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Abstract
Prior elicitation is an important issue in both objective and subjective Bayesian infer-
ences. In hypothesis testing and model selection, choosing appropriate prior distributions
becomes significantly more critical. In an objective Bayesian analysis, one utilizes nonin-
formative priors such as Jeffreys priors or reference priors for hypothesis testing which are
often improper, making unspecified constants to be contained in the Bayes factor. Thus,
the resulting Bayes factor should be adjusted. In this paper, we consider default Bayes
procedures for testing zero-inflation parameters in a zero-inflated Poisson distribution.
In particular, we derive a set of intrinsic priors based on an approximation procedure.
Extensive simulations and analyses of two real datasets are performed to support the
methodology developed in the paper. It is shown that the proposed Bayesian and frequen-
tist approaches yield similar comparable results.
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1. Introduction
Analysis of discrete data is conducted in various fields such as natural sciences, social

sciences, public health, and geology. There are several types of distributions in utilizing
discrete data. Xiao et al. [35] employed the geometric distribution in a regression model
to perform Bayesian inference. Azexedo et al. [2] used various distributions, including
Poisson, negative binomial, COM-Poisson, and generalized Poisson distributions to analyze
tuberculosis data. The Poisson distribution is commonly used when a random variable
of interest is the number of events occurring in a given time interval. For instance, it
would be interesting to observe how many earthquakes will occur in one year; or to see
how many home runs can be produced by a baseball batter in each game. More often
than not, these count data possess an excessive number of zeros, hindering analysis with
the regular Poisson distribution. Under these circumstances with excessive zero patterns,
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zero-inflated models would be a remedy to circumvent loss of information or tendencies of
biased estimators.

Research on the analysis of zero-inflated outcomes was started by [10] and was fur-
ther developed by [28]. Lambert [21] proposed the zero-inflated Poisson (ZIP) regression
model, where a Poisson-Bernoulli mixture structure is proposed to deal with two sources
of excessive zero values. Later, a considerable amount of work was performed in ana-
lyzing zero-inflated count data through ZIP models. Random effects were incorporated
into ZIP models [14, 26, 37], and marginalized ZIP regression models were proposed and
extensively analyzed by [22] and [24]. On the other hand, ZIP regression mixture models
were proposed by [23], and latent factor ZIP models were suggested and utilized by [29].

Prior elicitation has been one of the major issues in both objective and subjective
Bayesian inferences in which the prior distribution should account for uncertainties and
beliefs about unknown parameters before data are observed. As pointed out by [4], it
is often not durable to properly and subjectively impose prior distributions due to time
constraints or resources. Consequently, default Bayesian procedures were proposed and
developed with an objective perspective. According to more related work on prior elicita-
tion under an objective Bayesian context performed by [12], it is noted that the selection
of prior distributions is crucial when dealing with model selection or hypothesis testing.
It must be performed with caution in the use of noninformative priors such as Jeffreys
priors [16] or reference priors of [5]. Note that the Jeffreys prior is derived by taking the
square root of the determinant of the Fisher information matrix. On the other hand,
reference priors are based on the Kullback-Leibler divergence and divide the parameter
space into ‘parameter of interest’ and nuisance parameters. More often than not, these
noninformative priors are usually improper, and the resulting pdf associated with these
priors does not have a finite integral. Ultimately, the marginal distribution calculated with
the improper prior involves an arbitrary constant, which hinders the resulting Bayes factor
from being well-defined due to the ratio of two unspecified arbitrary constants. Thus, it
is indispensable to properly impose objective and default prior specifications.

To overcome this arbitrariness, Berger and Pericchi [7] introduced a new model selection
criterion called the intrinsic Bayes factor (IBF) using a data-splitting idea. A part of
the full data often called a training sample, is utilized to remove the arbitrariness of
improper priors, producing a well-defined Bayes factor. The IBF has been successful in
producing more stable results under various settings and problems in the model selection
and hypothesis testing context. Although there has been a considerable amount of work
that utilizes the IBF as a model selection tool, we only state a few recent papers. Wang
and Pericchi [34] proposed the geometric IBF in conjunction with choosing training sample
sizes to come up with stable values. Almodóvar-Rivera and Pericchi-Guerra [1] used IBF
methodologies to deal with hypothesis testing problems associated with normal means for
two independent populations. Clare [9] proposed a new universal and robust boundary
value of the IBF by taking a comprehensive reformulation into account.

