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Abstract
This paper presents malaria and cholera co–dynamics under Caputo–Fabrizio derivative of order
α ∈ (0, 1) varied with some notable parameters in the fractional system. The fractional order system
comprises ten compartments divided into human and vector classes. The human population is exposed
to obnoxious diseases such as malaria and cholera which can lead to an untimely death if proper
care is not taken. As a result, we present the qualitative analysis of the fractional order system where
the existence and uniqueness of the solution using the well-known Banach and Schauder fixed point
theorems. The numerical solution of the system is achieved through the famous iterative Atangana–
Baleanu fractional order Adams–Bashforth scheme. The numerical algorithm obtained from the
scheme is used for graphic simulation for different fractional orders α ∈ (0, 1). The figures produced
using various fractional orders show total convergence and stability as time increases. It is also evident
that stability and convergence are achieved as the fractional orders tend to 1. The actual behavior of
the fractional co–dynamical system of the diseases is established also in the numerical simulation.
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1 Introduction

The disease malaria caused by harmful parasites and transmitted from infected female anopheles
mosquitoes to humans through contagious bites is a serious life-threatening disease and one of
the most common deadly diseases in the world. This disease has caused millions of life all over
the world, especially in tropical and sub-Saharan Africa [1], where the parasites can survive freely
in the host. The world malaria report of 2021, shows that in the year 2020, an estimated 627,000

➤ Received: 30.01.2023 ➤ Revised: 20.03.2023 ➤ Accepted: 24.03.2023 ➤ Published: 31.03.2023

33

https://orcid.org/0000-0002-7917-8682
https://orcid.org/0000-0002-4185-6302
https://orcid.org/0000-0001-8978-9826
https://orcid.org/0000-0002-9906-2505
https://orcid.org/0000-0001-6179-3516


34 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 1, 33–57

deaths occurred out of estimated 241 million cases of malaria reported worldwide. Among these
number of reported cases of malaria, there were 95 percent recorded cases in Africa with 94 percent
deaths which include 80 percent of children under the age of five [2]. Most of the deaths recorded
occurred during a latent period of 10–15 days with symptoms of severe fever, headaches, and
loss of appetite for food or drinks. Suspected cases of malaria symptoms are confirmed through
parasite–based diagnosis testing. The WHO recommends the use of insecticide-treated nets (ITNs),
indoor residual spraying (IRS) and draining of stagnant waters to prevent transmission of malaria.
On the other hand, the disease cholera is an acute diarrhoeal infection caused by ingestion of food
and water contaminated with the bacterium Vibrio cholera [3, 4]. An estimated 1.3 to 4 million
cases of cholera are reported globally each year and 21,000 to 143,000 deaths are recorded annually
to cholera. Inadequate access to clean water and properly sanitized water are normally linked to
the transmission of cholera.
The number of reported cases of cholera has continued to grow in recent years. In 2020, 323,369
cases were recorded with 857 deaths from 24 countries amidst limitations in surveillance systems
and the fear of trade and tourism. The co-infection of these diseases is prevalent in the sense
that the parasite which transmits these diseases are associated with contaminated water and the
environment. It is widely known that mosquitoes are the real agents of malaria which breed
from stagnant and contaminated water. In another hand, the contaminated water where these
mosquitoes breed is the main source of cholera transmission. Both these diseases are treatable
through clinical means but can be harmful to vital organs if proper care and diagnosis are found
wanting.
Mathematical models have been used extensively over the years as relevant tools in understanding
the dynamics of disease transmission and policy-making with regard control mechanism of
diseases. For instance, Ross [5] first formulated the malaria transmission models. In his paper, he
focused on malaria prevention and showed that the mosquito population should decrease to a
certain threshold for malaria to be eradicated. Okosun et al. [6] formulated a mathematical model
for malaria–cholera co-infection for the purpose of investigating the synergy between malaria
and cholera in the face of treatment. Other important contribution includes Egeonu et al. [7]
who proposed a co-infection model for two–strains of malaria and cholera with optimal control.
Mandal et al. [8] proposed a hierarchical structure of a range of deterministic models of different
levels of complexity and the evolution of modelling strategies to describe malaria incidence by
including the critical features of host–vector–parasite interactions.
Oke et al. [9] proposed a mathematical model of malaria disease with a control strategy where
prevention through bed nets, treatment, and insecticide were considered. In their paper, it was
demonstrated that the use of treatments and treated bed nets should be taken into account when
scarce resources arise while combining the two gives maximum results to malaria control. Osman
and Adu [10] analyzed two sections in their mathematical model; the SEIR and the SEIR-SEI
models. They showed that malaria may be controlled through the use of active malaria drugs,
insecticides, and mosquito-treated nets. Tilahun et al. [11] proposed a stochastic and deterministic
mathematical model of cholera disease dynamics with direct transmission. Hintsa and Kahsay [12]
proposed the analysis of cholera epidemic control using mathematical models. In their findings,
they showed that the introduction of preventive measures for contracting the disease reduces the
basic reproduction number to below one as against the opposite where the reproduction number
is greater than one. This suggests that cholera disease can be controlled and eliminated from
the community if susceptible and recovered individuals comply with the preventive measures.
However, a few studies have been carried out on the formulation and application of fractional
order differential equations of malaria models. To the best of our knowledge, no work has been
carried out on the analysis of co–dynamic model of malaria and cholera via Caputo–Fabrizio
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fractional order differential equation. Only recently, the authors in [13] used Caputo–Fabrizio
fractional order derivative to model HPV and Syphilis diseases. Omame et al. [14] proposed a
fractional order model for dual variants of COVID-19 and HIV co-infection via another derivative
that has a non–singular kernel, Atangana–Baleanu fractional order derivative. Nwajeri et al. [15]
proposed the analysis of HPV and CT co-infection model using a fractional order derivative.
Fractional order derivatives have made a tremendous contribution to the field of epidemiological
modelling and have huge developments [16–25]. It is evident nowadays that fractional differential
equations are efficient tools and very useful and effective in numerous fields of science and
engineering such as biology, finance, rheology, electro–chemistry, chemical physics, etc. These
wonderful applications of fractional differential equations to physical problems are due to their
natural relation to the system with memory which is a common feature of many phenomena
[26–31].
The aim of this work is to analyze vividly the co–dynamism of malaria and cholera via fractional
order derivative. In particular, we formulate a fractional order model of ten compartments which
depicts the two diseases’ interaction within a population. The model is based on the paper of
Omame et al. [32] where Atangana–Baleanu fractional order derivative to model the impact of
SARS-CoV-2 infection on the dynamics of dengue and HIV. Moreover, we describe and analyze
the results using Caputo–Fabrizio fractional derivative and Caputo fractional derivative.
The rest of the paper is arranged as follows; the fractional order model is formulated in Section 2
via Caputo–Fabrizio fractional derivative. In Section 3, we present in nutshell, some definitions
of fractional order differential equations. Qualitative analysis of the fractional system takes the
centre stage in Section 4 where the positive invariant region of the system, and basic reproduction
number are presented. We also present the existence and uniqueness of the solution using the
fixed point theorem. In Section 5, we developed the numerical solution of the fractional system
with the aid of the Atangana-Baleanu technique. In Section 6, graphical figures and their biological
discussions and results were presented after rigorous MATLAB simulations. Finally, we draw the
necessary conclusion of our manuscript in Section 7.

