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Abstract

The objective of this manuscript is to present a novel approach to modeling influenza A disease
dynamics by incorporating the Caputo-Fabrizio (CF) fractional derivative operator into the model.
Particularly distinct contact rates between exposed and infected individuals are taken into account in
the model under study, and the fractional derivative concept is explored with respect to this component.
We demonstrate the existence and uniqueness of the solution and obtain the series solution for all
compartments using the Laplace transform method. The reproduction number of the Influenza A
model, which was created to show the effectiveness of different contact rates, was obtained and
examined in detail in this sense. To validate our approach, we applied the predictor-corrector method
in the sense of the Caputo-Fabrizio fractional derivative and demonstrate the effectiveness of the
fractional derivative in accurately predicting disease dynamics. Our findings suggest that the use of the
Caputo-Fabrizio fractional derivative can provide valuable insights into the mechanisms underlying
influenza A disease and enhance the accuracy of disease models.
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1 Introduction

Influenza is an infectious respiratory disease caused by a single-stranded and segmented RNA
virus in the Orthomyxoviridae family. Influenza is commonly known as "the flu". It has 3 different
types, namely A, B, and C, and the type of virus responsible for large epidemics with high mortality
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is often Influenza A. Influenza A viruses infect a range of mammalian (e.g. pigs and horses) and
avian species, whereas type B and C infections are largely restricted to humans. Within this group
of types, only types A and B are capable of causing severe illnesses in humans. Two glycoproteins,
hemagglutinin (H) and neuraminidase (N), located on the outside of the viral particle, are used
in the classification of influenza viruses. All 18 H and 11 R subtypes of influenza A viruses have
been isolated from nature and described in the literature [1]. H1N1, H1N2, H2N2, H3N1, and
others can be given as examples of this nomenclature. Like humans, every living thing has its
own influenza virus. Influenza viruses in animals can be transmitted to humans and cause a
pandemic that affects the whole world. The most important of these is the H1N1 subtype of
influenza A, which caused the Spanish flu pandemic in 1918, the Russian flu pandemic in 1977,
and the swine flu pandemic in 2009 [2]. These viruses lose their ability to cause an epidemic that
will affect the whole world within a few years and take their place among seasonal influenza
agents in the following years. Influenza viruses can easily be transmitted from sick people to
other people, and the disease reaches its peak during the winter months when people spend more
time indoors. Influenza is usually transmitted by the behavior of people who are sick, such as
talking, coughing, and sneezing. More rarely, it can be transmitted by touching surfaces, tools,
and equipment contaminated with virus-containing droplets. The flu is mild in many people
and these people recover completely within a few days. However, it has a severe course in the
elderly, young children, immune-deficient persons, and those with chronic diseases, and may
cause hospitalizations and even death. This disease can cause a wide range of symptoms, ranging
from mild to severe, including fever, sore throat, runny nose, headache, muscle pain, coughing,
and fatigue, among others. Although drugs are used in the treatment of influenza, scientific
studies have shown that the most effective way to prevent the disease is vaccination. However,
the continuous mutation of the influenza virus requires that the vaccine be updated every year in
order to be protected from the disease.
The course and effects of the disease can also be examined theoretically with mathematical models
that will be created in the presence of up-to-date data. In addition, the fractional derivative concept
has been adapted to add the memory effect to the mathematical models. Thereby, the instantaneous
behavior of the dynamic system can be depicted with the effect of past accumulations. In this
regard, many mathematical models, including integer and fractional order, have been created in
