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Abstract

In this paper, a metapopulation model has been developed and analysed to describe the
transmission dynamics of cholera between two communities linked by migration, in the
presence of an imperfect vaccine and a varying media awareness impact. Stability analysis
shows that the disease-free equilibrium is both locally and globally asymptotically stable
when the vaccine reproduction number is less than unity. The endemic equilibria have also
been shown to be locally asymptotically stable when the vaccine reproduction number is
greater than unity. The simulation results show that with an imperfect vaccine and efficient
media awareness, cholera transmission is reduced. The transmission rates have also been
shown to be nonidentical in the two communities. It is therefore advisable, that health
practitioners embrace the use of both vaccination and media awareness when designing and
implementing community-specific cholera intervention strategies.

1. Introduction

Cholera is a diarrheal infection caused by ingestion of food or water contaminated with a gram-negative bacterium known as Vibrio cholerae.
Humans and the aquatic environments are its main reservoirs. Majority of the infected individuals do not manifest any symptom [1]. Most
of the cholera cases are presumptively diagnosed based on clinical suspicion in patients who present with severe acute watery diarrhea
due to its high morbidity. If left untreated, cholera can kill within hours [1]. Its treatment depends on the severity of the illness and level
of dehydration. Oral and intravenous rehydration are used to replace the lost fluids. Antibiotics are used in patients with severe volume
depletion. An estimated 1.3m to 4m cholera cases with 21000 to 143000 mortalities occur annually [2, 3].
World Health Organization (WHO) recommends oral cholera vaccines as part of the integrated control program in areas at risk of cholera
outbreak [4]. Two internationally-licensed oral cholera vaccines are available. Shanchol and Dukarol oral cholera vaccines have efficacies
between 53% - 67% [5] and about 78% [6] respectively with Dukarol not being effective against V. cholerae 0139.
A multifaceted approach is key to control of cholera and to reduce related deaths. Actions targeting environmental conditions include the
implementation of adapted long-term sustainable water sanitation and hygiene solutions to ensure use of safe water, basic sanitation and
good hygiene practices to populations most at risk of cholera.
Cholera is more common in developing countries especially in Africa, parts of Asia and South and Central America where there is inadequate
access to safe drinking water and poor sanitation facilities. In the 21st C, Sub-Saharan Africa bears the brunt of global cholera [7] where the
countries face the dual challenges of improving both cholera treatment and access to basic health care, prevention and improved water and
sanitation systems.
In Kenya, cholera is endemic in many parts of the country with sporadic outbreaks especially during rainy seasons and in informal settlements.
Currently there has been cholera outbreaks in Wajir, Mandera, Machakos, Garissa, Migori and Kisumu counties. Evidently, socio-economic
differences between regions would determine the efficacy of some strategies especially those targeting sanitation and hygiene.
A number of mathematical models have been developed to analyze the disease transmission dynamics.The dynamics and optimal control
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strategies for cholera epidemics was developed and analysed in [8] under the interventions; vaccination, treatment and education awareness.
The analysis indicates that vaccination and education campaigns should be applied from the start of an outbreak followed by treatment.
However, the effects of vaccination and education campaigns could be affected by migration of especially the asymptomatically infected
individuals.
The impact of media coverage on the spread of cholera was investigated in [9]. The numerical analysis shows that the disease dies out
faster in the presence of media coverage. It’s noteworthy that a combination of preventive and therapeutic strategies is likely to lead to
a better outcome. A metapopulation model for cholera dynamics between two communities, in the presence of controls was developed
and analysed in [10]. A model investigating the influence of cultural practices on the dynamics of cholera is presented in [3]. Modeling
optimal intervention strategies for cholera is presented in [11]. A cost-effective balance of multiple intervention methods is compared for two
endemic populations. The impact of spatial arrangements on epidemic disease dynamics and intervention strategies for cholera is investigated
in [12]. The effects of vaccination, water chlorination and proper hygiene is investigated. The analysis shows that the infection may be
eight times less devastating in the presence of controls. This model assumes uniform efficacy of the control strategies in the communities
involved, and that vaccinated individuals are fully protected against the infection. These assumptions may not be entirely realistic since
cholera vaccines are not 100% efficacious and the socio-economic differences between communities connected via migration is likely to
determine the efficacy of control strategies. This work is largely part of the thesis [13].

1.1. Mathematical approaches in analyzing cholera transmission dynamics

A stochastic mathematical model with the rate of contact with the environment and the untreated individuals rate of recovery being subjected
to some random interference was developed in [14]. The model investigates the behavior of solutions of a stochastic cholera model near the
disease-free equilibrium and its corresponding deterministic endemic equilibrium. A mathematical model based on the general form of the
Caputo fractional derivative is investigated for a real-world cholera outbreak in [2].
Mehmet et al [15] incorporated the random effects to the parameters of a deterministic model for the transmission dynamics of cholera to
study the change of findings for Laplacian and Triangular distributions. Using Fuzzy set theory, [16] developed a cholera model in which all
of the parameters were fuzzy numbers. The model study reveals that the imprecise parameter values have had a significant impact on both
human and bacterial populations. In this paper, the dynamics of cholera transmission in two communities connected via migration when
vaccination and media awareness are at different efficacy levels is explored.

