7] and Lemma 3.4(2). □
At the end of this section, we give an application of Theorem 3.2.
Given a torsion pair τ = (C1,C2) in R-Mod. Recall from Ding and Chen [3] that a left R-

module X is τ -finitely generated if X/K ∈ C1 for some finitely generated submodule K of
X. X is said to be τ -finitely presented if there is an exact sequence 0 → K → P → X → 0
in R-Mod, where P is finitely generated projective and K is τ -finitely generated.

Lemma 3.7. Let τ = (C1,C2) be a torsion pair in R-Mod. Then any quotient of a
τ -finitely generated left R-module is τ -finitely generated.

Proof. Let X be a τ -finitely generated left R-module. Then there is a finitely generated
submodule K of X such that X/K ∈ C1. For any epimorphism φ : X → Y , we get the
exact sequence in R-Mod

0 → φ(K) → Y → Y/φ(K) → 0.



1298 L. Mao

It is clear that φ(K) is finitely generated. Also, there is an obvious epimorphism X/K →
Y/φ(K). Hence X/K ∈ C1 implies that Y/φ(K) ∈ C1. It follows that Y is a τ -finitely
generated left R-module. □

By Theorem 3.2, if τ = (C1,C2) is a torsion pair in R-Mod, then τ̃ = (LC1 , (LC1)⊥0) is
a torsion pair in R⋉M -Mod.

Lemma 3.8. Let τ = (C1,C2) be a torsion pair in R-Mod and τ̃ = (LC1 , (LC1)⊥0) a torsion
pair in R⋉M -Mod.

(1) If (X,α) is a τ̃ -finitely generated left R⋉M -module, then coker(α) is a τ -finitely
generated left R-module.

(2) If (X,α) is a τ̃ -finitely presented left R⋉M -module, then coker(α) is a τ -finitely
presented left R-module.

Proof. (1) There is a finitely generated submodule (A, β) of (X,α) with (X,α)/(A, β) ∈
LC1 . Then coker(β) is a finitely generated left R-module by [12, Theorem 2.8]. Since C is
a right exact functor, the exact sequence in R⋉M -Mod

0 → (A, β) → (X,α) → (X,α)/(A, β) → 0

induces the exact sequence in R-Mod

coker(β) → coker(α) → coker((X,α)/(A, β)) → 0

with coker((X,α)/(A, β)) ∈ C1. Then we get the exact sequence in R-Mod

0 → K → coker(α) → L → 0

with K finitely generated and L ∈ C1. So coker(α) is τ -finitely generated.
(2) There is an exact sequence in R⋉M -Mod

0 → (B, γ) → T(P ) → (X,α) → 0,

where P is a finitely generated projective left R-module by [6, Corollary 1.6(c)] and (B, γ)
is τ̃ -finitely generated. Then coker(γ) is a τ -finitely generated left R-module by (1). The
above exact sequence induces the exact sequence in R-Mod

coker(γ) → P → coker(α) → 0.

Hence we get the exact sequence in R-Mod

0 → A → P → coker(α) → 0

with A τ -finitely generated by Lemma 3.7. Thus X is τ -finitely presented. □

Let τ = (C1,C2) be a torsion pair in R-Mod. According to Ding and Chen [3], a left R-
module X is called τ -flat if every homomorphism from a τ -finitely presented left R-module
into X factors through a finitely generated projective left R-module.
R is called a right τ -coherent ring [3] if any direct product of R is a τ -flat left R-module.

Theorem 3.9. Let τ = (C1,C2) be a torsion pair in R-Mod and τ̃ = (LC1 , (LC1)⊥0) a
torsion pair in R⋉M -Mod.

(1) X is a τ -finitely generated left R-module if and only if T(X) is a τ̃ -finitely gener-
ated left R⋉M -module.

(2) X is a τ -finitely presented left R-module if and only if T(X) is a τ̃ -finitely presented
left R⋉M -module.

(3) If T(X) is a τ̃ -flat left R⋉M -module, then X is a τ -flat left R-module.
(4) If M is a finitely presented right R-module and R⋉M is a right τ̃ -coherent ring,

then R is a right τ -coherent ring.
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Proof. (1) “ ⇒ ” There is a finitely generated submodule K of X such that X/K ∈ C1.
Since T is a right exact functor, the exact sequence, 0 → K → X → X/K → 0 in R-Mod
induces the exact sequence in R⋉M -Mod

T(K) → T(X) → T(X/K) → 0.
By [12, Corollary 2.9], T(K) is a finitely generated left R ⋉M -module. Thus we get the
exact sequence in R⋉M -Mod

0 → (Y, α) → T(X) → T(X/K) → 0
with (Y, α) finitely generated. Since T(X/K) ∈ LC1 , T(X) is a τ̃ -finitely generated left
R⋉M -module.