However, the IBF approach requires a higher computational cost when either the size
of the training sample is large or non-nested model comparisons are performed. On the
other hand, O’Hagan [30] proposed another model selection criterion called the fractional
Bayes factor (FBF), which provides an adjustment to the ordinary Bayes factor by using
a fraction on the likelihood. The FBF methodology is more computationally feasible
than the IBF approach simply because it is not necessary to conduct a heavy computation
caused by training samples. However, the FBF is often sensitive to the choice of fraction [6,
11]. To circumvent the cons of the FBF approach [13] proposed the approximated adaptive
fractional Bayes Factor (AAFBF), which achieves faster convergence by modifying the
mean of the prior distribution in the FBF. Ultimately, it turned out that the AAFBF is
adaptable to a wide range of statistical models through the use of approximations.
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Due to some shortcomings encountered in the IBF and FBF approaches, it is intractable
to apply these approaches in some situations, such as when drawing inferences on non-
linear models or time series analysis. Eliciting a proper prior would be one remedy under
these circumstances to avoid heavy computation or the choice of a fraction. This induced
[7] to suggest a (possibly) proper prior that may be a plausible alternative in justifying
the full likelihood. This prior is called an intrinsic prior, and the resulting ordinary Bayes
factor calculated with full samples approaches to the IBF or FBF at least asymptotically.

There has been some work on finding intrinsic priors in the Bayesian hypothesis con-
text, for which most are limited to continuous distributions. Further, it is well known that
finding intrinsic priors is not an easy task in many hypothesis testing scenarios, due to the
inherent and deeply rooted difficulties that exist in the problem itself. Kim and Sun [20]
conducted hypothesis testing for exponential distributions and the power law process to
derive intrinsic priors. Moreno [27] utilized half-normal distributions to conduct default
Bayesian tests with intrinsic priors. A considerable amount of research was conducted
on ZIP models in accordance with default Bayesian procedures. Xie and Goh [36] con-
ducted an objective Bayesian analysis through default priors on zero-inflation and Poisson
count parameters in the ZIP. However, limited research has been conducted on analyzing
discrete data with default Bayes factors and intrinsic priors. Bayarri et al. [3] proposed
an objective Bayesian approach for testing the zero-inflation parameter in the ZIP with-
out attempting to find intrinsic priors. However, soon after, Sivaganesan and Jiang [33]
derived intrinsic priors for testing the point null hypothesis associated with the mean of
the Poisson distribution. Recently, Han et al. [15] conducted a hypothesis testing on the
Poisson count parameter of the ZIP distribution to derive a couple of intrinsic priors when
the zero inflation parameter is treated as a nuisance parameter.

A number of work has been done for testing zero inflation parameters based on the
frequentist approach using the likelihood ratio test [25, 32]. Some papers deal with two
sample tests for deriving intrinsic priors. Kim [18] conducted testing on two independent
exponential means to derive a general class of intrinsic priors. Kim and Kim [19] derived
intrinsic priors for testing two normal means with the intrinsic approach. In this article,
we focus on two independent populations that both follow the ZIP distribution with the
same count parameter but different zero-inflation parameters. Under this setup, default
Bayesian testing procedures are presented and intrinsic priors will be derived through a
reasonable approximation. To the best of our knowledge, aside from those mentioned in
this section, there are no other recently published papers that offer value for critique in
this field.

The rest of the paper is organized as follows: In Section 2, we present default Bayesian
procedures for hypothesis testing and model selection including the IBF and FBF method-
ologies. We consider the zero-inflated Poisson distribution to present default Bayes factors
and the main results for deriving intrinsic priors in testing the equality of zero-inflation
parameters. In Section 3, an extensive Monte Carlo simulation study was carried out to
evaluate the performance of the proposed procedures. Two real datasets are analyzed to
illustrate the proposed methodologies in Section 4. Finally, we finish this article with
concluding remarks in Section 5.

2. Default bayesian testing and intrinsic priors for the ZIP distribution
2.1. Bayesian testing and Bayes factors

Suppose that two competing hypotheses, H0 (null hypothesis) and H1 (alternative hy-
pothesis), are considered. For data ZZZ, model Hj has density fj(zzz|θθθj), where θθθj are
unknown model parameters for j = 0, 1. Bayesian model selection proceeds by choosing
a prior distribution πj(θθθj) for θθθj under model Hj . Let mj(zzz) denote the marginal of
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predictive density under model Mj . That is,

mj(zzz) =
∫

Θj

fj(zzz|θθθj)πj(θθθj)dθθθj , j = 0, 1,

where Θj is the parameter space for θθθj . Before the data are observed we assign the prior
model probability of model Hj being true, denoted by p(Hj) so that p(H0) + p(H1) = 1.
Then the posterior probability that Hj is the true model can be calculated as

Pr(H0|zzz) =
[
1 + p(H1)

p(H0)B10

]−1
, (2.1)

where B10 is the Bayes factor of model H1 to model H0 defined as

B10(zzz) = m1(zzz)
m0(zzz) =

∫
Θ1

f1(zzz|θθθ1)π1(θθθ1)dθθθ1∫
Θ0

fi(zzz|θθθ0)π0(θθθ0)dθθθ0
. (2.2)

It is usual or conventional that we assume the same prior model probability of 1/2 each,
yielding

P (H0|zzz) < P (H1|zzz) if and only if B10 > 1.

However, when multiple model comparisons are conducted with several prior model prob-
abilities, different probabilities can be assigned based on expert beliefs or justifications
with appropriate rationales [8, 31].