2. Model Formulation and Description

To develop the metapopulation model, the general population considered is divided into two main communities and each community divided
into four compartments with reference to vaccination of the susceptible individuals, impact of media awareness, Vibrios transmission and the
disease states of the individuals. This model assumes that each community is homogeneous in the sense that there are no socio-economic
barriers to interaction and a special heterogeneity which is accounted for by the immigrations. The compartments involve individuals
who are susceptible (Si), the susceptible individuals who have been vaccinated against cholera (Vi), those infected symptomatically and
asymptomatically (Ii) and those individuals who have recovered (Ri) from the infection. The total population Ni, (i = 1,2), of this model is
given by;

Ni = Si +Vi + Ii +Ri.

This model accounts for movement of asymptomatically infected individuals from one community to another. This group plays a vital role in
metapopulation transmission modeling of cholera since they contribute to the disease transmission for a relatively long time. The role played
by the asymptomatically infected individuals range from person to person transmission as well as shedding of the pathogens into the aquatic
reservoirs. The symptomatically infected individuals are assumed to be quarantined in hospitals for treatment as soon as they are identified.
The recruitment of the susceptible individuals into the communities are at the rates Λ1 and Λ2 for the first and the second communities
respectively. This intrinsic difference rate is mainly the difference of births, deaths and immigrations at the time of modeling. Vaccination of
the susceptible individuals is at the rates ω1 and ω2 for the first and second communities respectively, with 0 < σi < 1, for i = 1,2 denoting
the vaccine efficacy. This implies that when σ is close to one, the vaccine is very effective and the disease transmission is low and when σ is
close to zero, the vaccine is not effective and the disease transmission is high. Considering the relatively long vaccine protection period [1],
this model excludes vaccinated individuals whose immunity has waned off to become susceptible.
The concentration of Vibrios in the environment is denoted by B1 and B2 for the first and second communities respectively. The susceptible
individuals acquire cholera infection through ingestion of environmental Vibrios from contaminated water reservoirs at the rates λei and
through human-to-human transmission after ingestion of hyperinfectious Vibrios at the rates λhi for i = 1,2, where;

λei = (1−ρi)
βeiBi

k+Bi
, and λhi = (1−ρi)

βhiIi

m+ Ii
.

The susceptible population is infected following ingestion of Vibrios from aquatic reservoirs at the rate βei and (1−ρi)βei, is the reduced rate
of ingestion of Vibrios from the environment due to media awareness, where 0 < ρi < 1 measures the efficacy of media awareness. The half
saturation constant of the pathogen population, enough to make an individual to contract the infection is denoted by k > 0. The saturation
incidence function βeiBi

k+Bi
ensures boundedness of the incidence rate of infection from the environment and indicates that the incidence rate is

gradual rather than linear. βhi is the effective contact rate for human-to-human transmission. The minimum contact rate with an infected
person that can cause about 50% chance of contracting the infection is denoted by m. Ii

m+Ii
is a continuous bounded function which takes

into account the disease saturation.
The natural death rates in the first and second communities are denoted by µ1 and µ2 respectively. The infected individuals recover from the
infection at the rates γ1 and γ2 and suffer disease induced mortality at the rates δ1 and δ2 for the first and second communities respectively.
The recovered individuals are assumed to develop some immunity after recovery, and cannot be infected again in one outbreak [17]. The
movement of asymptomatically infected individuals across the communities is at the rates a1 and a2 for the first and second communities
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respectively. Infected individuals shed bacteria into the environment at the rates ξ1 and ξ2 in the first and second communities respectively.
The decay rates of the pathogens is denoted by µ1p and µ2p while the multiplication rates of pathogens in the aquatic reservoirs is denoted
by g1 and g2 in the first and second communities respectively.
The above description is captured in the flow chart diagram in Figure 2.1. A mathematical equivalent is given in terms of system of ordinary
differential equations (2.1).

Figure 2.1: The Flow Diagram for the Metapopulation Model.

dS1

dt
= Λ1−ω1S1− [λe1 +λh1]S1−µ1S1

dV1

dt
= ω1S1− (1−σ1)[λe1 +λh1]V1−µ1V1

dI1

dt
= [λe1 +λh1]S1 +(1−σ1)[λe1 +λh1]V1 +a2I2−Q1I1

dR1

dt
= γ1I1−µ1R1

dB1

dt
= (1−ρ1)ξ1I1−Q2B1

dS2

dt
= Λ2−ω2S2− [λe2 +λh2]S2−µ2S2

dV2

dt
= ω2S2− (1−σ2)[λe2 +λh2]V2−µ2V2

dI2

dt
= [λe2 +λh2]S2 +(1−σ2)[λe2 +λh2]V2 +a1I1−Q3I2

dR2

dt
= γ2I2−µ2R2

dB2

dt
= (1−ρ2)ξ2I2−Q4B2,

where Q1 = µ1 +δ1 + γ1 +a1, Q2 = µ1p−g1, Q3 = µ2 +δ2 + γ2 +a2, Q4 = µ2p−g2. Q2 and Q4 are positive such that in the presence
of improved hygiene and sanitation and reduced shedding rate of the pathogens by the infected individuals, the bacteria cannot sustain
themselves in the aquatic environment [18]. The equation for the recovered compartment is decoupled in equation (2.1), thus it is enough to
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consider the following reduced system of equations:

dS1

dt
= Λ1−ω1S1− [λe1 +λh1]S1−µ1S1 (2.1)

dV1

dt
= ω1S1− (1−σ1)[λe1 +λh1]V1−µ1V1

dI1

dt
= [λe1 +λh1]S1 +(1−σ1)[λe1 +λh1]V1 +a2I2−Q1I1

dB1

dt
= (1−ρ1)ξ1I1−Q2B1

dS2

dt
= Λ2−ω2S2− [λe2 +λh2]S2−µ2S2

dV2

dt
= ω2S2− (1−σ2)[λe2 +λh2]V2−µ2V2

dI2

dt
= [λe2 +λh2]S2 +(1−σ2)[λe2 +λh2]V2 +a1I1−Q3I2

dB2

dt
= (1−ρ2)ξ2I2−Q4B2.