2 Model formulation

The model consists of different compartments of human and vector populations. The human
population is divided into the following compartments: susceptible humans SHB, infected individ-
uals with malaria IMAL, recovered individuals from malaria disease RMAL, individuals infected
with cholera ICHO, recovered individuals from cholera disease RCHO, individuals co-infected
with malaria and cholera IMAC and recovered individuals from malaria and cholera RMAC. On
another note, we have bacterial population denoted by BCHO and the vector population which
is divided into two compartments, namely, the susceptible vectors SVEC(t) and infected vec-
tors IVEC(t). The total population of humans and vectors at the time t are given by NHB(t)
= SHB(t) + IMAL(t) + RMAL(t) + ICHO(t) + RCHO(t) + IMAC(t) + RMAC(t) and NVEC(t) =
SVEC(t) + IVEC(t), respectively. The parameter βMAL denotes the probability of humans infected
with malaria while µHB denotes the natural mortality rate from the human population. The
quantity βMALbIVEC

NHB
represents the rate SHB are exposed to the infected vectors and moved to IMAL

and and IMAC compartments while the quantity BCHOqCHO
κ+BCHO

SHB denotes the rate SHB contracts
cholera through bacteria and moved to ICHO and IMAC classes. The remaining parameters are
properly defined in Table 1.
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Table 1. Description of parameters in model (1)

Parameter Description Value References
ΛHB Recruitment rate of humans 100day−1 [33]
βMAL Human probability of infection with malaria 0.181 (dimensionless) [34]
qCHO Bacterial contact rate for human 0.05day−1 [6]
βCHO Human probability of infection with cholera 0.005 Assumed
µHB Natural death rate for humans 1

(70×360)day−1 [7]
r Per capita bacteria reproduction rate 0.5 Assumed
b Average vectors bitting rate 0.5day−1 [35]
ωMAL Waning rate of malaria 1

(60×360)day−1 [33]
ωCHO Waning rate of cholera 0.001day−1 [34]
ωmc Malaria-Cholera co-infection waning rate 0.001 − 0.02day−1 [6]
δMAL Malaria induced death rate 0.05 − 0.1day−1 [6, 36]
γMAL Recovery rate from malaria 0.25 [37]
δCHO cholera induced death rate 0.0002day−1 Assumed
γCHO Recovery rate from cholera 0.07day−1 [34]
βVEC Vector probability of infection with malaria 0.181 (dimensionless) [34]
δMAC Death caused by malaria-cholera co-infection 0.05day−1 Assumed
γMAC Recovery rate for malaria and cholera 0.4day−1 Assumed
ξMP1, ξMP2 Modification parameters 0.6 (dimensionless) Assumed
µDBR Natural death rate for bacterial 0.123 [38]
µVEC Natural death rate for vectors 1

15 , 0.143day−1 [33]
ΛVEC Recruitment rate for vectors 1000day−1 [33]

Motivated by the numerous advantages of fractional order operators as already stated, we hereby
state the fractional order co–dynamic model under the Caputo–Fabrizio derivative as

CFDα
t SHB(t) = ΛHB −

βMALbIVEC
NHB

SHB −
BCHOqCHO
κ + BCHO

SHB − µHBSHB + ωMALRMAL

+ωCHORCHO + ωmcRMAC,
CFDα

t IMAL(t) = βMALb
IVEC
NHB

(SHB +RCHO) +
BCHOqCHO
κ + BCHO

IMAL − (µHB + δMAL + γMAL)IMAL,

CFDα
t RMAL(t) = γMALIMAL − (µMAL + ωMAL)RMAL −

BCHOqCHO
κ + BCHO

RMAL,

CFDα
t ICHO(t) =

βCHOqCHO
κ + BCHO

(SHB +RMAL)− (δCHO + µHB + γCHO)ICHO −
βVECbIVEC

NHB
ICHO,

CFDα
t RCHO(t) = γCHOICHO − (µHB + ωCHO)RCHO −

βMALbIVEC
NHB

RCHO, (1)

CFDα
t IMAC(t) =

BCHOqCHO
κ + BCHO

IMAL +
βMALbIVEC

NHB
ICHO − (µHB + δMAC + γMAC)IMAC,

CFDα
t RMAC(t) = γMACICHO − (µHB + ωmc)RMAC,

CFDα
t BCHO(t) = rBCHO

(
1 −

BCHO
κ

)
+ ξMP1ICHO + ξMP2IMAC − µDBRBCHO,

CFDα
t SVEC(t) = ΛVEC −

βVECb(IMAL + IMAC)

NHB
SVEC − µVECSVEC,

CFDα
t IVEC(t) =

βVECb(IMAL + IMAC)

NHB
SVEC − µVECIVEC,
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which corresponds to the following initial conditions
SHB(0) = SHB(0) ≥ 0, IMAL(0) = IMAL(0) ≥ 0, RMAL(0) = RMAL(0) ≥ 0,

ICHO(0) = ICHO(0) ≥ 0, RCHO(0) = RCHO(0) ≥ 0, IMAC(0) = IMAC(0) ≥ 0,

RMAC(0) = RMAC(0) ≥ 0, BCHO(0) = BCHO(0) ≥ 0, SVEC(0) = SVEC(0) ≥ 0,

IVEC(0) = IVEC(0) ≥ 0.

