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Abstract
The purpose of this paper is to find approximate solutions to the fractional telegraph differential equation (FTDE) using
Laplace transform collocation method (LTCM). The equation is defined by Caputo fractional derivative. A new form of the
trial function from the original equation is presented and unknown coefficients in the trial function are computed by using
LTCM. Two different initial-boundary value problems are considered as the test problems and approximate solutions are
compared with analytical solutions. Numerical results are presented by graphs and tables. From the obtained results, we
observe that the method is accurate, effective, and useful.
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1 Introduction

Differential equations are a powerful tool for modeling, analyzing, and considering many physical and engineering problems
and are an important branch of applied mathematics. In particular, they occur in network design, fluid dynamics, wave motion,
telecommunications, electromagnetic, wave distribution, and electronic dynamics (see [1], [2] and the references therein). They
are used not only in engineering and physical systems, but also in economics, risk theory, and many other social sciences. On the
other hand, telegraph equation, a special kind of hyperbolic equations, is a partial differential equation that frequently appears
in electrical engineering. In particular, power transmission lines are defined and designed using telegraph equations [3], [4], [5].
Many different problems in electric, electronics and communication engineering can be modeled by telegraph equations (see [4],
[6] and the references therein). Mathematical modelling of problems in communication systems and transmission lines and their
solvability (analytic or most of the time approximate) have great importance in today’s world in which technology and communi-
cation tools regarding them have developed and spread with and increasing velocity. Depending on whether the terminations are
short or open circuits and whether they are fed by current or voltage sources, there are many forms of this equation, including
local or nonlocal boundary conditions.
Many of physical systems exhibit intrinsic behavior of fractional order. Therefore, fractional calculus provides more accurate
models for such systems than classical calculus [7], [8], [9], [10], [11]. A significant advantage of fractional modeling is seen in
systems where inheritance and memory behavior play a role, since the fractional derivative also accounts for the past. Another
advantage arises in the analysis of porous and/or self-similar structures, where the theory of fractals plays a role. A great number
of papers has been studied on the numerical solution methods of different types of telegraph partial differential equations. Finite
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difference methods [1], [4], [12], [13], [14], [15] are used mostly in the literature. Less frequently, there variation methods using
differential quadrature algorithm [16], Radial basis function [17], Chebyshev cardinal function [18], interpolation scaling functions
[19], Chebyshev Tau method [20], Galerkin method [21].
In 2014, weighted residuals method was applied to numerical solutions of hyperbolic telegraph equations [22]. Then, LTCM was
firstly implemented for the same equation in [23] in 2017 and the results were compared by weighted residuals method. From the
numerical results published in the literature, it was observed that LTCM method is more convenient and effective comparing to
weighted residuals method. In [6], LTCM was successfully applied to some nonlinear fractional differential equations.
This paper examines numerical solutions of the following fractional differential equation:



∂2αy(t,x)
∂t2α + ∂αy(t,x)

∂tα + y(t, x) = ∂2αy(t,x)
∂x2α + f(t, x),

where x ∈ (0, L), t ∈ (0, T), α ∈ (0, 1],
y(0, x) = φ(x), yt(0, x) = ψ(x), where x ∈ [0, L],
y(t, 0) = y(t, L) = 0, where t ∈ [0, T].

(1)

Here, φ, ψ, f and y are known and unknown continuous functions, respectively. The term C0Dαt y(t, x) = ∂αy(t,x)
∂tα is Caputo fractional

derivative. If α = 1, then, the main equation in (1) is called a telegraph partial differential equation. LTCM method is used for
finding numerical solutions of problem (1). Approximate solutions are compared to the exact solution found by LT method. Then,
numerical solutions are shown by both graph and table and errors in numerical solutions are analysed.