“ ⇐ ” follows from Lemma 3.8(1).
(2) “ ⇒ ” There is an exact sequence 0 → K → P → X → 0 in R-Mod with P

finitely generated projective and K τ -finitely generated, which induces the exact sequence
in R⋉M -Mod

T(K) → T(P ) → T(X) → 0.
By [6, Corollary 1.6(c)], T(P ) is a finitely generated projective left R⋉M -module. Note
that T(K) is a τ̃ -finitely generated left R ⋉ M -module by (1). So there is the exact
sequence in R⋉M -Mod

0 → (A, β) → T(P ) → T(X) → 0
with (A, β) τ̃ -finitely generated by Lemma 3.7. Thus T(X) is a τ̃ -finitely presented left
R⋉M -module.

“ ⇐ ” follows from Lemma 3.8(2).
(3) Let B be a τ -finitely presented left R-module and ψ : B → X be any homomorphism.

Then we get a homomorphism T(ψ) : T(B) → T(X). By (2), T(B) is a τ̃ -finitely
presented left R ⋉ M -module. So there are finitely generated projective left R ⋉ M -
module T(P ), ξ : T(B) → T(P ) and θ : T(P ) → T(X) such that T(ψ) = θξ. Hence we
have

ψ = CT(ψ) = C(θξ) = C(θ)C(ξ).
Thus ψ factors through the finitely generated projective left R-module P by [6, Corollary
1.6(c)], i.e., X is a τ -flat left R-module.

(4) Since M is a finitely presented right R-module, M ⊗R RI ∼= M I for any index set
I by [18, Lemma 13.2, p.42]. Since R ⋉M is a right τ̃ -coherent ring, (T(R))I is a τ̃ -flat
left R ⋉M -module. Note that T(RI) ∼= (T(R))I by [12, Lemma 2.1(1)]. Hence T(RI)
is a τ̃ -flat left R ⋉M -module. Thus RI is a τ -flat left R-module by (3). So R is a right
τ -coherent ring. □

4. Transfers of torsion pairs over R ⋉ M to R

Let R ⋉M be a trivial extension of a ring R by an R-R-bimodule M and D a class of
left R⋉M -modules. We write

U(D) = {U(D) ∈ R-Mod: D ∈ D},
C(D) = {C(D) ∈ R-Mod: D ∈ D},
K(D) = {K(D) ∈ R-Mod: D ∈ D},
ZD = {X ∈ R-Mod: Z(X) ∈ D},
TD = {X ∈ R-Mod: T(X) ∈ D},
HD = {X ∈ R-Mod: H(X) ∈ D}.

Lemma 4.1. Let D be a class of left R⋉M -modules. Then
(1) ⊥0K(D) = Z

⊥0D.
(2) C(D)⊥0 = ZD⊥0 .
(3) ⊥0U(D) = T

⊥0D.
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(4) U(D)⊥0 = HD⊥0 .

Proof. (1) Let [N, g] ∈ D and X ∈⊥0K(D). Then
HomR⋉M (Z(X), [N, g]) ∼= HomR(X, ker(g)) = 0.

Hence X ∈ Z
⊥0D. Thus ⊥0K(D) ⊆ Z

⊥0D.
Conversely, let [N, g] ∈ D and Y ∈ Z

⊥0D. Then
HomR(Y, ker(g)) ∼= HomR⋉M (Z(Y ), [N, g]) = 0.

Thus Y ∈⊥0K(D) and so Z
⊥0D ⊆⊥0K(D). Hence ⊥0K(D) = Z

⊥0D.
(2) Let [N, g] ∈ D and X ∈ C(D)⊥0 . Then

HomR⋉M ([N, g],Z(X)) ∼= HomR(coker(g), X) = 0.

Hence Z(X) ∈ D⊥0 . Thus X ∈ ZD⊥0 and so C(D)⊥0 ⊆ ZD⊥0 .
Conversely, let [N, g] ∈ D and Y ∈ ZD⊥0 . Then

HomR(coker(g), Y ) ∼= HomR⋉M ([N, g],Z(Y )) = 0.