3. Model Analysis and Discussion

3.1. Positivity and boundedness of solutions

3.1.1. Positivity of solutions

The well posedness of the model is established by showing that its solutions are positive and bounded. An assumption is made that the initial
conditions of system (2.1) are non-negative since the model monitors populations. Therefore, Si(0)> 0,Vi(0)≥ 0, Ii(0)≥ 0,Bi(0)≥ 0 for
i = 1,2. The total population for each community satisfies dNi(t)

dt = Λi−µiNi−δi and the total population size for the two communities is
N(t) = ∑

2
i=1(Ni(t)).

Theorem 3.1. Let the initial conditions be Si(0)> 0,Vi(0)≥ 0, Ii(0)≥ 0,Bi(0)≥ 0, then the solution set {Si(t),Vi(t), Ii(t),Bi(t)} (i = 1,2)
of the model system (2.1) is positive for all t > 0.

Proof. From the first equation of system (2.1);

dSi

dt
= Λi−ωiSi−λeiSi−λhiSi−µiSi,

implying that
dSi

dt
≥−[ωi +λei +λhi +µi]Si.

Integration yields
Si(t)≥ e−[ωi+λei+λhi+µi]teC

for some constant C. Hence, Si(t)> 0 for all t ≥ 0. Similarly, it can also be shown that the other solutions are non-negative for all t ≥ 0.

3.1.2. Boundedness of the solutions

The model solutions are shown to be bounded in the invariant region Ω where Ω = {(S1,V1, I1,B1,S2,V2, I2,B2) : Ni ≤ Λi
µi
} for i = 1,2.

Theorem 3.2. The solutions of the model system (2.1) are bounded in the feasible region Ω.

Proof. Since the initial conditions for system (2.1) are non-negative, Ω =
⋃2

i=1 Ωi and that each community is a closed community with
respect to the adjacent community, the time derivative of Ni(t) for (i = 1,2) is given by

dNi

dt
= Λi−µi(Si +Vi + Ii +Ri)−δiIi,

and therefore
dNi

dt
+µiNi ≤ Λi.

By solving, we obtain Ni(t)≤ Λi
µi
+ e−µitC for some positive constant C.

Thus Ni(0)≤ Λi
µi
+C and limt→∞ Ni(t)≤ Λi

µi
+C. Hence 0 < Ni(t)≤ Λi

µi
+C (i = 1,2) for all t ≥ 0, which implies that the solutions of system

(2.1) are bounded in the invariant region Ω. Thus the model is mathematically well posed and biologically meaningful in the feasible region
Ω.



24 Journal of Mathematical Sciences and Modelling

3.2. Stability analysis

An equilibrium point is defined as a steady state solution of a model. The stability of model (2.1) is analysed in order determine the impact
of imperfect vaccine and variable media awareness on the epidemiology of cholera between the two communities linked via migration. The
existence of the equilibrium points of model (2.1) with respect to the basic reproduction number is derived using the next generation matrix
approach.

3.2.1. Disease free equilibrium (E0)

The disease free equilibrium (DFE) is a steady state solution of a mode. It is obtained by setting the right hand side of equation (2.1) to zero
and solving with Ii = Bi = 0 (i = 1,2). This yields E0 = (S1,V1,0,0,S2,V2,0,0) ∈ R8

+ which is equal to

E0 =

[
Λ1

µ1 +ω1
,

Λ1ω1

µ1(µ1 +ω1)
,0,0,

Λ2

µ2 +ω2
,

Λ2ω2

µ2(µ2 +ω2)
,0,0

]
(3.1)

Suppose there is no infection in a given population such that there is no infective, the solution of the systems of equations (2.1) corresponding
to this state is the disease free equilibrium given by equation (3.1). This provides a baseline for analyzing the long term dynamics of cholera
infection in the two communities under study.

3.2.2. Basic and vaccine reproduction numbers

Basic reproduction number R0 is the average number of secondary infections caused by a single infected agent during his/her entire infectious
period, in a completely susceptible population. It sets the threshold in the study of a disease both for predicting its outbreak and for evaluating
its control strategies. Theoretically, if R0 < 1, then every infectious individual will cause less than one secondary infection and hence the
disease will die out and when R0 > 1, then every infectious individual will cause more than one secondary infection, hence the disease will
be persistent in the population. A larger value of R0 may indicate the possibility of a major epidemic. The vaccine reproduction number for
model (2.1) is determined using the next generation matrix approach by Driessche et al [19] as:

RV 1 =
(µ1 +η1ω1)(α1βh1Λ1kQ2 +α2

1 βe1Λ1ξ1m)

µ1(µ1 +ω1)kQ1Q2m
(3.2)

and

RV 2 =
(µ2 +η2ω2)(α2βh2Λ2kQ4 +α2

2 βe2Λ2ξ2m)

µ2(µ2 +ω2)kQ3Q4m
,

where RV 1 and RV 2 are the vaccine reproduction numbers for comunity one and two respectively with αi = 1−ρi and ηi = 1−σi, (i = 1,2).
In the absence of the intervention strategies (vaccination and media awareness) and the parameters ωi and ρ1, i = 1,2 are set to zero, then the
basic reproduction numbers for the two communities are determined as:

R01 =
βh1Λ1kQ2 +βe1Λ1ξ1m

µ1kQ1Q2m
(3.3)

and

R02 =
βh2Λ2kQ4 +βe2Λ2ξ2m

µ2kQ3Q4m
,

where R01 and R02 are the basic reproduction numbers for community one and two respectively. This basic reproduction number is used to
analyze the stability of the equilibrium points of model (2.1).