2 LTCM for fractional-order telegraph equation

To clarify the essential mathematical details of LTCM, we consider a FTDE using a similar method in [6].
Taking the LT of problem (1), we get

s2αy(s, x) – s2α–1y(0, x) – s2α–2yt(0, x) = –L
[
∂αy(t, x)
∂tα

]
+ L
[
∂2αy(t, x)
∂x2α

]
– L

[
y(t, x)] + L

[
f(t, x)] . (2)

After simple algebraic simplification and using initial conditions in (2), we have

y(s, x) = 1
s2α

{
s2α–1φ(x) + s2α–2ψ(x) – L

[
∂αy(t, x)
∂tα

]
+ L
[
∂2αy(t, x)
∂x2α

]
– L

[
y(t, x)] + L

[
f(t, x)]} . (3)

The function y(t, x) and its derivative in (3) are replaced with a trial function of the form

y = y0 + n∑
j=1

cjyj. (4)

In the above equation, cj is the constant coefficient and it is determined to satisfy initial conditions given in (1). Then, y(s, x) is
found as follows:

y(s, x) = 1
s2α

s2α–1
y0(0, x) + n∑

j=1
cjyj(0, x)

 + ∂

∂t

s2α–2
y0(0, x) + n∑

j=1
cjyj(0, x)

 (5)

–L

 ∂α
∂tα

y0(t, x) + n∑
j=1

cjyj(t, x)
 + L

 ∂2α
∂x2α

y0(t, x) + n∑
j=1

cjyj(t, x)
 – L

[
y(t, x)] + L

[
f(t, x)]}.

Taking the inverse LT of Eq. (5), we get

ynew(t, x) = L–1
 1

s2α
s2α–1

y0(0, x) + n∑
j=1

cjyj(0, x)


+ ∂
∂t

s2α–2y0(0, x) + n∑
j=1

cjyj(0, x)
 – L

 ∂α
∂tα

y0(t, x) + n∑
j=1

cjyj(t, x)
 (6)

+L

 ∂2α
∂x2α

y0(t, x) + n∑
j=1

cjyj(t, x)
 – L

y0(t, x) + n∑
j=1

cjyj(t, x)
 + L

[
f(t, x)] ]}.

Substituting Eq. (6) into Eq. (1), we obtain new collocating at points x = xk as follows:
∂2αynew(t, xk)

∂t2α + ∂αynew(t, xk)
∂tα + y(t, x) – ∂2αynew(t, xk)

∂x2α = f(t, xk), where xk = L – 0
n + 1 , k = 1, 2, · · · , n. (7)
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Then, we can define the residual function by the following formula
Rn(t, x) = L[ynew(t, x)] – f(t, x), (8)

where yn(t, x) and y(t, x) demonstrate approximate and exact solutions, respectively and

L[yn(t, x)] = ∂2αynew(t, x)
∂t2α + y(t, x) + ∂αynew(t, x)

∂tα – ∂2αynew(t, x)
∂x2α . (9)

From the above formula, we can write
∂2αynew(t, x)

∂t2α + ∂αynew(t, x)
∂tα + y(t, x) – ∂2αynew(t, x)

∂x2α = f(t, x) + Rn(t, x). (10)

3 Numerical implementations

For the application of LTCM, we consider two different test problems in this section and compare approximate solutions with exact
solutions.

Example 1 As the first example, consider the following initial-boundary value problem for FTDE



∂2αy(t,x)
∂t2α + ∂αy(t,x)

∂tα + y(t, x) – ∂2αy(t,x)
∂x2α

= 6 [ t3–2α
Γ(4–2α) + t3–α

Γ(4–α)
]

x3 + t3
[

x2 – x3 + 6 x3–2α
Γ(4–2α) – 2t3 x2–2α

Γ(3–2α)
] ,

where x, t ∈ (0, 1), α ∈ (0, 1],
y(0, x) = yt(0, x) = 0, where x ∈ [0, 1],
y(t, 0) = y(t, 1) = 0, where t ∈ [0, 1].

(11)

First, we calculate (11) by LTCM.