Thus Y ∈ C(D)⊥0 and so ZD⊥0 ⊆ C(D)⊥0 . Hence C(D)⊥0 = ZD⊥0 .
(3) Let (Y, β) ∈ D and X ∈⊥0U(D). Then

HomR⋉M (T(X), (Y, β)) ∼= HomR(X,Y ) = 0.

Hence T(X) ∈⊥0D. Thus X ∈ T
⊥0D and so ⊥0U(D) ⊆ T

⊥0D.
Conversely, let (Y, β) ∈ D and N ∈ T

⊥0D. Then
HomR(N,Y ) ∼= HomR⋉M (T(N), (Y, β)) = 0

and so N ∈⊥0U(D). Thus T
⊥0D ⊆⊥0U(D). So ⊥0U(D) = T

⊥0D.
(4) Let [N, g] ∈ D and X ∈ U(D)⊥0 . Then

HomR⋉M ([N, g],H(X)) ∼= HomR(N,X) = 0.

So H(X) ∈ D⊥0 . Thus X ∈ HD⊥0 . Hence U(D)⊥0 ⊆ HD⊥0 .
Conversely, let [N, g] ∈ D and Y ∈ HD⊥0 . Then

HomR(N,Y ) ∼= HomR⋉M ([N, g],H(Y )) = 0.

Thus Y ∈ U(D)⊥0 and so HD⊥0 ⊆ U(D)⊥0 . Hence U(D)⊥0 = HD⊥0 . □
The following theorem shows that a torsion pair in R⋉M -Mod can produce rich torsion

pairs in R-Mod.

Theorem 4.2. Let (D1,D2) be a torsion pair in R⋉M -Mod. Then
(1) (ZD1 , (ZD1)⊥0) is a torsion pair in R-Mod.
(2) (⊥0(ZD2),ZD2) is a torsion pair in R-Mod.
(3) (TD1 , (TD1)⊥0) is a torsion pair in R-Mod.
(4) (⊥0(HD2),HD2) is a torsion pair in R-Mod.

Proof. (1) By Lemma 4.1(1), we have
⊥0((ZD1)⊥0) = ⊥0((Z⊥0D2)⊥0) = ⊥0((⊥0K(D2))⊥0) = ⊥0K(D2) = Z

⊥0D2 = ZD1 .

It follows that (ZD1 , (ZD1)⊥0) is a torsion pair in R⋉M -Mod.
(2) By Lemma 4.1(2), we have

(⊥0(ZD2))⊥0 = (⊥0(ZD
⊥0
1 ))⊥0 = (⊥0(C(D1)⊥0))⊥0 = C(D1)⊥0 = ZD

⊥0
1 = ZD2 .

It follows that (⊥0(ZD2),ZD2) is a torsion pair in R⋉M -Mod.
(3) By Lemma 4.1(3), we have

⊥0((TD1)⊥0) = ⊥0((T⊥0D2)⊥0) = ⊥0((⊥0U(D2))⊥0) = ⊥0U(D2) = T
⊥0D2 = TD1 .
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It follows that (TD1 , (TD1)⊥0) is a torsion pair in R⋉M -Mod.
(4) By Lemma 4.1(4), we have

(⊥0(HD2))⊥0 = (⊥0(HD
⊥0
1 ))⊥0 = (⊥0(U(D1)⊥0))⊥0 = U(D1)⊥0 = HD

⊥0
1 = HD2 .

It follows that (⊥0(HD2),HD2) is a torsion pair in R⋉M -Mod. □

Theorem 4.3. Let D1 and D2 be two classes in R⋉M -Mod.
(1) If (D1,D2) is a hereditary torsion pair in R⋉M -Mod, then (ZD1 ,HD2) is a hered-

itary torsion pair in R-Mod.
(2) If (D1,D2) is a cohereditary torsion pair in R ⋉ M -Mod, then (TD1 ,ZD2) is a

cohereditary torsion pair in R-Mod.

Proof. (1) We first prove that (ZD1)⊥0 = HD2 . Let Y ∈ ZD1 and X ∈ HD2 . Then

HomR(Y,X) ∼= HomR⋉M (Z(Y ),H(X)) = 0.

Hence X ∈ (ZD1)⊥0 and so HD2 ⊆ (ZD1)⊥0 .
Conversely, let N ∈ (ZD1)⊥0 and [W,β] ∈ D1. Then there exists an exact sequence

0 → Z(ker(β)) → [W,β] → Z(im(β)) → 0,

which induces the exact sequence

0 → HomR⋉M (Z(im(β)),H(N)) → HomR⋉M ([W,β],H(N)) → HomR⋉M (Z(ker(β)),H(N)).