(2)

3 Preliminaries

This section presents several important properties and definitions of Caputo-Fabrizio derivative
in the Caputo sense which will aid the analysis of the manuscript.

Definition 1 ([39]) The Caputo–Fabrizio fractional derivative of order α for the function K ∈ H1([0, b], R+)

where b > 0 is given by

CFDα
t K(t) =

(2 − α)U (α)
2(1 − α)

∫ t

0
exp

(
−α(t − ξ)

1 − α

)
K ′(ζ)dζ, 0 < α ≤ 1, t ≥ 0. (3)

Definition 2 ([40]) The Caputo–Fabrizio fractional integral order α for the function K ∈ H1([0, b], R+)

where b > 0 is given by

CF Iα
t K(t) =

2(1 − α)

(2 − α)U (α)K(t) +
2α

(2 − α)U (α)

∫ t

0
K(ζ)dζ, 0 < α ≤ 1, t ≥ 0. (4)

Definition 3 ([22]) The Atangana–Baleanu fractional derivative in the Caputo sense of order α for the
function K ∈ H1([0, b], R+), where b > 0, is given by

ABCDα
t K(t) =

U (α)
(1 − α)

∫ t

0
Eα

(
−α(t − ζ)

1 − α

)
K ′(ζ)dζ, 0 < α ≤ 1, t ≥ 0.

Definition 4 ([39]) The Atangana–Baleanu fractional integral of order α for the function K ∈ H1([0, b], R+),
where b > 0, is given by

AB Iα
t K(t) =

(1 − α)

U (α) K(t) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1K(ζ)dζ, 0 < α ≤ 1, t ≥ 0, (5)

where U (α) denotes the normalization function and

Eα(d) =
∞∑

k=0

dk

Γ(αk + 1)
, ℜ(α) > 0.

Lemma 1 ([39]) The solution for the following problem with α ∈ (0, 1] is given as:

CFDα
t W(t) = V(t),
W(0) = W0,

(6)
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that is assumed to be equivalent to the following fractional Volterra integral equation

W(t) = W0 +
2(1 − α)

(2 − α)U (α) (V(t)− V(0)) + 2α

(2 − α)U (α)

∫ t

0
W(ζ)dζ, t ≥ 0. (7)

Lemma 2 ([40]) The Laplace transform of Caputo-Fabrizio fractional derivative in the Caputo sense of
order α ∈ (0, 1] for the function K(t) is given by

L {Dα
t K(t), s} =

(2 − α)U (α)
2

sL{K(t)}−K(0)
s + α(1 − s)

, s ≥ 0.

4 Qualitative analysis of the constructed model

In this section, we present carefully the analysis of the fractional order co–dynamic model of
malaria and cholera (1) where the positivity of the solution, basic reproduction number via
next-generation matrix method, existence and uniqueness of the solution are presented.

Positivity

Lemma 3 The region D = Dh ∪Db ∪Dv ⊂ R7
+ ×R+ ×R2

+ is non-negatively invariant for the model
(1) with initial conditions in R10

+ , where

Dh =
{
(SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC) : SHB + IMAL

+RMAL + ICHO +RCHO + IMAC +RMAC <
ΛHB
µHB

}
,

Db =

{
BCHO : BCHO ≤ (ρ1 + ρ2)ΛHB

µHBµDBR

}
,

Dv =

{
(SVEC, IVEC) : SVEC + IVEC ≤ ΛVEC

µVEC

}
.

Proof Adding all the equations corresponding to the human components of the system (1) gives

CFDα
t NHB(t) = ΛHB − µHBNHB(t)− [δMALIMAL + δCHOICHO + δMACIMAC] , (8)

so that from (8), we have

CFDα
t NHB(t) ≤ ΛHB − µHBNHB(t).

Applying the Laplace transform of the Caputo-Fabrizio derivative on the above inequality, and
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simplifying, we obtain

NHB(t) ≤ ΛHB
µHB

−
ΛHB(2α − ϱ1)

[1 + µHB(1 − α)]ϱ1
e−ϱ1t −

NHB(0)
(1 − α)[1 + µHB(1 − α)](ϱ1 − ϱ2)

e−ϱ1t

+
NHB(0)

(1 − α)[1 + µHB(1 − α)](ϱ1 − ϱ2)
e−ϱ2t,

where ϱ1 = µHBα
1+µHB(1−α)

, ϱ2 = α
(1−α)

. Thus, the total population of humans, NHB(t) ≤ ΛHB
µHB

as

t → ∞. Similarly, the total population of vectors NVEC(t) ≤ ΛVEC
µVEC

and total bacteria population

BCHO(t) ≤ K(r−µDBR)
µDBR

. This shows that malaria and cholera fractional order model (1) is bounded
and has a solution in Dh, Db and Dv, respectively. Hence, for fractional malaria and cholera
co–dynamic model, Dh, Db and Dv are positively invariant regions and thus the proof. ■

Basic reproduction number

The disease-free equilibrium (DFE) of the fractional order malaria and cholera co–dynamic model
(1) achieved by setting the right-hand side of the equations of the model to zero is given by

T0 = (S∗
HB, I∗

MAL,R∗
MAL, I∗

CHO,R∗
CHO, I∗

MAC,R∗
MAC,B∗

CHO,S∗
VEC, I∗

VEC)

=

(
ΛHB
µHB

, 0, 0, 0, 0, 0, 0, 0,
ΛVEC
µVEC

, 0
)

.
(9)

Using the similar approach in [41], we obtain the basic reproduction number as follows

F =


0 0 0 0 βMALb
0 0 0 qCHOS∗

HB
κ 0

0 0 0 0 0
0 0 0 0 0

βVECS∗
VEC

N ∗
HB

0 βVECS∗
VEC

N ∗
HB

0 0

 ,

V =


A1 0 0 0 0
0 A2 0 0 0
0 0 A3 0 0
0 −ρ1 −ρ2 µ 0
0 0 0 0 µ

 ,

where

A1 = µHB + δMAL + γMAL, A2 = δCHO + µHB + γCHO, A3 = µHB + δMAC + γMAC.