3.2.3. Local stability of the disease free equilibrium

To investigate the local stability of the disease free equilibrium (E0), the method described in [19] is employed to linearize the model system
(2.1).

Theorem 3.3. The disease free equilibrium (E0) is locally asymptotically stable if RVi < 1 (i = 1,2) and unstable otherwise.

Proof. The Jacobian matrix of system (2.1) evaluated at E0 is given by;

J(E0) =



−(ω1 +µ1) 0 − α1βh1Λ1
(µ1+ω1)m

− α1βe1Λ1
(µ1+ω1)k

ω1 −µ1 −η1α1βh1Λ1ω1
µ1(µ1+ω1)m

−η1α1βe1Λ1ω1
µ1(µ1+ω1)k

0 0 (µ1+η1ω1)α1βh1Λ1
µ1(µ1+ω1)m

−Q1
(µ1+η1ω1)α1βe1Λ1

µ1(µ1+ω1)k

0 0 α1ξ1 −Q2.
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An equilibrium point is locally asymptotically stable if its Jacobian matrix has a negative trace and a positive determinant or if all its
eigenvalues have negative real parts [20]. The Jacobian matrix J(E0) has two distinct negative eigenvalues given by −µ1 and −(ω1 +µ1).
The local stability of E0 is studied by examining the trace and determinant of the reduced block matrix J(E∗0 ) defined by;

J(E∗0 ) =

[
(µ1+η1ω1)α1βh1Λ1

µ1(µ1+ω1)m
−Q1

(µ1+η1ω1)α1βe1Λ1
µ1(µ1+ω1)k

α1ξ1 −Q2

]
.

Using the conditions outlined in [9], let Tr be the Trace and Det be the Determinant of the block matrix J(E∗0 ). For the eigenvalues of J(E∗0 )
to be negative, then Det(J(E∗0 ))> 0 and Tr(J(E∗0 ))< 0. The conditions that will make this to hold are thus determined.

For Det(J(E∗0 ))> 0, then;

(µ1 +η1ω1)(α1βh1Λ1kQ2 +α2
1 βe1Λ1ξ1m)

µ1(µ1 +ω1)km
< Q1Q2. (3.4)

Simplifying inequality (3.4) yields;

(µ1 +η1ω1)(α1βh1Λ1kQ2 +α2
1 βe1Λ1ξ1m)

µ1(µ1 +ω1)kQ1Q2m
< 1. (3.5)

Since the LHS of inequality (3.5) equals to RV 1, the determinant of J(E∗0 ) can only be positive if RV 1 < 1.

For Tr(J(E∗0 ))< 0, then;

α1βh1Λ1(µ1 +η1ω1)

µ1(µ1 +ω1)m
−Q1 < 0. (3.6)

Making Q1 the subject of equation (3.2), yields;

Q1 =
(µ1 +η1ω1)(α1βh1Λ1kQ2 +α2

1 βe1Λ1ξ1m)

µ1(µ1 +ω1)kQ2mRV 1
. (3.7)

Substituting equation (3.7) into inequality (3.6) gives;

α1βh1Λ1(µ1 +η1ω1)

µ1(µ1 +ω1)m
−

(µ1 +η1ω1)(α1βh1Λ1kQ2 +α2
1 βe1Λ1ξ1m)

µ1(µ1 +ω1)kQ2mRV 1
< 0. (3.8)

Simplifying inequality (3.8) yields;
φ1α1Λ1

µ1(µ1 +ω1)m

[
βh1

(
1− 1

RV 1

)
− α1βe1ξ1m

kQ2RV 1

]
< 0,

which can only hold if RV 1 < 1, implying that the Tr(J(E∗0 )< 0 if RV 1 < 1. Hence, the disease free equilibrium is locally asymptotically
stable if RV 1 < 1. Similarly, it can also be shown that the disease free equilibrium of the second community is also locally asymptotically
stable when RV 2 < 1.

3.2.4. Global stability of the disease free equilibrium

To investigate the global stability of the disease free equilibrium, Castillo-Chavez theorem [21] is employed. System (2.1) is rewritten in the
form;

dX
dt

= F(X ,Z)

dZ
dt

= G(X ,Z),G(X ,0) = 0, (3.9)

where X = (S1,V1,S2,V2), X ∈ R4 denotes (its components) the uninfected individuals while Z = (I1,B1, I2,B2), Z ∈ R4 denotes (its
components) the infected individuals. E0 = (X∗,0) is the disease free equilibrium of system (3.9). According to [21], the following
conditions (H1) and (H2) must be met to guarantee local asymptotic stability of the system:
(H1) For dX

dt = F(X ,0), X∗ is globally asymptotically stable (g.a.s),
(H2) G(X ,Z) = AZ− Ĝ(X ,Z), Ĝ(X ,Z)≥ 0 for (X ,Z) ∈Ω,
where A = DZG(X∗,0) is a Metzler Matrix (the off diagonal elements are nonnegative) and Ω is the region where the model makes biological
sense. Castillo-Chavez theorem provides that E0 will be globally asymptotically stable if it’s locally asymptotically stable and satisfies (H1)
and (H2).