A Bayesian model selection criterion often selects model H1 if B10 > 1. Kass and
Raftery [17] suggested the following interpretations of Bayes factors for evidence against
H0 provided in Table 1.

Table 1. Interpretations for the Bayes factor

Value of B10 Interpretation
1 – 3.2 Not worth more than a bare mention
3.2 – 10 Substantial
10 – 100 Strong

>100 Decisive

As mentioned in Section 1, limited information on model parameters often requires the
use of noninformative priors that are typically improper in most cases. For instance, let
πN

j (θθθj) (j = 0, 1) be the improper prior density, then the Bayes factor in (2.2) can be
expressed as

BN
10(zzz) = mN

1 (zzz)
mN

0 (zzz)
=
∫

Θ1
f1(zzz|θθθ1)πN

1 (θθθ1)dθθθ1∫
Θ0

fi(zzz|θθθ0)πN
0 (θθθ0)dθθθ0

. (2.3)

Since πN
j (θθθj) is improper, it is defined only up to an arbitrary constant cj , resulting in

an indeterminate Bayes factor. This is a motivation why one needs to use default Bayes
factors with the following form:

BD
10(zzz) = BN

10(zzz) · CF01. (2.4)
Here, BN

10(zzz) is defined in (2.3) and should be calculated with the full data zzz along with
improper priors πN

0 and πN
1 . Notice that the correction factor is used to remove arbitrary

constants and allow the Bayes factor to be well-defined.
Two methods in conjunction with the correction factor have been proposed and fre-

quently utilized to serve as default Bayes factors. To circumvent this indeterminacy prob-
lem, Berger and Pericchi [7] proposed to use a part of the data, often called a training
sample. Specifically, let z(`) be a minimal training sample for which both marginals
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m0(z(`)) and m1(z(`)) are finite, and no subset of z(`) provides finite marginals. There-
fore, the correction factor associated with the arithmetic intrinsic Bayes factor (AIBF)
can be defined as

CF I
01 = 1

L

L∑
`=1

BN
01(z(`)), (2.5)

where L is the total number of all possible minimal samples. Meanwhile, the correction
factor related to the fractional Bayes factor (FBF) of [30] is defined as

CF F
01 =

∫
Θ0

f0(zzz|θθθ0)δπN
0 (θθθ0)dθθθ0∫

Θ1
f1(zzz|θθθ1)δπN

1 (θθθ1)dθθθ1
, (2.6)

where fraction δ is chosen arbitrarily but should be chosen properly. Subsequently, two
default Bayes factors can be obtained through (2.4) using two different correction factors
given by (2.5) and (2.6), respectively.

Remark 2.1. Note that the choice of fraction δ relies upon both sample sizes and number
of model parameters [30]. Further, several works have focused on choice of fraction that
influences the consistency of Bayes factors [11]. We used a common choice of fraction
in both simulation studies and real data analysis that are presented in Sections 3 and 4,
respectively.

2.2. Testing for zero inflation parameters in the ZIP
Consider a random variable Z having a zero-inflated Poisson distribution with the fol-

lowing probability mass function:

f(z|λ, ω) =
{

ω + (1 − ω)e−λ, for z = 0,

(1 − ω) e−λλz

z! , for z = 1, 2, . . . ,
(2.7)

where ω is often called the zero-inflation parameter. We denote the distribution in (2.7)
as ZIP(λ, ω) in short for notation convenience.

Let XXX = (X1, X2, . . . , Xm) be a random sample from ZIP(λ, ω1), and independently
we observe a random sample YYY = (Y1, Y2, . . . , Yn) from ZIP(λ, ω2). We are interested in
testing

H0 : ω1 = ω2 versus H1 : ω1 6= ω2.

Let ω be the common value of ω1 and ω2. Then we have θ0 = (λ, ω) and θ1 = (λ, ω1, ω2),
where θ0 and θ1 are generic expressions for the parameters under H0 and H1, respectively.
Let N = m + n, and let αx and αy denote the numbers of zero observations from each
of two populations, i.e., αx =

∑m
i=1 I(Xi = 0) and αy =

∑n
i=1 I(Yi = 0). Further,

let sx =
∑m

i=1 Xi and sy =
∑n

i=1 Yi denote the sums of total observations from each
population respectively. For observed data xxx and yyy, the likelihood functions under H0
and H1 are given respectively by

L0(xxx, yyy|λ, ω) ∝
[
ω + (1 − ω)e−λ

]αx+αy

(1 − ω)N−αx−αy e−(N−αx−αy)λλsx+sy ,

L1(xxx, yyy|λ, ω1, ω2) ∝
[
ω1 + (1 − ω1)e−λ

]αx[
ω2 + (1 − ω2)e−λ

]αy

(1 − ω1)m−αx(1 − ω2)n−αy e−(N−αx−αy)λλsx+sy . (2.8)
We consider noninformative priors for both H0 and H1 as starting priors under independent
a priori. That is,{

πN
0 (λ, ω) = λ−1/2 for λ > 0 and 0 < ω < 1,

πN
1 (λ, ω1, ω2) = λ−1/2 for λ > 0, 0 < ω1 < 1, and 0 < ω2 < 1.