the literature for the detailed analysis of various diseases such as cancer cells [3–5], varicella zoster
virus [6], COVID-19 [7–9], plant disease [10], diabetes [11], prey-predator model [12], Nipah virus
[13], childhood diseases [14], and hepatitis B [15]. Additionally, several studies have also been
conducted regarding fractional derivative applications in various fields, such as optimal control
[16, 17], fixed point theory [18–20], chaotic systems [21], and heat flow [22]. In the same way, a
number of mathematical models developed in regard to influenza have attempted to contribute to
the literature in this area. In 2004 Alexander et al. [23] created an SVIRS model and determined
the threshold limit for vaccination, in order to reduce the spread of influenza in the community.
Casagrandi et al. [24] adapted cross-immune individuals to the classical SIR model and examined
its effects on the course of the disease. The transmission of the influenza virus between bird and
human populations has been discussed in detail by the proposed model in [25]. With the model
created in 2010 [26], the effects of wearing N95 and surgical masks on influenza were revealed
with quantitative analyzes. To explain and understand the outbreaks of influenza A (H1N1),
a nonlinear fractional order model is constructed in the Caputo sense [27], and the results are
compared with the real data from 2009. A new model describing the transmission of the influenza
virus by disease resistance in humans has been introduced in [28] and disease equilibrium points
have been determined and stability analyses have been carried out. Furthermore, Jia and Xiao
[29] discussed this model with nonlinear incidence rates. Partial differential equations have been
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used in the study [30] to assess the impact of diffusion and advection on influenza A virus kinetics
and localization in the human respiratory tract. Srivastava et al. [31] investigated the effect of the
influenza virus on a cellular basis on a fractional order model, taking into account the components
of the human immune system as antibodies, plasma cells, effector cells, and interferon. In [32]
the authors, the influenza mathematical model is handled by considering two strains with two
different incidence rates. The effects of COVID-19 and influenza diseases on each other were
examined on a deterministic co-infection model created by Ojo et al. [33]. In addition, various
control strategies have been developed with 3 control parameters added to the model. The course
and quantitative analysis of the influenza A virus under the newly defined fractal-fractional
operator is discussed in [34]. Derradji et al. [35] presented a fractional SEIRS model in the sense of
Caputo-Fabrizio with disease resistance and a nonlinear generalized incidence rate. An influenza
disease model with a cross-immune population was remodeled under the effect of the fractional
order derivative and solved by the stochastic Levenberg-Marquardt backpropagation neural
networks [36].
This study was motivated by the need to better understand the spread of influenza A, leading to
the creation of an integer-order model. The model incorporates a novel approach whereby the
contact rate for each exposed and infected individual is treated separately. Additionally, the model
incorporates the use of the Caputo-Fabrizio fractional derivative operator.
This paper is organized in the following manner. In Section 2, some basic definitions of fractional
calculus, which form the basis of the study, are reminded. In Section 3, the components of the
proposed integer and fractional models and their biological meanings are described. The existence
and uniqueness of the solution of the model under the CF derivative are detailed in Section 4.
In Section 5, it is theoretically proven that the model components have a series solution using
the Laplace transformed method. The effectiveness of contact rates corresponding to exposed
and infected individuals on the reproduction number is discussed in Section 6. The effect of
fractional derivatives of different order on the course of influenza disease is illustrated in Section
7. Moreover, in these simulations, the behavior of some model parameters under the fractional
derivative was also examined in detail. Finally, the results are expressed in the conclusion section.