Theorem 3.4. The disease free equilibrium (E0) is locally asymptotically stable whenever RVi < 1 (i = 1,2).

Proof. Using the above notation, we have

dX
dt

=


dS1
dt = Λ1− (ω1 +µ1)S1

dV1
dt = ω1S1−µ1V1

dS2
dt = Λ2− (ω2 +µ2)S2

dV2
dt = ω2S2−µ2V2
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and solving for S1, V1, S2, V2 yields S1(t) =
Λ1

ω1+µ1
+Ce−(ω1+µ1)t ; V1(t) =

ω1Λ1
µ1(ω1+µ1)

+Ce−(µ1)t , S2 = Λ2
ω2+µ2

+Ce−(ω2+µ2)t and V2(t) =
ω2Λ2

µ2(ω2+µ2)
+Ce−(µ2)t . Therefore limt→∞ X(t) =

[
Λ1

µ1+ω1
, ω1Λ1

µ1(µ1+ω1)
, Λ2

µ2+ω2
, ω1Λ1

µ1(µ1+ω1)

]
= X∗, implying that X∗ is globally asymptotically

stable. Hence, condition (H1) is satisfied.
Now, the matrix A is determined as:

A =


α1βh1d1

m −Q1
α1βe1d1

k a2 0
α1ξ1 −Q2 0 0

a1 0 α2βh2d2
m −Q3

α2βe2d2
k

0 0 α2ξ2 −Q4


where d1 = S1 +η1V1 and d2 = S2 +η2V2;

AZ =


α1βh1d1I1

m −Q1I1 +
α1βe1d1B1

k +a21I2
α1ξ1I1−Q2B1

a12I1 +
α2βh2d2I2

m −Q3I2 +
α2βe2d2B2

k
α2ξ2I2−Q4B2

 ,

G(X ,Z) =


(α1βe1B1

k+B1
+ α1βh1I1

m+I1
)S1 +η1(

α1βe1B1
k+B1

+ α1βh1I1
m+I1

)V1 +a21I2−Q1I1
α1ξ1I1−Q2B1

(α2βe2B2
k+B2

+ α2βh2I2
m+I2

)S2 +η2(
α2βe2B2

k+B2
+ α2βh2I2

m+I2
)V2 +a12I1−Q3I2

α2ξ2I2−Q4B2

 ,
and

Ĝ(X ,Z) =


α1βh1I2

1 S1
m(m+I1)

+
η1α1βh1I2

1V1
m(m+I1)

+
α1βe1B2

1S1
k(k+B1)

+
η1α1βe1B2

1V1
k(k+B1)

0
α2βh2I2

2 S2
m(m+I2)

+
η2α2βh2I2

2V2
m(m+I2)

+
α2βe2B2

2S2
k(k+B2)

+
η2α2βe2B2

2V2
k(k+B2)

0

 .
Therefore Ĝ(X ,Z) = AZ−G(X ,Z)≥ 0 as all the parameters used are positive and 0 < αi,ηi < 1 for i = 1,2; implying that the condition(H2)
has been met as well. Since E0 is locally asymptotically stable if RVi < 1 (i = 1,2) and the conditions (H1) and (H2) are satisfied, it follows
from Castillo-Chavez theorem that E0 is globally asymptotically stable equilibrium of model (2.1) whenever RVi < 1.

3.2.5. Boundary endemic steady state

The model has boundary endemic equilibrium point when the infection is persistent in one community but is absent in the other. The
boundary endemic equilibrium points are obtained by setting the equations of system (2.1) to zero. Note that at the first boundary endemic
equilibrium point E1 = (S∗1,V

∗
1 , I
∗
1 ,B
∗
1,S2,V2,0,0), the disease is persistent only in the first community and at the second boundary endemic

equilibrium point E2 = (S1,V1,0,0,S∗2,V
∗
2 , I
∗
2 ,B
∗
2), the disease is persistent only in the second community.

Theorem 3.5. The first boundary endemic equilibrium point (E1) exists provided that RV 1 > 1.

Proof. For the existence of the first boundary endemic equilibrium, the equations of system (2.1) at E1 becomes;

0 = Λ1−ω1S1−λe1S1−λh1S1−µ1S1

0 = ω1S1−η1[λe1V1 +λh1V1]−µ1V1

0 = λe1S1 +λh1S1 +η1[λe1V1 +λh1V1]−Q1I1

0 = α1ξ1I1−Q2B1 (3.10)

0 = Λ2−ω2S2−µ2S2

0 = ω2S2−µ2V2.