(2.9)
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Based on the full data (xxx, yyy), the marginal under H0 is

m0(xxx, yyy) = Γ(α + 1)Γ(N − α + 1)Γ(s + 1/2)
(N − α)s+1/2

α∑
j=0

Γ(α + 1)
Γ(N + j − α + 2) , (2.10)

where α = αx+αy and s = sx+sy. The marginal m1(xxx, yyy) under H1 can also be calculated
based on the likelihood L1 in (2.8) along with the prior πN

1 in (2.9). We tried to obtain
a closed form of m1(xxx, yyy) using two binomial expansions on the terms inside the brackets
in the likelihood. However, no closed form with double summations existed. Thus, the
marginal under H1 is calculated through a direct three-dimensional integration.

When calculating the correction factor, we take a zero observation and a nonzero ob-
servation from each of the two ZIP distributions as a training sample. That is, the set of
the training sample is z(l) = {(xl, 0), (yl, 0)}. Note that z(l) is not minimal in the sense
that both marginals under H0 and H1 are finite with {xl, yl} only. This is not congruent
with the statements mentioned in Section 2.1 regarding the definition of minimal training
sample, since {xl, yl} is a subset of z(l). However, if we exclude two zero observations in
the training sample, the part of the likelihood contributed by zero observations is ignored.
This results in identical processes of extracting the intrinsic prior from the ZIP distribu-
tions and of deriving the intrinsic prior from the regular Poisson distributions cf. [15].
Thus, we use z(l) as the training sample to proceed for subsequent analysis even though
it is not minimal.

Proposition 2.2. Let z(l) be the training sample. Then, the Bayes factor based on z(l)
is

B01(z(l)) = 6
5 · 12κ + 3 · 8κ + 6 · 6κ

12κ + 4 · 8κ + 4 · 6κ
, (2.11)

where κ = xl + yl + 0.5.

Proof: Since αx = αy = 1, sx = xl, and sy = yl in (2.8), the marginal of z(l) under H0 is

m0(z(l)) ∝
∫ ∞

0

∫ 1

0

[
ω2 + 2ω(1 − ω)e−λ + (1 − ω)2e−2λ

]
(1 − ω)2e−2λλxl+yl−0.5dωdλ

= Γ(κ)
{ 1

30 · 2κ
+ 1

10 · 3κ
+ 1

5 · 4κ

}
= Γ(κ)

30 · 12κ + 3 · 8κ + 6 · 6κ

24κ
.

On the other hand, the marginal under H1 is

m1(z(l)) ∝
∫ ∞

0

∫ 1

0

∫ 1

0

[
ω1ω2 + ω1(1 − ω2)e−λ + (1 − ω1)ω2e−λ + (1 − ω1)(1 − ω2)

]
× (1 − ω1)(1 − ω2)e−2λλxl+yl−0.5dω1dω2dλ

= Γ(κ)
36

{ 1
2κ

+ 4
3κ

+ 4
4κ

}
= Γ(κ)

36 · 12κ + 4 · 8κ + 4 · 6κ

24κ
.

Thus, the Bayes factor with the training sample is readily available.

2.3. Intrinsic priors for testing zero-inflation parameters
It is beneficial to find reasonable priors to make use of the full likelihood when justifying

default Bayesian procedures for hypothesis testing. As mentioned in subsection 2.1, the use
of two default Bayes factors has some cons. The AIBF could require computational cost,
whereas the choice of fraction in the FBF could be sensitive. Once reasonable (possibly
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proper) priors are available, the correction factor in (2.4) would not be necessary. Rather,
we only need to calculate the (ordinary) Bayes factor with intrinsic priors based on the
full data zzz. Ultimately, asymptotic equivalence would be obtained in which this Bayes
factor gets close to the Bayes factor in (2.4) as the sample size increases.

Under the regularity conditions in [7], the intrinsic prior for H1 based on the AIBF
approach, denoted by πI

1 , is calculated as

πI
1(θθθ) = E[B01(Z(`))|θθθ]πN

1 (θθθ), (2.12)

where the expectation is taken with the probability distribution of Z(`) under model H1.
On the other hand, the intrinsic prior based on the FBF approach, denoted by πF

1 , is

πF
1 (θθθ) = CF F ∗

01 πN
1 (θθθ). (2.13)

Here, CF F ∗
01 = limn→∞ CF F

01, where CF F
01 is given in Eq. (2.6) and n is a given sample

size.
Based on the Bayes factor with the training sample z(l) in (2.11), we can derive an

intrinsic prior defined in (2.12). The following theorem provides the intrinsic prior using
an approximation method when testing the equality of zero-inflation parameters.