Since (D1,D2) is a hereditary torsion pair, we have Z(im(β)) ∈ D1 and Z(ker(β)) ∈ D1.
Note that

HomR⋉M (Z(im(β)),H(N)) ∼= HomR(im(β), N) = 0
and

HomR⋉M (Z(ker(β)),H(N)) ∼= HomR(ker(β), N) = 0.
Thus HomR⋉M ([W,β],H(N)) = 0, which implies that H(N) ∈ D⊥0

1 = D2. Hence
(ZD1)⊥0 ⊆ HD2 . So (ZD1)⊥0 = HD2 .

Since D1 is closed under submodules, we have that ZD1 is closed under submodules. By
Theorem 4.2(1), (ZD1 ,HD2) is a hereditary torsion pair in R-Mod.

(2) We first prove that ⊥0(ZD2) = TD1 . Let Y ∈ ZD2 and X ∈ TD1 . Then

HomR(X,Y ) ∼= HomR⋉M (T(X),Z(Y )) = 0.

Hence X ∈⊥0(ZD2) and so TD1 ⊆⊥0(ZD2).
Conversely, let N ∈⊥0(ZD2) and (W,β) ∈ D2. Then there exists an exact sequence

0 → Z(im(β)) → (W,β) → Z(coker(β)) → 0,

which induces the exact sequence

0 → HomR⋉M (T(N),Z(im(β))) → HomR⋉M (T(N), (W,β)) → HomR⋉M (T(N),Z(coker(β))).

Since (D1,D2) is a cohereditary torsion pair, Z(im(β)) ∈ D2 and Z(coker(β)) ∈ D2.
Note that

HomR⋉M (T(N),Z(im(β))) ∼= HomR(N, im(β)) = 0
and

Hom(T(N),Z(coker(β))) ∼= HomR(N, coker(β)) = 0.
Therefore HomR⋉M (T(N), (W,β)) = 0. Thus T(N) ∈⊥0D2 = D1. Hence ⊥0(ZD2) ⊆ TD1

and so ⊥0(ZD2) = TD1 .
Since D2 is closed under quotients, we have that ZD2 is closed under quotients. By

Theorem 4.2(2), (TD1 ,ZD2) is a cohereditary torsion pair in R-Mod. □
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5. Torsion pairs over some Morita context rings
Morita context rings, originated from equivalences of module categories [13] and formu-

lated by Bass [1], have been studied explicitly in numerous papers and books [1,6,8,9,13].
In this section, we apply the foregoing results to Morita context rings with zero bimodule
homomorphisms since this kind of rings is one special case of trivial ring extensions.

Let Λ(0,0) =
(
A AVB

BUA B

)
(0,0)

, where A and B are rings, BUA and AVB are bimodules,

Λ(0,0) is called a Morita context ring with zero bimodule homomorphisms or formal matrix
ring [9, 13], where the addition of elements of Λ(0,0) is componentwise and multiplication
is given by (

a1 v1
u1 b1

)(
a2 v2
u2 b2

)
=

(
a1a2 a1v2 + v1b2

u1a2 + b1u2 b1b2

)
.

Green [8, Theorem 1.5] proved that the category Λ(0,0)-Mod is equivalent to the cat-
egory Ω whose objects are tuples (X,Y, f, g), where X ∈ A-Mod, Y ∈ B-Mod, f ∈
HomB(U ⊗A X,Y ) and g ∈ HomA(V ⊗B Y,X) such that g(V ⊗B f) = 0, f(U ⊗A g) = 0
and whose morphisms from (X1, Y1, f1, g1) to (X2, Y2, f2, g2) are pairs (α, β) such that
α ∈ HomA(X1, X2), β ∈ HomB(Y1, Y2) and f2(U ⊗A α) = βf1, g2(V ⊗B β) = αg1. In
view of the well-known adjointness relation, the category Λ(0,0)-Mod is also equivalent
to the category Γ whose objects are tuples [X,Y, f, g], where X ∈ A-Mod, Y ∈ B-Mod,
f ∈ HomA(X,HomB(U, Y )) and g ∈ HomB(Y,HomA(V,X)) such that HomB(U, g)f =
0,HomA(U, f)g = 0 and whose morphisms from [X1, Y1, f1, g1] to [X2, Y2, f2, g2] are pairs
[α, β] such that α ∈ HomA(X1, X2), β ∈ HomB(Y1, Y2) and f2α = HomB(U, β)f1, g2β =
HomA(V, α)g1.