From the fourth equation of system (3.10), we get;

B∗1 =
α1ξ1I1

Q2
. (3.11)

Substituting equation (3.11) and the limiting values of S1 and V1 into the third equation of system (3.10) and solving yields;

AI∗31 +BI∗21 +CI∗1 = 0, (3.12)

where

A = −α1ξ1µ1τ1Q1

B = φ1(α
2
1 βe1Λ1ξ1 +α

2
1 βh1Λ1ξ1)−µ1τ1Q1(kQ2 +α1ξ1m)

C = φ1(α
2
1 βe1Λ1ξ1m+α1βh1Λ1kQ2)− kQ2mµ1Q1τ1

τ1 = µ1 +ω1

φ1 = µ1 +η1ω1.
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From equation (3.12), I∗1 = 0 is one of the solutions of system (2.1). This corresponds to the disease free equilibrium E0 and the other
solutions when I∗1 6= 0 gives the relationship between the susceptible, the vaccinated and the infected individuals in the first community. Thus

AI∗21 +BI∗1 +C = 0, (3.13)

is now considered. The first boundary endemic equilibrium of the system exists if the roots of equation (3.13) are real and positive. Descartes’
rule of signs is used to check the possible number of real roots of the polynomial. The number of positive real roots of a polynomial is equal
to the number of sign changes in the coefficients of the terms. The coefficients of equation (3.13) are analyzed by first checking the sign of A.
Since all the parameters used are positive, the sign of A is negative. Next the sign of C is checked by considering;

C = φ1(α
2
1 βe1Λ1ξ1m+α1βh1Λ1kQ2)− kQ2mµ1Q1τ1

which may be expressed as;

C = [
φ1(α

2
1 βe1Λ1ξ1m+α1βh1Λ1kQ2)

kQ2mµ1Q1τ1
−1]kQ2mµ1Q1τ1. (3.14)

Substituting equation (3.3) into equation (3.14) yields;

C = [RV 1−1]kQ2mµ1Q1τ1.

Thus C > 0 iff RV 1 > 1. Since A is negative and C is positive, it implies that there is at least one sign change regardless of the sign of B.
Therefore, equation (3.13) has at least one positive real root. Hence, the first boundary endemic equilibrium point E1 exists. Similarly, it can
be shown that the second boundary endemic equilibrium point (E2), also exists when RV 2 > 1.

3.2.6. Local stability of the first boundary endemic steady state (E1)

Cholera is endemic or persistent in the first community if S∗1,V
∗
1 , I
∗
1 ,B
∗
1 > 0 for all t > 0. The local stability of the first boundary endemic

steady state analysis is given in the following theorem,

Theorem 3.6. The first boundary endemic equilibrium of system (2.1) is locally asymptotically stable when RV 1> 1.

Proof. For the first boundary endemic equilibrium point to be stable, then the eigenvalues of it’s Jacobian matrix evaluated at E1, must have
negative real parts. The Jacobian matrix evaluated at E1 is given by;

J(E1) =


− f0 0 − f1 − f2 0 0
ω1 − f3 − f4 − f5 0 0
f6 f7 f8−Q1 f9 0 0
0 0 α1ξ1 −Q2 0 0
0 0 0 0 −(µ2 +ω2) 0
0 0 0 0 ω2 −µ2

 ,

where

f0 = ω1 +µ1 +
α1βe1B1

k+B1
+

α1βh1I1

m+ I1
f1 =

α1βh1Λ1m
(µ1 +ω1)(m+ I1)2

f2 =
α1βe1Λ1k

(µ1 +ω1)(k+B1)2 f3 = µ1 +
η1α1βe1B1

k+B1
+

η1α1βh1I1

m+ I1

f4 =
η1α1βh1Λ1ω1m

µ1(µ1 +ω1)(m+ I1)2 f5 =
η1α1βe1Λ1ω1k

µ1(µ1 +ω1)(k+B1)2

f6 =
α1βe1B1

k+B1
+

α1βh1I1

m+ I1
f7 =

η1α1βe1B1

k+B1
+

η1α1βh1I1

m+ I1

f8 =
α1βh1Λ1mφ1

µ1(µ1 +ω1)(m+ I∗1 )
2 f9 =

α1βe1Λ1φ1k
µ1(µ1 +ω1)(k+B1)2 .

Clearly, the Jacobian matrix J(E1) has two distinct negative eigenvalues given by −(µ2) and −(µ2 +ω2). The local stability is therefore
established by computing its other eigenvalues which involves the solution of the system given by;

∣∣∣∣∣∣∣∣
λ + f0 0 − f1 − f2

ω1 λ + f3 − f4 − f5
f6 f7 λ − ( f8 +Q1) f9
0 0 α1ξ1 λ +Q2

∣∣∣∣∣∣∣∣= 0. (3.15)

The characteristic equation of equation (3.15) is given by;

λ
4 +a0λ

3 +a1λ
2 +a2λ +a3 = 0, (3.16)

where
a0 = f0 + f3 +Q1 +Q2− f8
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a1 = f0 f3 + f1 f6 + f4 f7 + f0Q1 + f3Q1 + f0Q2 + f3Q2 +Q1Q2− f8Q2− f0 f8− f3 f8−α1ξ1 f9

a2 = f1 f3 f6 + f0 f4 f7− f0 f3 f8 + f0 f3Q1 + f0 f3Q2 + f1 f6Q2 + f4 f7Q2− f0 f8Q2− f3 f8Q2 + f0Q1Q2 + f3Q1Q2 +α1ξ1 f2 f6 +α1ξ1 f5 f7−
α1ξ1 f0 f9−α1ξ1 f3 f9 +ω1 f1 f7

a3 = f1 f3 f6Q2 + f0 f4 f7Q2− f0 f3 f8Q2 + f0 f3Q1Q2 +α1ξ1 f2 f3 f6 +α1ξ1 f0 f5 f7−α1ξ1 f0 f3 f9 +ω1 f1 f7Q2 +α1ξ1ω1 f2 f7.