From the formula of the trial function (Eq. (4)), approximate solution can be written as:

yapp(t, x) = c1x2(x – 1)t3 + c2x(x – 1)2t3. (12)
Taking the LT of the main equation of (11) and using Eq. (5), we get

s2αy(s, x) – s2α–1y(0, x) – s2α–2yt(0, x) = –L
[
∂αy(t, x)
∂tα

]
– L

[
y(t, x)] + L

[
∂2αy(t, x)
∂x2α

]

+L
{

6
[

t3–2α
Γ(4 – 2α) + t3–α

Γ(4 – α)
]

x3 + t3(x2 – x3) + 6x3–2α
Γ(4 – 2α) – 2x2–2α

Γ(3 – 2α)
}

. (13)

Then, using zero initial conditions, the above formula can be simplified and written as:

y(s, x) = 1
s2α

{
–L
[
∂αy(t, x)
∂tα

]
– L

[
y(t, x)] + L

[
∂2αy(t, x)
∂x2α

]

+L
[[ 6t3–2α
Γ(4 – 2α) + 6t3–α

Γ(4 – α)
]

x3 + t3
(

x2 – x3) + 6x3–2α
Γ(4 – 2α) – 2x2–2α

Γ(3 – 2α)
]}

. (14)

From the formulas (12) and (14), we have

y(s, x) = 1
s2α L

{[
–6(x3 – x2)t3–α

Γ(4 – α) +
(

–x3 + x2 + 6x3–2α
Γ(4 – 2α) – 2x2–2α

Γ(3 – 2α)
)

t3
]

c1

–6
[

x(x – 1)2t3–α
Γ(4 – α) +

(
–x(x – 1)2 + 6x3–2α

Γ(4 – 2α) – 4x2–2α
Γ(3 – 2α) + x1–2α

Γ(2 – 2α)
)

t3
]

c2 (15)

+ 6
(

t3–2α
Γ(4 – 2α) + t3–α

Γ(4 – α)
)

x3 + t3(x2 – x3) + 6x3–2α
Γ(4 – 2α) – 2x2–2α

Γ(3 – 2α)
}

.

From the formula (15), y(s, x) is found as follows:

y(s, x) =
–6(x3 – x2)

s4+α + 6
s4+2α

[
–(x3 – x2) + 6x3–α

Γ(4 – α) – 2x2–α
Γ(3 – α)

] c1 (16)
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+
–6(x3 – 2x2 + x

)
s4+α + 6

s4+2α
[
–x3 + 2x2 – x + 6x3–2α

Γ(4 – 2α) – 4x2–2α
Γ(3 – 2α) + x1–2α

Γ(2 – 2α)
] c2

+
( 6

s4+α + 6
s4
)

x3 + 6
s4+2α

[
x2 – x3 + 6x3–2α

Γ(4 – 2α) – 2x2–2α
Γ(3 – 2α)

]
.

Taking the inverse LT of (16), we obtain the following trial solution:

ynew(t, x) =
{

–6
[

t3+α
Γ(4 + α) + t3+2α

Γ(4 + 2α)
]

(c1 + c2) + t3 + 6t3+α
Γ(4 + α) – 6t3+2α

Γ(4 + 2α)
}

x3

+
{

6
[

t3+α
Γ(4 + α) + t3+2α

Γ(4 + 2α)
]

(c1 + 2c2) + t3+2α
Γ(4 + 2α)

}
x2 +

{
–6
[

t3+α
Γ(4 + α) + t3+2α

Γ(4 + 2α)
]

c2
}

x (17)

+6
[

x3–α
Γ(4 – α) – 2 x2–α

Γ(3 – α)
]

c1 + 6t3+2α
Γ(4 + 2α)

[ 6x3–2α
Γ(4 – 2α) – 4x2–2α

Γ(3 – 2α) + x1–2α
Γ(2 – 2α)

]
c2

+ 6t3+2α
Γ(4 + 2α)

[
x3–2α

Γ(4 – 2α) – 2x2–2α
Γ(3 – 2α)

]
.