After elementary algebra, we obtain the basic reproduction number R0 = max{R0P,R0T}, where

R0P =

√
bβMALβVECbSVEC

N∗
hA1µVEC

, R0T =
ρ1qCHOS∗

h
κµA2

.

Theorem 1 The DFE, T0, of the fractional Malaria and Cholera model (1) is locally asymptotically stable
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(LAS) if R0 < 1, and unstable if R0 > 1.

Proof The Jacobian matrix of the malaria and cholera fractional order model (1) evaluated at the

disease-free equilibrium, T0 is given by:

J (T0) =



−µHB 0 ωMAL 0 ωCHO 0 ωmc −
qCHOS∗

HB
N ∗

HB
0 −βMALb

0 −A1 0 0 0 0 0 0 0 βMALb

0 γMAL −Q1 0 0 0 0 0 0 0

0 0 0 −A2 0 0 0 qCHOS∗
HB

κ 0 0

0 0 0 γCHO −Q2 0 0 0 0 0

0 0 0 0 0 −A3 0 0 0 0

0 0 0 0 0 γMAC −Q3 0 0 0

0 0 0 ρ1 0 ρ2 0 −µDBR 0 0

0 −θ 0 0 0 −θ 0 0 −µVEC 0

0 θ 0 0 0 θ 0 0 0 −µVEC



,

where

A1 = µHB + δMAL + γMAL, A2 = δCHO + µHB + γCHO, A3 = µHB + δMAC + γMAC,

Q1 = µ + ωMAL, Q2 = µ + ωCHO, Q3 = µ + ωmc, θ =
βVECbS∗

v
N∗

h
.

Thus the eigenvalues are as follows λ1 = −Q1, λ2 = −Q2, λ3 = −Q3, λ4 = −A3, λ5 = −µHB,
λ6 = −µVEC and the following characteristic equations given below

(−bθβMAL (λ +A1) (λ + µVEC)) (1 −R0P) = 0,

and (
(λ +A2) (λ + µDBR)

ρ1qCHOS∗
h

κ

)
(1 −R0T) = 0.

By the Routh-Hurwitz criterion, the above equations will possess negative real roots if and only
if R0P < 1 and R0T < 1, respectively. Hence, the DFE, T0 is locally asymptotically stable if
R0 = max{R0P,R0T} < 1. ■

Existence and uniqueness of solution

Here, we present the existence and uniqueness of the formulated fractional order system (1) using
fixed point theorems. For this purpose, we rewrite malaria and cholera fractional co–dynamic
model as

CFDαSHB(t) = Q1 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαIMAL(t) = Q2 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
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CFDαRMAL(t) = Q3 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαICHO(t) = Q4 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,

CFDαRCHO(t) = Q5 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαIMAC(t) = Q6 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,

CFDαRMAC(t) = Q7 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαBCHO(t) = Q8 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαSVEC(t) = Q9 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
CFDαIVEC(t) = Q10 (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,

(10)

where Qj = Qj (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC) ,
for j = 1, 2, . . . , 10 is given by

Q1 = ΛHB −
βMALbIVEC

Nh
SHB − BCHOα

κ+BCHO
SHB − µHBSHB + ωMALRMAL + ωCHORCHO + ωmcRMAC,

Q2 = βMALbIVEC
NHB

(SHB +RCHO)− (µHB + δMAL + γMAL)IMAL +
BCHOqCHO

κ+BCHO
IMAL,

Q3 = γMALIMAL − (µ + ωMAL)RMAL −
BCHOα

κ+BCHO
RMAL,

Q4 = βcα
κ+BCHO

(SHB +RMAL)− (δCHO + µHB + γCHO)ICHO −
βVECbIVEC

NHB
ICHO,

Q5 = γCHOICHO − (µHB + ωCHO)RCHO −
βMALbIVEC

NHB
RCHO,

Q6 = BCHOα
κ+BCHO

IMAL +
βMALbIVEC

NHB
ICHO − (µHB + δMAC + γMAC)IMAC,

Q7 = γMACICHO − (µHB + ωmc)RMAC,

Q8 = rBCHO

(
1 − BCHO

K

)
+ ξMP1ICHO + ξMP2IMAC − µDBRBCHO,

Q9 = ΛVEC −
βVECb(IMAL+IMAC)

NHB
SVEC − µVECSVEC,

Q10 = βVECb(IMAL+IMAC)
NHB

SVEC − µVECIVEC.

(11)

Using the above illustration, malaria and cholera fractional order co–dynamic model (1) can be
written as {

CFDα
t ΩMC(t) = K(t, ΩMC(t)), 0 < α ≤ 1, t ∈ J = [0, T],

ΩMC(0) = ΩMC0 ≥ 0,
(12)

where K : J × R → R is continuous and
ΩMC(t) = (SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC)

T ,

ΩMC0 = (Sh0, Im0, Rm0, Ic0, Rc0, IMC0, RMC0, Bc0, Sv0, Iv0)
T ,

K(t, ΩMC(t)) = Qj (t,SHB, IMAL,RMAL, ICHO,RCHO, IMAC,RMAC,BCHO,SVEC, IVEC)
T ,

(13)

where j = 1, 2, 3, . . . 10, and (.)T denotes the transpose of the vector. Using Lemma (1), the initial
value problem (12) is equivalent to the following fractional order Volterra integral equation

ΩMC(t) = ΩMC0 +
2(1 − α)

(2 − α)U (α) (K(t, ΩMC(t))−K0) +
2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(ζ))dζ, (14)
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where t ≥ 0.
Furthermore, let us define C(J , R) as the Banach space of continuous functions from J = [0, T]
into R endowed with the Chebyshev norm

∥ΩMC∥∞ := sup
t∈J

{|ΩMC(t)|} , J = [0, T].

Theorem 2 Assume that (B1): There exists a Lipschitz constant LMC > 0, such that

|K(t, ΩMC1(t))−K(t, ΩMC2(t))| ≤ LMC |ΩMC1(t)− ΩMC2(t)| , t ∈ J = [0, T], ΩMC1, ΩMC2 ∈ R,

then if

LMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
< 1, (15)

the initial value problem (1) has a unique solution on J = [0, T].