The number of possible negative zeros of equation (3.16) depends on the signs of a0, a1, a2 and a3. This can be analysed using Descartes’
Rule of Signs of the polynomial given by;

P(λ ) = a0λ
3 +a1λ

2 +a2λ +a3 = 0. (3.17)

From this Rule, the number of negative real zeros of P(λ ) is either equal to the variations in sign of P(−λ ) or less than this by an even
number. The possibilities of the negative roots of equation (3.17) is as summarized in Table 1.

Table 3.1: The Zeros of Characteristic equation (29).

Cases a0 a1 a2 a3 RV 1 > 1 Sign Change No. of − Roots
1 + − − + RV 1 > 1 2 2,0
2 + − + + RV 1 > 1 2 2,0
3 − − + − RV 1 > 1 2 2,0
4 + + − − RV 1 > 1 1 0
5 − − + + RV 1 > 1 1 0
6 + + + − RV 1 > 1 1 0
7 − + − + RV 1 > 1 3 3,1
8 − − − − RV 1 > 1 0 0

From the table, the maximum number of variations of sign in P(−λ ) is three, hence, polynomial (3.17) has three negative roots. Thus, J(E1)
has five negative real zeros. Therefore, system (2.1) is locally asymptotically stable if RV 2 < 1. Clearly, the second boundary endemic steady
state is also locally asymptotically stable if RV 1 < 1.

3.2.7. Interior endemic equilibrium point

The model system has a non-trivial equilibrium point in the presence of infection in both communities, known as Interior Endemic equilibrium
point given by E3 = (S∗1,V

∗
1 , I
∗
1 ,B
∗
1,S
∗
2,V
∗
2 , I
∗
2 ,B
∗
2) ∈ R8

+. This is the point when I∗i > 0 and B∗i > 0 for i = 1,2, in the two communities.

Theorem 3.7. The interior endemic equilibrium point exists provided RVi > 1 (i = 1,2).

Proof. At the interior endemic equilibrium point;

0 < (
α1βe1B∗1
k+B∗1

+
α1βh1I∗1
m+ I∗1

)S1 +η1(
α1βe1B∗1
k+B∗1

+
α1βh1I∗1
m+ I∗1

)V1−Q1I∗1

0 < α1ξ1I∗1 −Q2B∗1 (3.18)

0 < (
α2βe2B∗2
k+B∗2

+
α2βh2I∗2
m+ I∗2

)S2 +η2(
α2βe2B∗2
k+B∗2

+
α2βh2I∗2
m+ I∗2

)V2−Q3I∗2

0 < α2ξ2I∗2 −Q4B∗2.

From the second and fourth equations of inequality (3.18), we obtain;

B∗1 <
α1ξ1I∗1

Q2

B∗2 <
α2ξ2I∗2

Q4
.

Substituting equation (3.11) and the limiting values of S1 and V1 into the second equation of inequality (3.18) and solving for I∗1 yields
equation (3.12) which had been shown to have at least one positive real root in Theorem 3.3. Hence, I∗1 > 0 when RV 1 > 1. It is also clear
that I∗2 > 0 when RV 2 > 1. These imply that B∗1 > 0 and B∗2 > 0. Therefore the interior endemic equilibrium point (E3) exists when RV 1 > 1
and RV 2 > 1.

3.2.8. Local stability of the interior endemic steady state

The local stability of the interior endemic equilibrium point is given in the following theorem,

Theorem 3.8. The interior endemic equilibrium of system (2.1) is locally asymptotically stable when RVi > 1 (i = 1,2).
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Proof. To investigate the local stability of the interior endemic equilibrium point (E3), the model system (2.1) is linearized at E3. The
Jacobian matrix at E3 is given by;

J(E3) =



− f0 0 − f1 − f2 0 0 0 0
ω1 − f3 − f4 − f5 0 0 0 0
f6 f7 f8−Q1 f9 0 0 a2 0
0 0 α1ξ1 −Q2 0 0 0 0
0 0 0 0 −g0 0 −g1 −g2
0 0 0 0 ω2 −g3 −g4 −g5
0 0 a1 0 g6 g7 g8−Q3 f9
0 0 0 0 0 0 α2ξ2 −Q4


,

where

g0 = ω2 +µ2 +
α2βe2B2

k+B2
+

α2βh2I2

m+ I2
g1 =

α2βh2Λ2m
(µ2 +ω2)(m+ I2)2

g2 =
α2βe2Λ2k

(µ2 +ω2)(k+B2)2 g3 = µ2 +
η2α2βe2B2

k+B2
+

η2α2βh2I2

m+ I2

g4 =
η2α2βh2Λ2ω2m

µ2(µ2 +ω2)(m+ I2)2 g5 =
η2α2βe2Λ2ω2k

µ2(µ2 +ω2)(k+B2)2

g6 =
α2βe2B2

k+B2
+

α2βh1I2

m+ I2
g7 =

η2α2βe2B2

k+B2
+

η2α2βh2I2

m+ I2

g8 =
α2βh2Λ2mφ2

µ2(µ2 +ω2)(m+ I∗2 )
2 g9 =

α2βe2Λ2φ2k
µ2(µ2 +ω2)(k+B2)2 .