Theorem 2.3. The intrinsic prior for (λ, ω1, ω2) under H1 based on the AIBF approach
in (2.12) is

πI
1(λ, ω1, ω2) ∝ e−2λ

√
λ(1−e−λ)2

[{ τ∑
k=2

λk(2k − 2)
k! · 2 · 6α − 8α

12α+4 · 8α+4 · 6α

}
+(eλ−1)2

]
, (2.14)

where α = k + 0.5.

Proof: Note that each of xl ≡ x and yl ≡ y follows a zero-truncated Poisson distribution
with parameter λ, and they are independent. Let

g(κ) = 12κ + 3 · 8κ + 6 · 6κ

12κ + 4 · 8κ + 4 · 6κ
. (2.15)

Then, from (2.11), we have

E[BN
01(z(l))] =

∞∑
x=1

∞∑
y=1

BN
01(z(l)) e−λλx

x!(1 − e−λ)
e−λλy

y!(1 − e−λ)

= 6
5

e−2λ

(1 − e−λ)2

∞∑
x=1

∞∑
y=1

λx+y

x!y! g(κ). (2.16)

Let

q(λ) ≡
∞∑

x=1

∞∑
y=1

λx+y

x!y! g(κ).
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Note that

q(λ) =
(

λ2

1!1!g(2.5) + λ3

1!2!g(3.5) + λ4

1!3!g(4.5) + λ5

1!4!g(5.5) + · · ·
)

+
(

λ3

2!1!g(3.5) + λ4

2!2!g(4.5) + λ5

2!3!g(5.5) + λ6

2!4!g(6.5) + · · ·
)

+
(

λ4

3!1!g(4.5) + λ5

3!2!g(5.5) + λ6

3!3!g(6.5) + λ7

3!4!g(7.5) + · · ·
)

...

= λ2g(2.5)
[ 1

1!1!

]
+λ3g(3.5)

[ 1
1!2! + 1

2!1!

]
+λ4g(4.5)

[ 1
1!3! + 1

2!2! + 1
3!1!

]
+ · · ·

=
∞∑

k=2
λkg(k + 0.5)

k−1∑
`=1

1
`!(k − `)! .

On the other hand, from the binomial expansion we have
k−1∑
`=1

1
`!(k − `)! = 1

k!

k−1∑
`=1

k!
`!(k − `)! = 1

k!

k−1∑
`=1

(
k

`

)
= 2k − 2

k! .

Thus, it follows that

q(λ) ≡
∞∑

x=1

∞∑
y=1

λx+y

x!y! g(κ) =
∞∑

k=2

λk(2k − 2)
k! g(k + 0.5). (2.17)

Note that q(λ) in (2.17) is a non-linear function of λ, and does not have a closed form in
terms of λ. Thus, we manipulate the summand in (2.17) to obtain a closed form through
an approximation in the following manner. Rewrite q(λ) as

q(λ) =
∞∑

k=2

λk(2k − 2)
k! g(k + 0.5)

=
τ∑

k=2

λk(2k − 2)
k! g(k + 0.5) +

∞∑
k=τ+1

λk(2k − 2)
k! g(k + 0.5)

≈
τ∑

k=2

λk(2k − 2)
k!

12α + 3 · 8α + 6 · 6α

12α + 4 · 8α + 4 · 6α
+
[ ∞∑

k=2

λk(2k − 2)
k! −

τ∑
k=2

λk(2k − 2)
k!

]

=
τ∑

k=2

λk(2k − 2)
k!

[12α + 3 · 8α + 6 · 6α

12α + 4 · 8α + 4 · 6α
− 1

]
+

∞∑
k=2

(2λ)k − 2λk

k!

=
[ τ∑

k=2

λk(2k − 2)
k! · 2 · 6α − 8α

12α + 4 · 8α + 4 · 6α

]
+(eλ − 1)2. (2.18)

The last part of (2.18) is readily achieved by the Maclaurin series expansion on ex.
To validate the use of approximation in Theorem 2.3, we present empirical calculations

on the two functions associated with the summand in (2.18). Specifically, let

r(k) = λk(2k − 2)
k! g(k + 0.5),

where g(·) is defined in (2.15), and let

r∗(k) = λk(2k − 2)
k!

be a counterfeit version of r(k) by excluding g(k + 0.5) from r(k). Figure 1 depicts
the two functions r(k) and r∗(k) when λ = 2. We observe a considerable difference
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between the values of r(k) and r∗(k) around k = 4, and the difference decreases as k
increases. Ultimately, it vanishes when k exceeds 10. We calculate the differences between
r(k) and r∗(k) with several values of λ when k = 20(2)30 to validate the plausibility
of approximation. From Table 2, we see that the difference decreases as the value of k
increases for a fixed value of λ. We set τ = 20 in our computations associated with the
intrinsic prior in Theorem 2.3 for both simulation studies and real data analyses.