Proof Consider the transformed initial value problem (12) plugged into a fixed point quantity
under the operation

Φ : Cm(J , R) → Cm(J , R),

with the corresponding definition as follows,

ΦΩMC(t) = ΩMC0 +
2(1 − α)

(2 − α)U (α) (K(t, ΩMC(t))−K(0, ΩMC(0)))

+
2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(ζ))dζ. (16)

Next, we apply the Banach contraction principle to prove that the quantity Φ has a unique fixed
point. In that case, we let the two solutions ΩMC1(t), ΩMC2(t) ∈ Cm(J , R), where J = [0, T],
then we have:

|ΦΩMC1(t)− ΦΩMC2(t)| ≤ 2(1 − α)

(2 − α)U (α) |K(t, ΩMC1(t))−K(t, ΩMC2(t))|

+
2α

(2 − α)U (α)

∫ t

0
|K(ζ, ΩMC1(ζ))−K(ζ, ΩMC2(ζ))| dζ

≤ LMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
|ΩMC1(t)− ΩMC2(t)|∞ .

Thus,

∥ΦΩMC1(t)− ΦΩMC2(t)∥∞ ≤ LMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
|ΩMC1(t)− ΩMC2(t)|∞ .

Applying (15), we see that the operator Φ is a contraction and hence possesses a fixed point, and
hence, (1) has a unique solution. ■
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Theorem 3 Assume that
(B2): The function K : J × R → R is totally continuous.
(B3): There exists a constant GMC > 0 such that

|K(t, ΩMC(t))| ≤ GMC, for all t ∈ J = [0, T], ΩMC ∈ R,

then the malaria and cholera fractional order system (1) with its corresponding initial condition (2) has at
least one solution on J = [0, T].

Proof Following a similar process in [15], we apply Schauder’s fixed point theorem to illustrate
that Φ, defined by (16) possesses a fixed point. Thus consider the following steps;
STEP (1): The operator Φ : Cm(J , R) → Cm(J , R) is totally continuous. Define the function ΩMC

as a sequence
{

ΩMC(m)

}
such that ΩMC(m) → ΩMC in C(J , R). Thus, for each t ∈ J = [0, T], we

have ∣∣∣ΦΩMC(m)(t)− ΦΩMC(t)
∣∣∣

=

∣∣∣∣ 2(1 − α)

(2 − α)U (α)

(
K(t, ΩMC(m)(t))−K(0, ΩMC(0))

)
+

2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(m)(ζ))dζ

−

(
2(1 − α)

(2 − α)U (α) (K(t, ΩMC(t))−K(0, ΩMC(0))) +
2α

(2 − α)U (α)

∫ t

0
K(ζ, ΩMC(ζ))dζ

)∣∣∣∣
≤ 2(1 − α)

(2 − α)U (α)

∣∣∣K(t, ΩMC(m)(t))−K(t, ΩMC(t))
∣∣∣

+
2α

(2 − α)U (α)

∫ t

0

∣∣∣K(ζ, ΩMC(m)(ζ))−K(ζ, ΩMC(ζ))
∣∣∣ dζ

≤ 2(1 − α)

(2 − α)U (α) sup
t∈J

∣∣∣K(ζ, ΩMC(m)(ζ))−K(t, ΩMC(t))
∣∣∣+ 2α

(2 − α)U (α)

×
∫ t

0
sup
t∈J

∣∣∣K(ζ, ΩMC(m)(ζ))−K(ζ, ΩMC(ζ))
∣∣∣ dζ,

such that∣∣∣ΦΩMC(m)(t)− ΦΩMC(t)
∣∣∣ ≤ ∥∥∥K(., ΩMC(m)(.))−K(., ΩMC(.))

∥∥∥∞
(

2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

Since K is continuous, clearly,

∥∥∥ΦΩMC(m)(t)− ΦΩMC(t)
∥∥∥∞ ≤

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)∥∥∥K(., ΩMC(m)(.))−K(., ΩMC(.))
∥∥∥∞ .

Hence,
∥∥∥ΦΩMC(m)(t)− ΦΩMC(t)

∥∥∥∞ → 0 as p → ∞.

STEP (2): Φ maps a "bounded set into another bounded" set in C(J , R).
Therefore, for every real number k̄ > 0, it can be shown that there exists an associated real number
χ > o such that

Bk̄ =
{

ΩMC ∈ C(J .R) : ∥ΩMC∥∞ ≤ k̄
}

, ∥ΦΩMC∥∞ ≤ χ, ∀ΩMC ∈ Bk̄.
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Thus ∀t ∈ J = [0, T], from (16) and (B3) that

|ΦΩMC(t)| ≤ 2(1 − α)

(2 − α)U (α) |K(t, ΩMC(t))|+
2α

(2 − α)U (α)

∫ t

0
|K(ζ, ΩMC(ζ))| dζ

≤ GMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

Thus ∥ΦΩMC∥∞ ≤ χ, where

χ = GMC

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

STEP (3): The operator Φ : Cm(J , R) → Cm(J , R) maps a bounded set into equi-continuous set
in C(J , R). Let t1, t2 ∈ J = [0, T] and t2 > t1 and let Bk̄ be bounded set of C(J , R) as defined
above and ΩMC ∈ Bk̄, then using (16), (B3) and triangle inequality, we have

|ΦΩMC(t2)− ΦΩMC(t1)| =

∣∣∣∣ 2(1 − α)

(2 − α)U (α) (K(t2, ΩMC(t2))) +
2α

(2 − α)U (α)

∫ t2

0
K(ζ, ΩMC(ζ))dζ

−

(
2(1 − α)

(2 − α)U (α) (K(t1, ΩMC(t1))) +
2α

(2 − α)U (α)

∫ t1

0
K(ζ, ΩMC(ζ))dζ

)∣∣∣∣
=

∣∣∣∣ 2(1 − α)

(2 − α)U (α) (K(t2, ΩMC(t2))−K(t1, ΩMC(t1))) +
2α

(2 − α)U (α)

×
(∫ t2

0
K(ζ, ΩMC(m)(ζ))−

∫ t2

0
K(ζ, ΩMC(ζ))

)
dζ

∣∣∣∣
≤ 2(1 − α)

(2 − α)U (α) (|K(t2, ΩMC(t2))−K(t1, ΩMC(t1))|)

+
2α

(2 − α)U (α)

∫ t2

t1

|K(ζ, ΩMC(ζ))| dζ

≤ 2(1 − α)(2GMC)

(2 − α)U (α) +
2αGMC

(2 − α)U (α)

∫ t2

t1

dζ

= GMC

(
4(1 − α)

(2 − α)U (α) +
2α(t2 − t1)

(2 − α)U (α)

)
.