In this section, we will identify Λ(0,0)-Mod with Ω and Γ.

It is known that Λ(0,0) =
(
A AVB

BUA B

)
(0,0)

is isomorphic to the trivial ring extension

(A×B) ⋉ (U ⊕ V ) [6] under the correspondence:(
a v
u b

)
→ ((a, b), (u, v)).

So Λ(0,0)-Mod is isomorphic to (A × B) ⋉ (U ⊕ V )-Mod by the functor Θ : Λ(0,0)-Mod
→ (A× B) ⋉ (U ⊕ V )-Mod given by Θ(X,Y, f, g) = ((X,Y ), (g, f)) or by Θ[X,Y, f, g] =
[(X,Y ), (f, g)].

Let C be a class of left A-modules and D a class of left B-modules. We write
AC
D = {(X,Y, f, g) ∈ Λ(0,0)-Mod: X ∈ C and Y ∈ D},

LC
D = {(X,Y, f, g) ∈ Λ(0,0)-Mod: coker(f) ∈ D, coker(g) ∈ C},

KC
D = {[X,Y, f, g] ∈ Λ(0,0)-Mod: ker(f) ∈ C, ker(g) ∈ D}.

It is clear that Θ(AC
D) = A(C,D), Θ(LC

D) = L(C,D) and Θ(KC
D) = K(C,D).

Theorem 5.1. Let Λ(0,0) =
(
A AVB

BUA B

)
(0,0)

be a Morita context ring.

(1) If (C1,C2) and (D1,D2) are torsion pairs in A-Mod and B-Mod respectively, then
(LC1

D1
, (LC1

D1
)⊥0), (⊥0(KC2

D2
),KC2

D2
), (AC1

D1
, (AC1

D1
)⊥0) and (⊥0(AC2

D2
),AC2

D2
) are torsion

pairs in Λ(0,0)-Mod.
(2) (C1,C2) and (D1,D2) are hereditary torsion pairs in A-Mod and B-Mod respectively

if and only if (AC1
D1
,KC2

D2
) is a hereditary torsion pair in Λ(0,0)-Mod.

(3) (C1,C2) and (D1,D2) are cohereditary torsion pairs in A-Mod and B-Mod respec-
tively if and only if (LC1

D1
,AC2

D2
) is a cohereditary torsion pair in Λ(0,0)-Mod.
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Proof. (1) By Theorem 3.2, one gets that (L(C1,D1), (L(C1,D1))⊥0), (⊥0(K(C2,D2)),K(C2,D2)),
(A(C1,D1), (A(C1,D1))⊥0) and (⊥0(A(C2,D2)),A(C2,D2)) are torsion pairs in (A×B)⋉ (U ⊕V )-
Mod. Therefore (LC1

D1
, (LC1

D1
)⊥0), (⊥0(KC2

D2
),KC2

D2
), (AC1

D1
, (AC1

D1
)⊥0) and (⊥0(AC2

D2
),AC2

D2
) are

torsion pairs in Λ(0,0)-Mod.
(2) (C1,C2) and (D1,D2) are hereditary torsion pairs in A-Mod and B-Mod respectively

if and only if ((C1,D1), (C2,D2)) is a hereditary torsion pair in A × B-Mod if and only
if (A(C1,D1),K(C2,D2)) is a hereditary torsion pair in (A × B) ⋉ (U ⊕ V )-Mod by Theorem
3.3(1) if and only if (AC1

D1
,KC2

D2
) is a hereditary torsion pair in Λ(0,0)-Mod.

(3) (C1,C2) and (D1,D2) are cohereditary torsion pairs in A-Mod and B-Mod respec-
tively if and only if ((C1,D1), (C2,D2)) is a cohereditary torsion pair in A×B-Mod if and
only if (L(C1,D1),A(C2,D2)) is a cohereditary torsion pair in (A × B) ⋉ (U ⊕ V )-Mod by
Theorem 3.3(2) if and only if (LC1

D1
,AC2

D2
) is a cohereditary torsion pair in Λ(0,0)-Mod. □

Let W be a class of left Λ(0,0)-modules. Write
ZW

1 = {X ∈ A-Mod: (X, 0, 0, 0) ∈ W},
ZW

2 = {Y ∈ B-Mod: (0, Y, 0, 0) ∈ W},
TW

1 = {X ∈ A-Mod: (X,U ⊗A X, 1, 0) ∈ W},
TW

2 = {Y ∈ B-Mod: (V ⊗B Y, Y, 0, 1) ∈ W},
HW

1 = {X ∈ A-Mod: [X,HomA(V,X), 0, 1] ∈ W},
HW

2 = {Y ∈ B-Mod: [HomB(U, Y ), Y, 1, 0] ∈ W}.