0 5 10 15 20 25 30

0
2

4
6

8
10

12
14

k

r*(k)
r(k)

Figure 1. Comparison of r(k) and r∗(k) when λ = 2 showing the plausibility of
approximation

Table 2. The differences of r(k) and r∗(k) with different values of λ

λ
r(k) − r∗(k)

k = 20 k = 22 k = 24 k = 26 k = 28 k = 30
2 3.34 × 10−10 5.13 × 10−12 6.60 × 10−14 7.22 × 10−16 6.79 × 10−18 5.55 × 10−20

3 1.11 × 10−6 3.84 × 10−8 1.11 × 10−9 2.74 × 10−11 5.79 × 10−13 1.06 × 10−14

4 3.50 × 10−4 2.15 × 10−5 1.11 × 10−6 4.85 × 10−8 1.82 × 10−9 5.96 × 10−11

5 3.03 × 10−2 2.92 × 10−3 2.35 × 10−4 1.60 × 10−5 9.43 × 10−7 4.83 × 10−8

Note that the joint prior in (2.14) does not depend on ω1 and ω2. Since the support
of each of ω1 and ω2 is defined on the interval (0, 1), the marginal intrinsic prior for λ
is proportional to πI

1(λ, ω1, ω2). Figure 2 shows the marginal intrinsic prior πI
1(λ) when

τ = 20. The prior density is unimodal and skewed to the right.

3. Simulation studies
In this section, we perform Monte Carlo simulation studies to evaluate the performance

of default Bayes factors for testing the null hypothesis H0 : ω1 = ω2 against the alternative
H1 : ω1 6= ω2 when each of two populations independently follows a ZIP distribution with
the same λ and different zero inflation parameters ω1 and ω2. We generate data with four
configurations of (ω1, ω2): (0.2, 0.2), (0.2, 0.3), (0.2, 0.5), and (0.2, 0.7). We use two values
of λ = 4 and λ = 6 to see if there is an effect of λ on the performance of the proposed
approach. Regarding sample sizes, we consider m = n = 10, 20, and 30 to investigate
the performance of the proposed procedures in an asymptotic sense. We calculated two
default Bayes factors; the intrinsic and fractional Bayes factors denoted by BI

10 and BF
10,

respectively. Additionally, the ordinary Bayes factor using the intrinsic prior in (2.14) is
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Figure 2. The marginal intrinsic prior πI
1(λ) for testing H0 : ω1 = ω2 vs. H1 :

ω1 6= ω2

calculated from the full data. This Bayes factor is denoted by BI∗
10 in Tables 3 and 4. A

total of 1,000 replications was used to carry out this simulation study.
In Tables 3 and 4, we provide the simulated averages and standard deviations (in paren-

thesis) of the three Bayes factors based on 1,000 simulated data. As mentioned in Remark
2.1, the common choice of fraction δ would be the size of the (minimal) training sample
divided by the whole sample size, i.e., δ = 4/N . First, when simulated data are generated
from H0, i.e., (ω1, ω2) = (0.2, 0.2), all three Bayes factors decrease with an increase in
sample sizes, indicating improved precision. On the other hand, when the data are gen-
erated from H1, all three Bayes factors increase as the sample size increases These trends
are perfectly observed despite the value of λ, as is expected from a theoretical point of
view.

Second, when (ω1, ω2) = (0.2, 0.2) the relative differences between BI
10 and BF

10, on
average, vary between 1.36 and 5.88%. This implies that the choice of fraction δ seems to
be adequate for equivalence between the IBF and FBF. However, these relative differences
increase as the differential between ω values increases. Regarding asymptotic equivalence
between BI

10 and BI∗
10 , the relative differences between these two Bayes factors, on average,

vary between 14 and 20% when the differential between ω values is less than or equal to
0.1. Moreover, it turned out that the performance was better for λ = 6 with fixed values
of ω. However, these relative differences also increase as the differential between ω values
increases. Third, these relative differences decrease as the sample size increases for fixed
values of ω and λ in most cases. However, these phenomena are not perfectly consistent.

To compare the default Bayesian approach conducted here with the frequentist ap-
proach, we performed a likelihood ratio test (LRT). We note that the maximum likelihood
estimates (MLE) do not exist in closed forms, and the Newton-Raphson method was
adopted to calculate the MLEs and the resulting P-values, denoted by pLR. It can be
obtained in a straightforward manner, and thus the details are omitted. The medians of
the P-values calculated based on 1,000 replications in each configuration of parameters are
reported in Tables 3 and 4. Even though there were not large differences in the P-values
when the data were generated from H0, we observed small discrepancies between the P-
values. However, when the data were generated from H1, all median P-values decreased
as the sample size increased, except for cases with (ω1, ω2) = (0.2, 0.3) and λ = 4.
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Next, we present the proportion of BI
10 > 1 (i.e., supporting H1 based on the Bayes

factor), the proportion of pLR < 0.05 (i.e., supporting H1 based on the LRT), the propor-
tion of both Bayesian and frequentist approaches supporting the true model (denoted by
P1), and the proportion of both Bayesian and frequentist approaches yielding the same
conclusion (denoted by P2). We see that the proportion of identifying the true model
increases as the sample size increases when the differential between ω values is equal to
or greater than 0.3. In particular, the proposed model effectively identifies the true model
when (ω1, ω2) = (0.2, 0.7) even with small sample sizes. The proposed approach based on
the Bayes factors provides comparable results with the frequentist approach based on the
LRT in identifying the true model. The frequentist and Bayesian approaches agree with
each other at least 86% of the time in all cases considered here when using a moderate
sample size of 30 from each population. The proposed approach based on Bayes factors
has higher success rates in perceiving the true model than does the frequentist approach
especially when the simulated data are generated under the alternative.