The Jacobian matrix J(E3) can be re-written in the form;

J(E3) =

[
J11 J12
J21 J22

]
,

where;

J11 =


− f0 0 − f1 − f2
ω1 − f3 − f4 − f5
f6 f7 f8−Q1 f9
0 0 α1ξ1 −Q2


and

J22 =


−g0 0 −g1 −g2

ω2 −g3 −g4 −g5
g6 g7 g8−Q3 g9
0 0 α2ξ2 −Q4

 .
It’s clear that J11 and J22 have negative real roots hence, J(E3) has negative real zeros and the interior endemic equilibrium point (E3) is
locally asymptotically stable.

4. Numerical Simulations

Numerical Simulations to validate the analytical findings and illustrate the long term dynamics of system (2.1) have been performed using
MATLAB. This has been achieved by using parameter values which have been selected from some published literatures as shown in Table
4.1. The parameter values in Table 4.1 give RV 1 = 0.422452 < 1 and RV 2 = 0.240175 < 1. The results of the simulations are presented in the
figures below whereI(t) and B(t) are the number of infected individuals and the concentration of Vibrio cholerae in aquatic reservoirs in the
two communities at time t respectively.
When RV < 1, all the trajectories of the infected population and the concentration of Vibrios converge to zero regardless of the presence of
intervention strategies as shown in Figure 4.1 and Figure 4.2. This pinpoints that the cholera free state can only be asymptotically stable in
line with Theorem 3.3. It also shows that the epidemic size is greatly reduced when vaccination and media awareness are simultaneously
deployed.

Figure 4.3 shows that both vaccination and media awareness lower the spread of cholera with time, and that each has an inverse relationship
with the spread of the disease. Therefore the rates of vaccination and media awareness should be heightened in order to reduce the outbreak
size and duration. Evidently, the effect of media awareness is higher in the control of cholera and it’s notable that they should be applied
from the start of an outbreak in order to pare the transmission of cholera in any population.
It is also evident from Figure 4.4 that vaccination and media awareness lowers the disease spread, with the first community experiencing

earlier disease extinction. This clearly illustrates that the effects of the intervention strategies are unidentical in the two communities and that
movement across the communities will lead to re-introduction of the disease in the community where it had been eradicated.
Figure 4.5 shows that migration affects the rate of change of the infected population since, when the rate of movement into the first/second
community is higher than the movement out, then the rate of change of the infected individuals increases and vice versa. This attests the fact
that migration is a vital factor in the transmission of cholera and hence, movement across cholera hit communities should be circumvented.
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Table 4.1: Model Parameters and Values.

Parameter Symbol Value Source
Recruitment rate into community i Λi 9.6274∗10−5 (/day) [9]
Vaccination rate in community i ωi 0.78 (/day) Varies
Vaccine efficacy in community i σi 0.68 (/day) Estimate
Vibrios ingestion rate in community 1 βe1 0.075 (/day) [26]
Vibrios ingestion rate in community 2 βe2 0.01694 (/day) [29]
Rate of contact with infectives in com. 1 βh1 0.0005 (/day) [25]
Rate of contact with infectives in com. 2 βh2 0.00125 (/day) Estimate
Efficacy of media awareness in com. i ρi 0.75 Varies
Half saturation constant of the pathogen k 106 cells/l Estimate
Minimum contact rate with the infected m 0.00001 aries
Natural death rate in community 1 µ1 0.02 (/day) [22],[28]
Natural death rate in community 2 µ2 5.48∗10−5 (/day) [27]
Rate of recovery in community 1 γ1 0.015 (/day) [24]
Rate of recovery in community 2 γ2 0.2 (/day) [29]
Disease induced mortality rate in com. 1 δ1 0.013 (/day) [23]
Disease induced mortality rate in com. 2 δ2 4.0∗10−4 (/day) [9]
Rate of shedding of Vibrios in com. i ξi 50 (/day) [10]
Decay rate of pathogen in com. i µip 1.06 (/day) [10],[27]
Multiplication rate of Vibrios in com. i gi 0.73 (/day) [10],[27]

Figure 4.1: The number of infectives. Figure 4.2: The concentration of Vibrios.

Figure 4.3: The number of infectives when varying ρ and ω . Figure 4.4: The number of infectives with and without controls
in the two communities.

5. Conclusion

A metapopulation model for cholera with imperfect vaccine and variable media awareness was developed and analysed to investigate the
long term transmission dynamics of cholera, in the presence of these control strategies.
The analytical results of the model indicated that there is a region where the model is mathematically and epidemiologically well posed since
its solutions were positive and bounded. The vaccine reproduction numbers for the two isolated communities were computed using the next
generation matrix approach. It was also shown that there was no disease transmission when the reproduction numbers were below unity.
Stability analysis of the model exhibited that the disease free equilibrium is both locally and globally asymptotically stable when RVi < 1
(i = 1,2). The model was shown to have four endemic equilibria which were shown to be locally asymptotically stable when RVi > 1.
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Figure 4.5: The rate of change of the infectives when varying the migration parameters.

From the numerical simulations, it was evident that migration of the infected individuals across communities during epidemics, greatly
increased the spread of cholera in the two communities. Evidently, effective media awareness and vaccination have also been shown to lower
the disease spread resulting into a faster elimination of cholera in the two communities with the first community experiencing earlier disease
extinction. This asserts that, the effects of the intervention strategies are unidentical in the two communities and that even with imperfect
vaccine, the spread of cholera is greatly pared. Since optimal control and cost effectiveness of vaccination and media awareness have not
been done, this can be explored as a future work, to determine the intervention strategy with the least cost and highest efficiency.
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