The right-hand side of the above inequality tends to zero as t1 → t2. Thus, from STEPS (1) to (2)
and also recalling the Arzela-Ascoli’s theorem, the operator Φ : Cm(J , R) → Cm(J , R) is totally
continuous.
STEP (4): The boundedness of priori: Let

ξ = {ΩMC ∈ C(J , R) : ΩMC = ΛΦΩMC} ,

for some Λ ∈ (0, 1). We show that set ξ is bounded. Let ΩMC ∈ ξ, then ΩMC = ΛΦΩMC for some
Λ ∈ (0, 1). Thus for all t ∈ J , we have that

ΩMC = ΛΦΩMC

= Λ
(

2(1 − α)

(2 − α)U (α) (K(t2, ΩMC(t2))) +
2α

(2 − α)U (α)

∫ t2

0
K(ζ, ΩMC(ζ))dζ

)
.
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Using (B3) and STEP (2) we get

|ΩMC| = Λ
(

2(1 − α)

(2 − α)U (α) |K(t2, ΩMC(t2))|+
2α

(2 − α)U (α)

∫ t2

0
|K(ζ, ΩMC(ζ))| dζ

)
≤ G

(
2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
.

Thus, for every t ∈ J = [0, T],

∥ΩMC∥∞ ≤ G
(

2(1 − α)

(2 − α)U (α) +
2αTmax

(2 − α)U (α)

)
:= χ, χ ∈ R,

which is the boundedness of set ξ. Applying Schauder’s fixed point theorem, the operator Φ
possesses a unique fixed point which is the solution of the IVP (12). Thus malaria and cholera
co–dynamic fractional order system (1) solution exists. ■

5 Numerical scheme

In this section, we apply a numerical algorithm to the proposed malaria and cholera fractional
order system to obtain the numerical solution of the proposed system. The numerical scheme
proposed and proved by Toufik and Atangana [42] which has a tremendous convergence property
is applied to approximate the fractional order malaria and cholera system. Using the initial
condition (2) and the Atangana–Baleanu integral (5), we obtain the following Atangana–Baleanu
fractional Volterra equation of the system (1) as;

SHB(t)− SHB(0) =
(1 − α)

U (α) Q1 (t,SHB(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q1 (ζ,SHB(ζ)) dζ,

IMAL(t)− IMAL(0) =
(1 − α)

U (α) Q2 (t, IMAL(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q2 (ζ, IMAL(ζ)) dζ,

RMAL(t)−RMAL(0) =
(1 − α)

U (α) Q3 (t,RMAL(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q3 (ζ,RMAL(ζ)) dζ,

ICHO(t)− ICHO(0) =
(1 − α)

U (α) Q4 (t, ICHO(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q4 (ζ, ICHO(ζ)) dζ,

RCHO(t)−RCHO(0) =
(1 − α)

U (α) Q5 (t,RCHO(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q5 (ζ,RCHO(ζ)) dζ,

IMAC(t)− IMAC(0) =
(1 − α)

U (α) Q6 (t, IMAC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q6 (ζ, IMAC(ζ)) dζ,

RMAC(t)−RMAC(0) =
(1 − α)

U (α) Q7 (t,RMAC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q7 (ζ,RMAC(ζ)) dζ,

BCHO(t)− BCHO(0) =
(1 − α)

U (α) Q8 (t,BCHO(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q8 (ζ,BCHO(ζ)) dζ,

SVEC(t)− SVEC(0) =
(1 − α)

U (α) Q9 (t,SVEC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q9 (ζ,SVEC(ζ)) dζ,

IVEC(t)− IVEC(0) =
(1 − α)

U (α) Q10 (t, IVEC(t)) +
α

U (α)Γ(α)

∫ t

0
(t − ζ)α−1Q10 (ζ, IVEC(ζ)) dζ.

(17)
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Next, setting t = tm+1 for m = 0, 1, 2, . . . into the above equation (17), we get

SHB(tm+1)− SHB(0) =
(1 − α)

U (α) Q1 (tm,SHB(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q1 (ζ,SHB(ζ)) dζ,

IMAL(tm+1)− IMAL(0) =
(1 − α)

U (α) Q2 (tm, IMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q2 (ζ, IMAL(ζ)) dζ,

RMAL(tm+1)−RMAL(0) =
(1 − α)

U (α) Q3 (tm,RMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q3 (ζ,RMAL(ζ)) dζ,

ICHO(tm+1)− ICHO(0) =
(1 − α)

U (α) Q4 (tm, ICHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q4 (ζ, ICHO(ζ)) dζ,

RCHO(tm+1)−RCHO(0) =
(1 − α)

U (α) Q5 (tm,RCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(V − ζ)α−1Q5 (ζ,RCHO(ζ)) dζ,

IMAC(tm+1)− IMAC(0) =
(1 − α)

U (α) Q6 (tm, IMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q6 (ζ, IMAC(ζ)) dζ,

RMAC(tm+1)−RMAC(0) =
(1 − α)

U (α) Q7 (tm,RMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q7 (ζ,RMAC(ζ)) dζ,

BCHO(tm+1)− BCHO(0) =
(1 − α)

U (α) Q8 (tm,BCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q8 (ζ,BCHO(ζ)) dζ,

SVEC(tm+1)− SVEC(0) =
(1 − α)

U (α) Q9 (tm,SVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q9 (ζ,SVEC(ζ)) dζ,

IVEC(tm+1)− IVEC(0) =
(1 − α)