Table 3. The average values and standard deviations (in parenthesis) of the three
Bayes factors based on 1,000 replications. The following proportions are provided:
BI

10 > 1, pLR < 0.05, P1 = Both BI
10 and LRT support the true model, and P2 =

Both BI
10 and LRT yield the same conclusion

(ω1, ω2) λ n BI
10 BF

10 BI∗
10 P-value Proportions

BI
10 > 1 pLR < 0.05 P1 P2

(0.2, 0.2)

4

10 1.026 1.012 0.818 0.528 16.5 7.7 76.6 77.4(2.189) (1.519) (1.759) (0.325)

20 0.859 0.909 0.688 0.464 16.7 3.8 83.3 87.1(1.879) (1.751) (1.514) (0.302)

30 0.817 0.865 0.654 0.528 11.8 5.3 88.2 93.5(2.726) (2.468) (2.181) (0.302)

6

10 1.027 1.007 0.849 0.527 16.9 7.8 83.1 90.9(2.247) (1.530) (1.853) (0.339)

20 0.820 0.865 0.680 0.528 16.6 4.3 85.9 86.7(1.674) (1.542) (1.388) (0.305)

30 0.819 0.859 0.678 0.518 11.4 6.5 88.6 95.1(2.363) (2.221) (1.956) (0.306)

(0.2, 0.3)

4

10 1.444 1.297 1.145 0.228 23.6 10.3 10.3 86.7(3.905) (2.433) (3.051) (0.326)

20 2.399 2.158 1.915 0.427 27.8 11.0 11.0 86.2(15.291) (11.906) (12.116) (0.317)

30 2.695 2.474 2.154 0.370 23.2 11.4 11.4 91.2(19.055) (15.313) (15.225) (0.310)

6

10 1.549 1.346 1.279 0.528 23.4 10.1 10.1 86.7(4.440) (2.663) (3.649) (0.344)

20 2.099 1.907 1.784 0.427 28.2 10.0 10.0 88.8(15.746) (12.175) (13.056) (0.325)

30 2.743 2.430 2.272 0.345 23.6 14.0 14.0 90.3(29.744) (21.895) (24.642) (0.311)

4. Real data analysis
In this section, we illustrate the proposed methodologies under the ZIP model using

two real datasets that contain excessive zeros observed in time intervals.
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Table 4. Continuation of Table 3

(ω1, ω2) λ n BI
10 BF

10 BI∗
10 P-value Proportions

BI
10 > 1 pLR < 0.05 P1 P2

(0.2, 0.5)

4

10 13.339 7.059 10.616 0.154 57.6 31.6 31.6 74.0(1.15 × 102) (44.170) (91.076) (0.309)

20 63.209 42.561 50.697 0.044 75.0 50.5 50.5 77.5(5.92 × 102) (3.64 × 102) (4.78 × 102) (0.208)

30 4.71 × 103 2.66 × 103 3.77 × 103 0.001 81.8 67.7 67.7 85.9(1.36 × 105) (7.53 × 104) (1.09 × 105) (0.169)

6

10 16.444 8.044 13.614 0.155 58.9 33.8 30.7 68.7(1.52 × 102) (53.500) (1.26 × 102) (0.384)

20 81.987 52.537 67.842 0.044 76.1 50.8 50.8 74.7(7.74 × 102) (4.52 × 102) (6.41 × 102) (0.247)

30 1.54 × 103 9.18 × 102 1.27 × 103 0.014 82.8 69.7 69.7 86.9(3.41 × 104) (1.93 × 104) (2.83 × 104) (0.186)

(0.2, 0.7)

4

10 87.155 37.213 69.838 0.021 89.2 62.6 62.5 73.2(3.80 × 102) (1.38 × 102) (3.07 × 102) (0.187)

20 5.85 × 104 2.23 × 104 4.69 × 104 0.001 97.3 89.8 89.8 92.5(1.40 × 106) (5.05 × 105) (1.12 × 106) (0.067)

30 6.30 × 105 3.18 × 106 5.01 × 105 < 0.001 99.5 98.5 98.5 99.0(6.00 × 106) (2.93 × 106) (4.76 × 106) (< 0.001)

6

10 97.927 39.717 81.022 0.015 90.3 60.4 60.4 70.1(4.37 × 102) (1.50 × 102) (3.62 × 102) (0.291)