2 Some preliminaries

Here, we recall some fundamental notions.

Definition 1 [37] Let a < b, g ∈ H1 (a, b) and σ ∈ (0, 1), the Caputo-Fabrizio (CF) derivative is

CFDσ
t [g (t)] =

F (σ)

1 − σ

t∫
a

g′ (x) exp
[
−σ

(t − x)
1 − σ

]
dx,

where F (σ) is a normalization function and F (0) = F (1) = 1.

Definition 2 [38] Let σ ∈ (0, 1). The fractional integral related to the CF derivative is defined by:

CF Iσ
t [g (t)] =

1 − σ

F (σ)
g (t) +

σ

F (σ)

t∫
a

g (λ) dλ.

Definition 3 [38] The Laplace transform of CF derivative can be given

L
[

CFDσ
t [g (t)]

]
=

sL [g (t)]
s + σ (1 − s)

−
g (0)

s + σ (1 − s)
.
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3 Mathematical model of Influenza A

In this section, an SEIRS model was developed by taking into account separate contact rates
for exposed and infected individuals, as inspired by previous research [28, 29, 35]. The model
compartments and the biological meanings of the parameters can be seen as follows:

dS (t)
dt

= Λ − γ1S (t) E (t)− γ2S (t) I (t) + cE (t) + bI (t) + αR (t)− µS (t) ,

dE (t)
dt

= γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t) ,

dI (t)
dt

= εE (t)− (β + b + µ) I (t) ,

dR (t)
dt

= βI (t)− (α + µ) R (t) , (1)

where S (t) represents the number of susceptible individuals, E (t) represents the number of
exposed individuals, I (t) represents the number of infected individuals, R (t) represents the
number of recovered individuals, Λ is a constant recruitment ratio of susceptible humans, γ1 is
the transmission rate of viruses by contact between susceptible and exposed individuals, γ2 is the
transmission rate of viruses by contact between susceptible and infected individuals, the rate at
which an exposed person develops susceptibility without therapy is c, b is the rate at which an
infected person develops into a susceptible person in the absence of therapy, ε = 1

I IP where I IP
stands for the virus’s intrinsic incubation period, the rate at which a recovered person becomes
a vulnerable person once more is denoted by the symbol α, β is the rate at which the infectious
person becomes to be the recovered person, and the population’s natural death rate is expressed
by the symbol µ.

The use of fractional derivatives in mathematical modeling has become increasingly popular
in recent years. One of these fractional derivative definitions is the Caputo-Fabrizio fractional
derivative which is a modification of the classical Caputo derivative by using an additional
parameter to account for the non-locality of the fractional derivative. This additional parameter
can help to better capture the complex behavior of real-world systems, such as in the spread of
infectious diseases, where the contact rate between infected and susceptible individuals may vary
over time and make more accurate predictions about their future behavior. Now, by replacing
the time derivative with the CF fractional derivative operator, we moderate the system. As a
result of this change, the dimensions on the right-hand side and the left-hand side of the page will
differ. In order to resolve this issue, we adjust the fractional operator so that the sides are of the
same dimension using an auxiliary parameter called κ [39]. Based on these explanations and CF
fractional derivative, the model (1) take the following form:

κσ−1CFDσ
t S (t) = Λ − γ1S (t) E (t)− γ2S (t) I (t) + cE (t) + bI (t) + αR (t)− µS (t) ,

κσ−1CFDσ
t E (t) = γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t) ,

κσ−1CFDσ
t I (t) = εE (t)− (β + b + µ) I (t) ,

κσ−1CFDσ
t R (t) = βI (t)− (α + µ) R (t) , (2)

with the initial conditions S (0) = S0 ≥ 0, E (0) = E0 ≥ 0, I (0) = I0 ≥ 0 and R (0) = R0 ≥ 0.
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4 Existence of solution

A natural question one might ask is whether the model we construct in order to describe a physical
phenomenon appears accurate enough. In order to guarantee this, we can apply the theory of
fixed points to our problem. We therefore use the aforementioned theory to demonstrate the
existence of the solution for the relevant model (2).

Ψ1 (t, S, E, I, R) = κ1−σ (Λ − γ1S (t) E (t)− γ2S (t) I (t) + cE (t) + bI (t) + αR (t)− µS (t)) ,

Ψ2 (t, S, E, I, R) = κ1−σ (γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t)) ,

Ψ3 (t, S, E, I, R) = κ1−σ (εE (t)− (β + b + µ) I (t)) ,

Ψ4 (t, S, E, I, R) = κ1−σ (βI (t)− (α + µ) R (t)) . (3)

Applying the operator CF Iσ
t to the model (2) on both sides, we have

S (t) = S (0) +CF Iσ
t [Ψ1 (t, S, E, I, R)] ,

E (t) = E (0) +CF Iσ
t [Ψ2 (t, S, E, I, R)] ,

I (t) = I (0) +CF Iσ
t [Ψ3 (t, S, E, I, R)] ,

R (t) = R (0) +CF Iσ
t [Ψ4 (t, S, E, I, R)] . (4)

Considering the right-hand side of the Eq. (4), we achieve

U (t) = U0 (t) +
1 − σ

M (σ)
[Ψ (t, U (t))− Ψ0 (t)] +

σ

M (σ)

t∫
0

Ψ (θ, U (θ)) dθ, (5)

where

U (t) =


S (t)
E (t)
I (t)
R (t)