Substituting (17) into Eq. (11), we have the following residual formula:

R(t, x, c1, c2) = ∂2αynew(t, x)
∂t2α + ∂αynew(t, x)

∂tα + y(t, x) – ∂2αynew(t, x)
∂x2α

–6
[

t3–2α
Γ(4 – 2α) + t3–α

Γ(4 – α)
]

x3 – t3
[

x2 – x3 + 6x3–2α
Γ(4 – 2α) – 2x2–2α

Γ(3 – 2α)
]

. (18)

Taking the derivatives of Eq. (17) with respect to x and t, and writing in (18), we obtain

R(t, x, c1, c2) = (Ax3 – Ax2 + Bx3 – Bx2 + C + D)c1 +
(

Ax3 – 2Ax2 + Ax + Bx3 – 2Bx2 + Bx + E + F + C + G – G
4x + R

)
c2

+K + L + M + N + S = 0, (19)
where

A = –t3 – 6
Γ(4 – α) t3–α, B = –t3 – 6

Γ(4 + α) t3+α,

C = 36
[ 1
Γ(4 + α) t3+α + 1

Γ(4 + 2α) t3+2α] 1
Γ(4 – 2α) x3–2α, D = – 6

Γ(4 – 3α) x3–3α – 2
Γ(3 – 2α) x2–2α,

E = t3
[ 6
Γ(4 – 3α) x3–3α – 4

Γ(3 – 2α) x2–2α + 1
Γ(2 – 2α) x1–2α] ,

F = 6
Γ(4 + α) t3+α [ 6

Γ(4 – 2α) x3–2α – 4
Γ(3 – 2α) x2–2α + 1

Γ(2 – 2α) x1–2α] ,

G = –24
[ 1
Γ(4 + α) t3+α + 1

Γ(4 + 2α) t3+2α] 1
Γ(3 – 2α) x2–2α,

R = – 6
Γ(4 + 2α) t3+2α [ 6

Γ(4 – 4α) x3–4α – 4
Γ(3 – 4α) x2–4α + 1

Γ(2 – 4α) x1–4α] ,

K = x3 [t3 + 12
Γ(4 – 2α) t3–2α + 18

Γ(4 – α) t3–α – 6
Γ(4 + α) t3+α] ,

L = x2 [ 6
Γ(4 + α) t3+α – 6

Γ(4 – α) t3–α – 6
Γ(4 – 2α) t3–2α] , M = – 6

Γ(3 – 2α) x2–2αt3,

N = 6t3+α
Γ(4 + α)

[
– 2
Γ(3 – 2α) x2–2α – 30

Γ(4 – 2α) x3–2α] ,
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S = 1
Γ(4 + 2α) t3+2α [ 36

Γ(4 – 2α) x3–2α – 12
Γ(3 – 2α) x2–2α + 12

Γ(3 – 4α) x2–4α – 36
Γ(4 – 4α) x3–4α] .

Then, from (19), we obtain

c1 = – K + L + M
Ax3 – Ax2 + Bx3 – Bx2 + C + D ,

c2 = N + S
Ax3 – 2Ax2 + Ax + Bx3 – 2Bx2 + Bx + E + F + C + G – G4x + R

.

Example 2 As the second example, we consider the following initial-boundary value problem for FTDE


∂2αy(t,x)
∂t2α + 6∂αy(t,x)

∂tα + 2y(t, x) – ∂2αy(t,x)
∂x2α = [– t1–2α

Γ(2–2α) – 6 t1–α

Γ(2–α) + 2e–t
] sin x – e–t x1–2α

Γ(2–2α) ,
where x ∈ (0,π), t ∈ (0, 1), α ∈ (0, 1],
y(0, x) = sin x, yt(0, x) = – sin x, where x ∈ [0,π],
y(t, 0) = y(t,π) = 0, where t ∈ [0, 1].

(20)

By following the similar manner of the previous example, we now calculate (20) by LTCM.