U (α) Q10 (tm, IVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

∫ tk+1

0
(tm+1 − ζ)α−1Q10 (ζ, IVEC(ζ)) dζ.
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By two–point Lagrange interpolation polynomial, we approximate Q1 (ζ,SHB(ζ)), Q2 (ζ, IMAL(ζ)),
Q3 (ζ,RMAL(ζ)), Q4 (ζ, ICHO(ζ)), Q5 (ζ,RCHO(ζ)), Q6 (ζ, IMAC(ζ)), Q7 (ζ,RMAC(ζ)),
Q8 (ζ,BCHO(ζ)), Q9 (ζ,SVEC(ζ)), Q10 (ζ, IVEC(ζ)) in (18) on the interval [tk, tk+1] and get

Q1 (ζ,SHB(ζ)) ≈
Q1 (tk,SHB(tk))

h
(
t − tk−1

)
+

Q1 (tk−1,SHB(tk−1))

h
(
t − tk

)
,

Q2 (ζ, IMAL(ζ)) ≈
Q2 (tk, IMAL(tk))

h
(
t − tk−1

)
+

Q2 (tk−1, IMAL(tk−1))

h
(
t − tk

)
,

Q3 (ζ,RMAL(ζ)) ≈
Q3 (tk,RMAL(tk))

h
(
t − tk−1

)
+

Q3 (tk−1,RMAL(tk−1))

h
(
t − tk

)
,

Q4 (ζ, ICHO(ζ)) ≈
Q4 (tk, ICHO(tk))

h
(
t − tk−1

)
+

Q4 (tk−1, ICHO(tk−1))

h
(
t − tk

)
,

Q5 (ζ,RCHO(ζ)) ≈
Q5 (tk,RCHO(tk))

h
(
t − tk−1

)
+

Q5 (tk−1,RCHO(tk−1))

h
(
t − tk

)
,

Q6 (ζ, IMAC(ζ)) ≈
Q6 (tk, IMAC(tk))

h
(
t − tk−1

)
+

Q6 (tk−1, IMAC(tk−1))

h
(
t − tk

)
,

Q7 (ζ,RMAC(ζ)) ≈
Q7 (tk,RMAC(tk))

h
(
t − tk−1

)
+

Q7 (tk−1,RMAC(tk−1))

h
(
t − tk

)
,

Q8 (ζ,BCHO(ζ)) ≈
Q8 (tk,BCHO(tk))

h
(
t − tk−1

)
+

Q8 (tk−1,BCHO(tk−1))

h
(
t − tk

)
,

Q9 (ζ,SVEC(ζ)) ≈
Q9 (tk,SVEC(tk))

h
(
t − tk−1

)
+

Q9 (tk−1,SVEC(tk−1))

h
(
t − tk

)
,

Q10 (ζ, IVEC(ζ)) ≈
Q10 (tk, IVEC(tk))

h
(
t − tk−1

)
+

Q10 (tk−1, IVEC(tk−1))

h
(
t − tk

)
,

(18)

so that system (18) becomes

SHB(tm+1)− SHB(0) =
(1 − α)

U (α) Q1 (tm,SHB(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q1 (tk,SHB(tk))

h
Pk−1,α +

Q1 (tk−1,SHB(tk−1))

h
Pk,α

)
,

IMAL(tm+1)− IMAL(0) =
(1 − α)

U (α) Q2 (tm, IMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q2 (tk, IMAL(tk))

h
Pk−1,α +

Q2 (tk−1, IMAL(tk−1))

h
Pk,α

)
,

RMAL(tm+1)−RMAL(0) =
(1 − α)

U (α) Q3 (tm,RMAL(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q3 (tk,RMAL(tk))

h
Pk−1,α +

Q3 (tk−1,RMAL(tk−1))

h
Pk,α

)
,

ICHO(tm+1)− ICHO(0) =
(1 − α)

U (α) Q4 (tm, ICHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q4 (tk, ICHO(tk))

h
Pk−1,α +

Q4 (tk−1, ICHO(tk−1))

h
Pk,α

)
,
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RCHO(tm+1)−RCHO(0) =
(1 − α)

U (α) Q5 (tm,RCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q5 (tk,RCHO(tk))

h
Pk−1,α +

Q5 (tk−1,RCHO(tk−1))

h
Pk,α

)
,

IMAC(tm+1)− IMAC(0) =
(1 − α)

U (α) Q6 (tm, IMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q6 (tk, IMAC(tk))

h
Pk−1,α +

Q6 (tk−1, IMAC(tk−1))

h
Pk,α

)
,

RMAC(tm+1)−RMAC(0) =
(1 − α)

U (α) Q7 (tm,RMAC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q1 (tk,RMAC(tk))

h
Pk−1,α +

Q7 (tk−1,RMAC(tk−1))

h
Pk,α

)
,

BCHO(tm+1)− BCHO(0) =
(1 − α)

U (α) Q8 (tm,BCHO(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q8 (tk,BCHO(tk))

h
Pk−1,α +

Q8 (tk−1,BCHO(tk−1))

h
Pk,α

)
,

SVEC(tm+1)− SVEC(0) =
(1 − α)

U (α) Q9 (tm,SVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q9 (tk,SVEC(tk))

h
Pk−1,α +

Q9 (tk−1,SVEC(tk−1))

h
Pk,α

)
,

IVEC(tm+1)− IVEC(0) =
(1 − α)

U (α) Q10 (tm, IVEC(tm))

+
α

U (α)Γ(α)

m∑
k=0

(
Q10 (tk, IVEC(tk))

h
Pk−1,α +

Q10 (tk−1, IVEC(tk−1))

h
Pk,α

)
,

(19)

where and using tk = kh, we obtain

Pk−1,α =

∫ tk+1

tk

(
t − tk−1

)(
tm+1 − t

)α−1dt

=
hα+1

α(α + 1)

[
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

]
,

Pk,α =

∫ tk+1

tk

(
t − tk

)(
tm+1 − t

)α−1dt =
hα+1

α(α + 1)

[
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

]
.

(20)

Substituting (20) into (19) gives

SHB(tm+1) = SHB(0) +
(1 − α)

U (α) Q1 (tm,SHB(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q1 (tk,SHB(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q1 (tk−1,SHB(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.