, U0 (t) =


S (0)
E (0)
I (0)
R (0)

, Ψ (t, U (t)) =


Ψ1 (t, S, E, I, R)
Ψ2 (t, S, E, I, R)
Ψ3 (t, S, E, I, R)
Ψ4 (t, S, E, I, R)

. (6)

Let

Bi = sup
t∈[t−d,t+d]

∥Ψi (t, S, E, I, R)∥ , for i = 1, 2, 3, 4

and

C [d, bi] = [t − d, t + d]× [u − ci, u + ci] = D × Di for i = 1, 2, 3, 4.

Suppose that a norm on C [d, bi] for i = 1, 2, 3, 4 as follows:

∥U (t)∥∞ = sup
t∈[t−d,t+d]

|U (t)| . (7)

Consider the Picard operator
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θ : C (D, D1, D2, D3, D4) → C (D, D1, D2, D3, D4) ,

given as

θU (t) = U0 (t) +
1 − σ

M (σ)
Ψ (t, U (t)) +

σ

M (σ)

t∫
0

Ψ (s, U (s)) ds. (8)

Suppose that the solutions of the model Eq. (2) are bounded within a time period, that is

∥U∥ ≤ max {d1, d2, d3, d4} . (9)

Supposing that d = 1+σt0
M(σ)

, B = max {Bi} for i = 1, 2, 3, 4 and t0 = max {t ∈ D}

∥θU (t)− U0 (t)∥ = sup
t∈D

∣∣∣∣∣∣ 1 − σ

M (σ)
Ψ (t, U (t)) +

σ

M (σ)

t∫
0

Ψ (s, U (s)) ds

∣∣∣∣∣∣
≤ 1 − σ

M (σ)
sup
t∈D

|Ψ (t, U (t))|+
σ

M (σ)
sup
t∈D

∣∣∣∣∣∣
t∫
0

Ψ (s, U (s)) ds

∣∣∣∣∣∣
≤
(

1 − σ

M (σ)
+

σ

M (σ)

)
B

≤
(

1 + σ (t0 − 1)
M (σ)

)
B

< dB

≤ d, (10)

which satisfies d < d
B . Now, we consider the following inequality:

∥θU1 − θU2∥ = sup
t∈D

|U1 − U2| . (11)

∥θU1 − θU2∥ = sup
t∈D

∣∣∣∣ 1 − σ

M (σ)
(Ψ (s, U1 (t))− Ψ (s, U2 (t)))

+
σ

M (σ)

t∫
0

(Ψ (s, U1 (s))− Ψ (s, U2 (s))) ds

∣∣∣∣∣∣
≤ 1 − σ

M (σ)
k1 |U1 (t)− U2 (t)|+

σ

M (σ)
k1

t∫
0

|U1 (s)− U2 (s)| ds

≤
(

1 − σ

M (σ)
k1 +

σk1

M (σ)
t0

)
|U1 − U2|

≤ dk1 |U1 − U2| ,
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where k1 < 1. Since Ψ is a contraction, then we have k1d < 1. Thus, the operator θ is contraction.
So the model (2) has a unique solution.

5 General algorithm for the fractional model

In this section, we give a series solution for our fractional model. Applying Laplace transform to
the model (2), we find

L [S (t)]− S (0) =
s + σ (1 − s)

s
L

[
κ1−σ (Λ − γ1S (t) E (t)− γ2S (t) I (t)
+cE (t) + bI (t) + αR (t)− µS (t))

]
,

L [E (t)]− E (0) =
s + σ (1 − s)

s
L
[
κ1−σ (γ1S (t) E (t) + γ2S (t) I (t)− (c + ε + µ) E (t))

]
,

L [I (t)]− I (0) =
s + σ (1 − s)

s
L
[
κ1−σ (εE (t)− (β + b + µ) I (t))

]
,

L [R (t)]− R (0) =
s + σ (1 − s)

s
L
[
κ1−σ (βI (t)− (α + µ) R (t))

]
. (12)