From Eq. (4), approximate solution can be written as:

yapp(t, x) = (1 – t) sin x + c1x2(x – π)t2 + c2x(x – π)2t2. (21)
Taking the LT of Eq. (20) and using the formula (5), we obtain

s2αy(s, x) – s2α–1y(0, x) – s2α–2yt(0, x) = –6L
[
∂αy(t, x)
∂tα

]
– 2L

[
y(t, x)] + L

[
∂2αy(t, x)
∂x2α

]

+L
{[

– t1–2α
Γ(2 – 2α) – 6 t1–α

Γ(2 – α) + 2e–t
]

sin x – e–t x1–2α
Γ(2 – 2α)

}
. (22)

Using initial condition of (20), y(s, x) is obtained as:

y(s, x) =
( 1

s – 1
s2
)

sin x + 1
s2α

{
–6L

[
∂αy(t, x)
∂tα

]
– 2L

[
y(t, x)] + L

[
∂2αy(t, x)
∂x2α

]

+L
{[

– t1–2α
Γ(2 – 2α) – 6 t1–α

Γ(2 – α) + 2e–t
]

sin x – e–t x1–2α
Γ(2 – 2α)

}}
. (23)

From the formulas (20) and (23), we have

y(s, x) =
[ 1

s – 2
s2 – 2

s2α+1 + 2
s2+2α + 2

s2α(s + 1)
]

sin x

+
{(

– 12
s3+α – 4

s3+2α
)

x2 (x – π) + 2
s3+2α

[ 6x3–2α
Γ(4 – 2α) – 2πx2–2α

Γ(3 – 2α)
]}

c1

+
{(

– 12
s3+α – 4

s3+α
)

x2 (x – π) + 2
s3+2α

[ 6x3–2α
Γ(4 – 2α) – 4πx2–2α

Γ(3 – 2α) + π2x1–2α
Γ(2 – 2α)

]}
c2 (24)

+
( 1

s2α+1 – 1
s2α+2 – 1

s2α(s + 1)
) x1–2α
Γ(2 – 2α) .

Taking the inverse LT of (24), the following new trial solution is obtained:

ynew(t, x) =
[
– 12t2+α
Γ(3 + α) – 4t2+2α

Γ(3 + 2α)
]

(c1 + c2)x3 +
[
π

( 12t2+α
Γ(3 + α) + 4t2+2α

Γ(3 + 2α)
)

(c1 + 2c2)
]

x2

+
[
–π2

( 12t2+α
Γ(3 + α) + 4t2+2α

Γ(3 + 2α)
)

c2
]

x + t2+2α
Γ(3 + 2α)

[ 12x3–2α
Γ(4 – 2α) – 4πx2–2α

Γ(3 – 2α)
]

c1

+
[
1 – 2t – 2t2α

Γ(1 + 2α) + 2t1+2α
Γ(2 + 2α) + 2e–tt2α–1

Γ(2α)
]

sin x

+ t2+2α
Γ(3 + 2α)

[ 12x3–2α
Γ(4 – 2α) – 8πx2–2α

Γ(3 – 2α) + 2π2x1–2α
Γ(2 – 2α)

]
c2 (25)
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+ x1–2α
Γ(2 – 2α)

[
t2α

Γ(1 + 2α) – t1+2α
Γ(2 + 2α) – e–tt2α–1

Γ(2α)
]

.

Substituting (25) into Eq. (20), we have the following residual formula:

R(t, x, c1, c2) = ∂2αy(t, x)
∂t2α + 6∂αy(t, x)

∂tα + 2y(t, x) – ∂2αy(t, x)
∂x2α (26)

–
[
– t1–2α
Γ(2 – 2α) – 6t1–α

Γ(2 – α) + 2e–t
]

sin x + e–tx1–2α
Γ(2 – 2α) .