Theorem 5.2. Let Λ(0,0) =
(
A AVB

BUA B

)
(0,0)

be a Morita context ring.

(1) If (W1,W2) is a torsion pair in Λ(0,0)-Mod, then (ZW1
1 , (ZW1

1 )⊥0), (⊥0(ZW2
1 ),ZW2

1 ),
(TW1

1 , (TW1
1 )⊥0) and (⊥0(HW2

1 ),HW2
1 ) are torsion pairs in A-Mod, (ZW1

2 , (ZW1
2 )⊥0),

(⊥0(ZW2
2 ),ZW2

2 ), (TW1
2 , (TW1

2 )⊥0) and (⊥0(HW2
2 ),HW2

2 ) are torsion pairs in B-Mod.
(2) If (W1,W2) is a hereditary torsion pair in Λ(0,0)-Mod, then (ZW1

1 ,HW2
1 ) is a hered-

itary torsion pair in A-Mod and (ZW1
2 ,HW2

2 ) is a hereditary torsion pair in B-Mod.
(3) If (W1,W2) is a cohereditary torsion pair in Λ(0,0)-Mod, then (TW1

1 ,ZW2
1 ) is a

cohereditary torsion pair in A-Mod and (TW1
2 ,ZW2

2 ) is a cohereditary torsion pair
in B-Mod.

Proof. (1) Since (W1,W2) is a torsion pair in Λ(0,0)-Mod, (Θ(W1),Θ(W2)) is a tor-
sion pair in (A × B) ⋉ (U ⊕ V )-Mod. By Theorem 4.2, we have (ZΘ(W1), (ZΘ(W1))⊥0),
(⊥0(ZΘ(W2)),ZΘ(W2)), (TΘ(W1), (TΘ(W1))⊥0) and (⊥0(HΘ(W2)),HΘ(W2)) are torsion pairs in
A× B-Mod. Thus one gets that ((ZW1

1 ,ZW1
2 ), (ZW1

1 ,ZW1
2 )⊥0), (⊥0(ZW2

1 ,ZW2
2 ), (ZW2

1 ,ZW2
2 )),

((TW1
1 ,TW1

2 ), (TW1
1 ,TW1

2 )⊥0) and (⊥0(HW2
1 ,HW2

2 ), (HW2
1 ,HW2

2 )) are torsion pairs in A × B-
Mod. So (ZW1

1 , (ZW1
1 )⊥0), (⊥0(ZW2

1 ),ZW2
1 ), (TW1

1 , (TW1
1 )⊥0) and (⊥0(HW2

1 ),HW2
1 ) are torsion

pairs in A-Mod, and (ZW1
2 , (ZW1

2 )⊥0), (⊥0(ZW2
2 ),ZW2

2 ), (TW1
2 , (TW1

2 )⊥0) and (⊥0(HW2
2 ),HW2

2 )
are torsion pairs in B-Mod.

(2) Since (W1,W2) is a hereditary torsion pair in Λ(0,0)-Mod, (Θ(W1),Θ(W2)) is a
hereditary torsion pair in (A×B)⋉(U⊕V )-Mod. By Theorem 4.3(1), (ZΘ(W1),HΘ(W2)) =
((ZW1

1 ,ZW1
2 ), (HW2

1 ,HW2
2 )) is a hereditary torsion pair in A × B-Mod. Thus (ZW1

1 ,HW2
1 ) is

a hereditary torsion pair in A-Mod and (ZW1
2 ,HW2

2 ) is a hereditary torsion pair in B-Mod.
(3) Since (W1,W2) is a cohereditary torsion pair in Λ(0,0)-Mod, (Θ(W1),Θ(W2)) is

a cohereditary torsion pair in (A × B) ⋉ (U ⊕ V )-Mod. By Theorem 4.3(2), we have
(TΘ(W1),ZΘ(W2)) = ((TW1

1 ,TW1
2 ), (ZW2

1 ,ZW2
2 )) is a cohereditary torsion pair in A×B-Mod.

Hence (TW1
1 ,ZW2

1 ) is a cohereditary torsion pair in A-Mod and (TW1
2 ,ZW2

2 ) is a cohereditary
torsion pair in B-Mod. □
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