Take into account the series solution in the shape of:

S (t) =
∞∑

p=0

Sp (t) , E (t) =
∞∑

p=0

Ep (t) ,

I (t) =
∞∑

p=0

Ip (t) , R (t) =
∞∑

p=0

Rp (t) . (13)

Moreover, the nonlinear terms E (t) S (t) and I (t) S (t) are decomposed in form of polynomials:

E (t) S (t) =
∞∑

p=0

Ap (E, S) , I (t) S (t) =
∞∑

p=0

Bp (I, S) ,

where the "Adomian polynomial" Ap (E, S) may be defined as:

Ap (E, S) =
1
p!

dp

dλp

[ p∑
i=0

λiEi (t)
p∑

i=0

λiSi (t)

]∣∣∣∣∣
λ=0

.

In a similar way, the polynomial Bp can be given. The system (12) can be converted to

L

[ ∞∑
p=0

Sp (t)

]
= S(0)

s + s+σ(1−s)
s L

κ1−σ


Λ − γ1

∞∑
p=0

Ap (E, S)− γ2
∞∑

p=0
Bp (I, S) + c

∞∑
p=0

Ep (t)

+b
∞∑

p=0
Ip (t) + α

∞∑
p=0

Rp (t)− µ
∞∑

p=0
Sp (t)


 ,

L

[ ∞∑
p=0

Ep (t)

]
= E(0)

s + s+σ(1−s)
s L

κ1−σ


γ1

∞∑
p=0

Ap (E, S) + γ2
∞∑

p=0
Bp (I, S)

− (c + ε + µ)
∞∑

p=0
Ep (t)


 ,
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L

[ ∞∑
k=0

Ip (t)

]
=

I (0)
s

+
s + σ (1 − s)

s
L

κ1−σ

ε
∞∑

p=0

Ep (t)− (β + b + µ)
∞∑

p=0

Ip (t)

 ,

L

 ∞∑
p=0

Rp (t)

 =
R (0)

s
+

s + σ (1 − s)
s

L

κ1−σ

β
∞∑

p=0

Ip (t)− (α + µ)
∞∑

p=0

Rp (t)

 . (14)

Now comparing both sides (14) term by term, we have

L [S0 (t)] =
S0

s
,L [E0 (t)] =

E0

s
,L [I0 (t)] =

I0

s
,L [R0 (t)] =

R0

s
.

L [S1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (λ − γ1 A0 (E, S)− γ2B0 (I, S)− cE0 + bI0 + αR0 − µS0)

]
,

L [E1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (γ1 A0 (E, S) + γ2B0 (I, S)− (c + ε + µ) E0)

]
,

L [I1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (εE0 − (β + b + µ) I0)

]
,

L [R1 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (βI0 − (α + µ) R0)

]
,

L [S2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (Λ − γ1 A1 (E, S)− γ2B1 (I, S)− cE1 + bI1 + αR1 − µS1)

]
,

L [E2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (γ1 A1 (E, S) + γ2B1 (I, S)− (c + ε + µ) E1)

]
,

L [I2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (εE1 − (β + b + µ) I1)

]
,

L [R2 (t)] =
s + σ (1 − s)

s
L
[
κ1−σ (βI1 − (α + µ) R1)

]
,

...

L
[
Sp+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
γ1 Ap (E, S)− γ2Bp (I, S)− cEp + bIp + αRp − µSp

)]
,

L
[
Ep+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
Λ − γ1 Ap (E, S) + γ2Bp (I, S)− (c + ε + µ) Ep

)]
,

L
[
Ip+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
εEp − (β + b + µ) Ip

)]
,

L
[
Rp+1 (t)

]
=

s + σ (1 − s)
s

L
[
κ1−σ

(
βIp − (α + µ) Rp

)]
, p ≥ 0. (15)

Implementing the inverse Laplace transform to Eq. (15), we obtain

S0 (t) = S0, E0 (t) = E0, I0 (t) = I0, R0 (t) = R0.