Taking the derivatives of Eq. (25) with respect to x and t, and writing in Eq. (26), we obtain the formula of R(t, x, c1, c2) as

R(t, x, c1, c2) =
[
–9ax3 + 9aπx2 + 6ax3–2α

Γ(4 – 2α) – 2aπx2–2α
Γ(3 – 2α) – dt2+2α

Γ(3 + 2α) + bk
]

c1

+
[
–9ax3 + 18aπx2 + 4aπx2–2α

Γ(3 – 2α) + 6ax3–2α
Γ(4 – 2α) – 4aπx2–2α

Γ(3 – 2α) – 9aπ2x + aπ2x1–2α
Γ(2 – 2α) + ck – et2+2α

Γ(3 + 2α)
]

c2 (27)

+f sin x + hx1–2α
Γ(2 – 2α) – gx1–4α

Γ(2 – 4α) = 0,

where,

a = –12(t2–α – 4t2
)

Γ(3 – α) , b = 12x3–2α
Γ(4 – 2α) – 4πx2–2α

Γ(3 – 2α) , c = 12x3–2α
Γ(4 – 2α) – 8πx2–2α

Γ(3 – 2α) + 2π2x1–2α
Γ(2 – 2α) ,

d = 12x3–4α
Γ(4 – 4α) – 4πx2–4α

Γ(3 – 4α) , e = 12x3–4α
Γ(4 – 4α) – 8πx2–4α

Γ(3 – 4α) + 2π2x1–4α
Γ(2 – 4α) ,

f = –2t – 8t1–α
Γ(2 – α) – 12tα

Γ(α + 1) – t1–2αt2α–1
Γ(2 – 2α)Γ(2α) + 12tα+1

Γ(α + 2) – 12t1–αt2α–1
Γ(2 – α)Γ(2α) – 4t2α

Γ(2α + 1) + 4t2α+1
Γ(2α + 2) + e–t

[2
t + 12tα–1

Γ(α) + 4t2α–1
Γ(2α) – 2

]
,

h = t + t1–2αt2α–1
Γ(2 – 2α)Γ(2α) + 6tα

Γ(α + 1) – 6tα+1
Γ(α + 2) + 6t1–αt2α–1

Γ(2 – α)Γ(2α) + 4t2α
Γ(2α + 1) – 4t2α+1

Γ(2α + 2) + e–t
[
–1

t – 6tα–1
Γ(α) – 4t2α–1

Γ(2α) – 2
]

,

g = t2α
Γ(2α + 1) – t2α+1

Γ(2α + 2) – e–tt2α–1
Γ(2α) , k = t2 + 6t2+α

Γ(3 + α) + 2t2+2α
Γ2α + 3) .

From (27), we obtain

c1 = –
[

f sin x + hx1–2α
Γ(2 – 2α)

][
–9ax3 + 9aπx2 – 2aπx2–2α

Γ(3 – 2α) + 6ax3–2α
Γ(4 – 2α) + bk – dt2+2α

Γ(3 + 2α)
]–1

,

c2 = gx1–4α
Γ(2 – 4α)

[
–9ax3 + 18aπx2 – 4aπx2–2α

Γ(3 – 2α) + 6ax3–2α
Γ(4 – 2α) + aπ2x1–2α

Γ(2 – 2α) – 9π2ax + ck – et2+2α
Γ(3 + 2α)

]–1
.

4 Error analysis

Errors in numerical solutions are computed by the following error formula
Error = max ∣∣yexact – yapp