Iwa et al. | 49

IMAL(tm+1) = IMAL(0) +
(1 − α)

U (α) Q2 (tm, IMAL(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q2 (tk, IMAL(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q2 (tk−1, IMAL(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

RMAL(tm+1) = RMAL(0) +
(1 − α)

U (α) Q3 (tm,RMAL(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q3 (tk,RMAL(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q3 (tk−1,RMAL(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

ICHO(tm+1) = ICHO(0) +
(1 − α)

U (α) Q4 (tm, ICHO(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q4 (tk, ICHO(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q4 (tk−1, ICHO(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

RCHO(tm+1) = RCHO(0) +
(1 − α)

U (α) Q5 (tm,RCHO(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q5 (tk,RCHO(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q5 (tk−1,RCHO(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

IMAC(tm+1) = IMAC(0) +
(1 − α)

U (α) Q6 (tm, IMAC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q6 (tk, IMAC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q6 (tk−1, IMAC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

RMAC(tm+1) = RMAC(0) +
(1 − α)

U (α) Q7 (tm,RMAC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q7 (tk,RMAC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q7 (tk−1,RMAC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

BCHO(tm+1) = BCHO(0) +
(1 − α)

U (α) Q8 (tm,BCHO(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q8 (tk,BCHO(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q8 (tk−1,BCHO(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.
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SVEC(tm+1) = SVEC(0) +
(1 − α)

U (α) Q9 (tm,SVEC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q9 (tk,SVEC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q9 (tk−1,SVEC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

IVEC(tm+1) = IVEC(0) +
(1 − α)

U (α) Q10 (tm, IVEC(tm)) +
αhα

U (α)Γ(α + 2)

×
m∑

k=0

[
Q10 (tk, IVEC(tk))

(
(m + 1 − k)α(m − k + 2 + α)− (m − k)α(m − k + 2 + 2α)

)
+Q10 (tk−1, IVEC(tk−1))

(
(m + 1 − k)α+1 − (m − k)α(m − k + 1 + α)

)]
.

6 Results and discussion

We present the results of the subject matter with the aid of the above numerical scheme for the
numerical solution of the proposed malaria and cholera system. For this purpose, we will adopt the
data in Table 1 and support it with the following initial conditions for each compartment SHB(0) =
10000, IMAL(0) = 2000, RMAL(0) = 300, ICHO(0) = 400, RCHO(0) = 300, IMAC(0) = 200,
RMAC(0) = 100, BCHO(0) = 2000, SVEC(0) = 2000, IVEC(0) = 2000 and the fractional orders
0.50, 0.60, 0.70, 0.80, 0.90 to plot all the ten classes in malaria and cholera dynamic system. The
dynamic behavior of all the compartments is shown in Figs. 1–10. The susceptible populations to
these diseases represented in Fig. 1 increase mildly until infected by the diseases and transfer to
other compartments within the system (1).
The mild increase of susceptible populations without interaction with the diseases occurs as the
fractional order tends to one. Fig. 2 shows the infection with malaria caused a transitional increase
with time in the population, then decreases and stabilizes after precautionary measures were
applied. A considerable response within the infected class as individuals respond to treatment
and necessary malaria control measures can be seen in Fig. 3.
As individuals recover from malaria and are infected by cholera, it can be seen from Fig. 4 that a
sharp decrease occurs as the fractional order increases. As individuals recover from cholera after
being infected through the necessary, an increase is recorded as depicted in Fig. 5. It can be seen in
Figs. 6 and 8 that there is a decrease within the population as co-infection of malaria and cholera
occurs.
The presence of the bacteria compartment facilitates this decrease as fractional order decreases
and converges to a certain point as time increases. The increase is seen in Fig. 7. The numerous
numbers of susceptible vectors show a correlation with the fractional order in Fig. 9. An increase
in the fractional order increases the number of susceptible vectors. After a stable population of
about a hundred individuals for the first three days, a decrease in the population of infectious
vectors is noticed when the fractional order increases as shown in Fig. 10. This explains the level
of infection in the vector population. Also, infection with cholera reduces more population of
individuals compared to infection with malaria within the same time interval.
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Figure 1. Simulations of the total number of SHB(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 2. Simulations of the total number of IMAL(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 3. Simulations of the total number of RMAL(t) at different values of α

on the interval of (0, 1) with the stated initial data.



52 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 1, 33–57

0 50 100 150 200
150

200

250

300

350

400

Time (days)

In
d

iv
id

u
a
ls

 I
n

fe
c
te

d
 w

it
h

 C
h

o
le

ra

 

 

α=0.50

α=0.60

α=0.70

α=0.80

α=0.90

Figure 4. Simulations of the total number of ICHO(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 5. Simulations of the total number of RCHO(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 6. Simulations of the total number of IMAC(t) at different values of α

on the interval of (0, 1) with the stated initial data.



Iwa et al. | 53

0 50 100 150 200
0

2000

4000

6000

8000

Time (days)

R
e

c
o

v
e

re
d

 f
ro

m
 M

a
la

ri
a

 a
n

d
 C

h
o

le
ra

 

 

α=0.50

α=0.60

α=0.80

α=0.90

α=0.90

Figure 7. Simulations of the total number of RMAC(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 8. Simulations of the total number of BCHO(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 9. Simulations of the total number of SVEC(t) at different values of α

on the interval of (0, 1) with the stated initial data.
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Figure 10. Simulations of the total number of IVEC(t) at different values of α

on the interval of (0, 1) with the stated initial data.

7 Conclusion

In this paper, we investigated the fractional co-infection model of malaria and cholera in detail.
We also established the existence and uniqueness of the solution using Banach and Schauder’s
fixed point theorems. The positivity and boundedness of the fractional system solution are stated
and proved by using Mittag–Leffler function. The basic reproduction number R0 is computed
using the next-generation matrix method and it reveals that malaria–cholera model is locally
asymptotically stable when R0 < 1. Several simulations on the model were performed numerically
and we obtained various graphical results that align with the theoretical result obtained. Further
results revealed that infection with cholera reduces more population of individuals compared
to infection with malaria during the same time interval. For the future research interests of this
work, we recommend consideration of control measures and other fractional derivatives for this
purpose.
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