S1 (t) =
[
κ1−σ (Λ − γ1 A0 (E, S)− γ2B0 (I, S)− cE0 + bI0 + αR0 − µS0)

]
(1 + σ(t − 1)) ,

E1 (t) =
[
κ1−σ (γ1 A0 (E, S) + γ2B0 (I, S)− (c + ε + µ) E0)

]
(1 + σ(t − 1)) ,

I1 (t) =
[
κ1−σ (εE0 − (β + b + µ) I0)

]
(1 + σ(t − 1)) ,

R1 (t) =
[
κ1−σ (βI0 − (α + µ) R0)

]
(1 + σ(t − 1)) , (16)

...
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Continuing in the same direction, we acquire the other terms. The desired outcome can be stated
as:

S (t) =
∞∑

p=0

Sp (t) , E (t) =
∞∑

p=0

Ep (t) ,

I (t) =
∞∑

p=0

Ip (t) , R (t) =
∞∑

p=0

Rp (t) . (17)

6 Reproduction number

The reproduction number, denoted as R0, is a mathematical term that is commonly used in
epidemiology to represent the average number of people that one infected person will transmit
a disease to in a population where everyone is susceptible to the disease, in the absence of any
interventions like vaccines or treatment. The R0 is determined by using the Next Generation
Matrix Method (NGMM) [40, 41]. Firstly, the right side of the model (2) is considered as F -V ,
where F and V demonstrate the transmission part and the transition part, as follow respectively

F = κ1−σ

(
E S γ1 + I S γ2

0

)
and V = κ1−σ

(
E (c + ε + µ)

I (b + β + µ)− E ε

)
.

Then, if the Jacobian matrices of the F and V are calculated according to the E and I compartments
and written instead of the disease-free equilibrium point E0 = (S, E, I, R) =

(
Λ
µ , 0, 0, 0

)
of the

model, we get

F = κ1−σ

(
Λ γ1

µ
Λ γ2

µ

0 0

)
and V = κ1−σ

(
c + ε + µ 0

−ε b + β + µ

)
.

Thus, the next generation matrix
(

FV−1
)

of the model (2) is obtained and its spectral radius gives
the reproduction number R0 as follow:

FV−1 =

(
0

Λ (b γ1+β γ1+ε γ2+γ1 µ)
µ (b+β+µ) (c+ε+µ)

) → R0 =
Λ (b γ1 + β γ1 + ε γ2 + γ1 µ)

µ (b + β + µ) (c + ε + µ)
.

The critical value of contact rate refers to the threshold value of the average number of people that
an infected individual comes into contact with per day, below which the reproduction number
remains below 1. In other words, if the contact rate is lower than the critical value, then the disease
will not spread widely in the population. In Figure 1 (a)-(b), the critical value of the contact rates is
calculated as γ1 = 0.4637 and γ2 = 0.72 for the model (2). If the average number of contacts per
exposed individual is less than 0.4637 and the average number of contacts per infected individual
is less than 0.72, then the disease will not spread widely and the outbreak will be contained.
However, if the contact rates γ1 and γ2 exceed the critical values, then the reproduction number
will be greater than 1, and the disease will continue to spread in the population. This highlights
the importance of public health measures such as social distancing, mask-wearing, and limiting
large gatherings, which can reduce the contact rate and help bring the reproduction number below
1, leading to a decline in the number of new infections. In addition, the change in R0 can also be
observed in Figure 2 depending on the value of γ1 and γ2 that have been fixed in the range of 0 to
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2. According to this simulation, γ1 appears to spread the disease more effectively than γ2, and
considering the levels that R0 can reach, it seems that influenza disease may have the potential to
cause a pandemic again in the world in the future.
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(a) γ2 fixed as 0.15. (b)γ1 fixed as 0.25.

Figure 1. The critical values of the contact rate γ1 and γ2 for the threshold value of R0 = 1.
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Figure 2. Visualization of the variation in the reproduction number R0 according to contact rates γ1 and γ2 with
(a) Contour and (b) Surface plot.