∣∣ ,
where yexact(t, x) represents the exact solution and yapp(t, x) represents the approximate solution obtained by using LTCM. Exact
solutions of the first and second examples are t3(x2 – x3) and e–t sin x respectively. Approximate solution for the first example is
c1x2(x – 1)t3 + c2x(x – 1)2t3. For Example 2, it is equal to (1 – t) sin x + c1x2(x – π)t2 + c2x(x – π)2t2.
As seen from the yellow and greenish region of Figs. 1 and 2, when t changes between 0.2 and 0.8, and x approaches to 1 for
α = 0.5, the difference between exact solution and approximate solution increases. For the other values, the difference between
exact and approximate solution is not obvious. Moreover, when t = 0.6 and x = 1, exact solution is almost 3 times greater than
approximate solution. When t changes between 0.2 and 0.8, and x approaches to 1 for 0.99, the difference between exact solution
and approximate solution increases as a similar result for α = 0.5, but when t = 0.6 and x = 1, exact solution is almost 10 times
greater than approximate solution as shown in Figs. 3 and 4. For the other values, the difference between exact and approximate
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Figure 1. Approximate solution of Example 1 for α = 0.5.
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Figure 2. Exact solution of Example 1 for α = 0.5.
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Figure 3. Approximate solution of Example 1 for α = 0.99.
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Figure 4. Exact solution of Example 1 for α = 0.99.
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Figure 5. Exact solution of Example 2 for α = 1.

solution is not obvious.
For Example 2, when t changes between 0.2 and 0.8, there is a great difference between the exact solution and approximate solution
at the boundary point x = 3 as shown in Figs. 5 and 6. For the other values, the difference between exact and approximate solution
is not obvious. For the better comparison of exact solution and approximate solution, we need to present results by Tables. Errors
in the numerical solutions for different values of x, t,α for Examples 1 and 2 are presented in Tables 1 and 2, respectively.

Table 1. Error values for Example 1
x t α Errors
0.01 0.01 0.01 9.9000× 10–7
0.01 0.01 0.5 9.9000× 10–7
0.01 0.01 0.99 1.7161× 10–10
0.1 0.591 0.01 0.00125
0.1 0.591 0.5 0.00183
0.1 0.591 0.99 8.1658× 10–5
0.248 0.9 0.01 0.03256
0.248 0.9 0.5 9.1222× 10–6
0.248 0.9 0.99 0.10107

When x, t = 0.01 and α changes from 0.01 to 0.5 for Example 1 in Table 1, there is no difference in the error but when α changes
from 0.5 to 0.99, the error in the numerical solution decreases about 1000 times. When x = 0.1, t = 0.591 and α changes from 0.01
to 0.5, there is not much difference in the error but when α changes from 0.5 to 0.99, the error in the numerical solution decreases
about 22 times. Lastly, when x = 0.248, t = 0.9 and α changes from 0.01 to 0.5, the error in the numerical solution decreases about
3570 times, but α changes from 0.01 to 0.99, the error increases about 7 times.
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Figure 6. Approximate solution of Example 2 for α = 1.

Table 2. Error values for Example 2
x t α Errors
0 0.01 1 0
11/7 0.01 1 0.017
22/7 0.01 1 2.7494× 10–7
π 0.01 1 6.1029× 10–21
0.1 0.1 0.01 0.0043
0.1 0.1 0.5 0.0062
0.01 0.1 0.01 4.4652× 10–4
0.01 0.1 0.5 8.6324× 10–5

When t = 0.01 and α = 1, x changes from 0 to 11/7 for Example 2, the error increases to 0.017 from 0, but when x changes from 11/7
to π, the error decreases to 6.1029× 10–21 from 0.017. When x, t = 0.1 and α changes from 0.01 to 0.5, the error increases about 1.5
times, but when x = 0.01, t = 0.1 and α changes from 0.01 to 0.5, the error decreases about 5 times.

5 Conclusion

A combination of LTCM to develop approximate methods for fractional order telegraph partial differential equation has been
adopted in this paper. The exact solution has been compared with approximate solutions in two different test problems. Error
analysis has been done and it has been seen that the results were effective. However, due to the solution method for the approximate
solution, when x → 1, the solution goes to zero, causing the simulations to look far from each other. This deficiency due to the
comparison of the simulations has been eliminated by giving the exact and approximate solutions in Table 1. As a future problem
for the further developments of the present work, higher dimensional FTDEs can be studied. Moreover, this method can be also
applied to nonlinear FTDEs by developing an algorithm due to the difficulty of processing.
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