7 Numerical results

In order to provide empirical evidence to support the theoretical findings obtained in this study,
several numerical simulations were conducted. To approximate the solution to the differential
equations in the model, we applied the predictor-corrector method in the sense of the Caputo-
Fabrizio fractional derivative, which was introduced by Toh et al. [42]. To conduct these sim-
ulations, the initial conditions for the model components were set at S(0) = 0.15, E(0) = 0.15,
I(0) = 0.10, and R(0) = 0.
Additionally, the values of the model parameters were assigned as Λ = 0.25, µ = 0.2, γ1 = 0.25,
γ2 = 0.15, c = 0.15, b = 0.10, α = 0.30, ϵ = 0.30, and β = 0.5. By utilizing these initial conditions
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and parameter values, the simulations were able to provide insights into the behavior and charac-
teristics of the model under distinct values of the fractional derivative. Through these simulations,
it was possible to observe the impact of changes in the parameters and initial conditions on the
model’s predictions, thus allowing for a more comprehensive analysis of the model’s dynamics.
The impact of the fractional derivative of Caputo-Fabrizio sensitivity on the components of the
influenza model is observed for arbitrarily selected orders, as shown in Figure 3-4. In addition
to this, in Figure 5, a detailed explanation of the behavioral responses of exposed and infected
individuals at various values of γ1 and γ2 contact rates is provided. There is a tendency for the
number of exposed and infected individuals to increase when the threshold values for γ1 and γ2
contact rates are exceeded. When comparing the simulations in Figure 5 (a) and Figure 5 (b), it can
be seen that the γ1 contact rate is more dominant in the spread of the influenza virus compared to
γ2.
Moreover, this high transmission rate is achieved at lower values of γ1 than γ2. This result is also
supported by the fact that γ1 has a lower threshold value than γ2, as seen in Figure 1 (a)-(b). This
finding implies that the interaction with exposed individuals plays a more significant role in the
spread of the influenza virus than the interaction with infected individuals.
There could be several reasons for this. One possible explanation is that exposed individuals may
be more likely to transmit the virus to others due to their higher viral load or greater suscepti-
bility to infection. Another possible explanation is that the timing of interactions with exposed
individuals may be more critical for transmission than interactions with infected individuals. If
individuals are more likely to interact with others during the early stages of the disease when they
are exposed but not yet showing symptoms, this could contribute to the higher transmission rate
among exposed individuals.
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Figure 3. The behavior of the model (2) compartments (a) Susceptible and (b) Exposed according to the different
fractional orders σ = 0.95, 0.85, 0.75, 0.65.
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Figure 4. The behavior of the model (2) compartments (a) Infected and (b) Recovered according to the different
fractional orders σ = 0.95, 0.85, 0.75, 0.65.
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Figure 5. The changes in the (a) Exposed E(t) and (b) Infected I(t) populations depending on the contact rates of
virus transmission γ1 and γ2.

8 Conclusion

This manuscript presents a novel approach to modeling influenza A disease dynamics by incorpo-
rating the Caputo-Fabrizio fractional derivatives into the model. By considering distinct contact
rates for exposed and infected individuals, the study explores the fractional derivative concept
and demonstrates its effectiveness in predicting disease dynamics. The reproduction number of
the influenza model was obtained and examined to show the effectiveness of different contact
rates. In simulations, the γ1 contact rate with exposed individuals played a more active role in
disease spread. It can be thought that the reason for this was still at the beginning of the outbreak.
Because, during the early stages of an outbreak, the contact rate with exposed individuals may be
more important, as these individuals have not yet developed symptoms or been diagnosed with
the disease, and therefore may not be aware that they are contagious. This makes them potentially
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more dangerous to the population, as they may be spreading the disease unknowingly. Modeling
the contact rate with exposed individuals can help to identify the potential spread of the disease
before it is detected by traditional disease surveillance methods. The numerical simulations
conducted in this study validate the proposed approach and suggest that the Caputo-Fabrizio
fractional derivative can provide valuable insights into the mechanisms underlying influenza A
disease. The findings of this study have important implications for improving the accuracy of
disease models and developing more effective strategies for controlling the spread of influenza
A. In future work, the model will be expanded to consider different incidence rates and further
investigations will be conducted to examine the spread of Influenza A disease from different
perspectives.
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