20 8.91 × 104 3.20 × 104 7.37 × 104 0.001 97.7 86.6 86.6 88.9(2.01 × 106) (1.66 × 106) (6.77 × 105) (0.221)

30 7.84 × 105 3.78 × 105 6.48 × 105 < 0.001 99.6 94.8 94.8 95.2(6.86 × 106) (3.20 × 105) (5.66 × 106) (< 0.001)

4.1. Yellow dust storms data
We consider a dataset related to the number of yellow dust storms that have been ob-

served in South Korea over the last two decades. Sand and dust particles mainly originate
from deserts in China and Mongolia and are carried from the Yangtze River through the
westerly winds, especially in the Spring. Thus, the frequency of yellow dust occurrence
is higher in the first half of the year when the Yangtze River basin is heavily affected.
We selected two metropolitan cities of South Korea with a population more than one
million: Incheon and Gwangju. The distance between the two cities is about 256 kilo
meters, and their locations along with a small part of the eastern seaboard of China are
depicted in Figure 3. We collected the number of yellow dust storms observed from the
first half of 2003 to the second half of 2022 on a semi-annual basis. Thus, the samples
sizes are m = n = 40, among which there are 8 and 10 zero observations for Incheon and
Gwangju, respectively. The data are accessed on the Korea Meteorological Administration
website. At the initial stage, the MLEs for λ were calculated to be 5.01 for Incheon and
4.56 for Gwangju assuming that each of the two populations independently follows a ZIP
distribution.

Table 5 shows the results for testing H0 : ω1 = ω2 based on the data of the two selected
cities. We reported three Bayes factors, which were denoted as in the simulation study.
Assuming that a default Bayes factor, BI

10 is true, the other default Bayes factor, BF
10 is

slightly overestimated, although there seems to be no large difference between them. On
the other hand, BI∗

10 is slightly underestimated with a value of 0.2558. However, all three
Bayes factors are less than one, indicating no support for H1. We also report the P-value
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based on the LRT, yielding a value of 0.5921. Thus, we conclude that there is no strong
evidence to support the alternative hypothesis.

Table 5. Results for testing H0 : ω1 = ω2 versus H1 : ω1 6= ω2 for yellow dust
data

Cities BI
10 BF

10 BI∗
10 P-value

Incheon vs. Gwangju 0.3119 0.3480 0.2558 0.5921

Figure 3. Two cities in South Korea affected by yellow dusts

4.2. Book reading data
In this subsection, we utilized a reading dataset to demonstrate the proposed method-

ologies as an illustration. National reading surveys have been conducted annually by the
Ministry of Culture, Sports, and Tourism since 1993. The survey targets 6,000 adults
older than 19 years who live in South Korea, and 3,320 elementary, middle, or high school
students nationwide. In this survey, the data were collected based on the answers to the
question: “How many paper books did you read from September 2020 to August 2021,
excluding textbooks, reference books, and test preparation books?" For illustrative and
computational purposes, we only considered adults who live in Gyeonggi Province and
read fewer than 50 books per year, resulting in a total of 788 samples. We also limited the
sample of students to those who live in Gyeonggi Province and are attending high school.
Regarding the selection of adults, we restricted the annual reading quantity to fewer than
50 books. A total of 270 samples was obtained from the student side.

To produce a setup similar to that of the earthquake data experiment, we divided the
adult reading dataset into two groups by gender. The number of males was 359 with 53.7%
of them being zero observations, whereas the number of females was 429, with 52% of them
being zero observations. A plausible explanation for observing such zero observations is
the decrease in the market share of paper books due to the recent developments of e-books
and audio-books. Another reason would be Korea’s fixed pricing system in the paper books
market, resulting in relatively high prices for book and limiting purchases.

Assuming that each group (population) independently follows a ZIP distribution, the
MLEs of λ turned out to be 6.422 for men and 6.515 for women respectively, showing
no big difference in λ values between the two groups. Thus, we proceeded to test H0 :
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ω1 = ω2 with the same λ for the two ZIP distributions after we randomly extracted 30
observations from each of the two groups to avoid heavy computation. Table 6 presents
two default Bayes factors and the ordinary Bayes factor computed with the intrinsic priors
for analyzing book reading data. We also report the P-value based on the LRT described
in Section 3. While we see that two default Bayes factors, BI

10 and BF
10 are close to each

other, there is little difference between the two default Bayes factors and BI∗
10 . All the

Bayes factors are less than one, showing no prominent evidence to support H1. Moreover,
the P-value based on the LRT statistic is 0.6054, which does not show significant evidence
to support the alternative hypothesis.

Next, we carried out the same test based on the data for adult men versus high school
students from Gyeonggi Province. The MLE of λ for the high school student group is
6.411, showing a small difference in λ values between adult men and high school students.
This analysis produced very different magnitudes of the Bayes factors, with all being very
large values, supporting H1. Again, there is not much difference between BI

10 and BF
10, and

there is little difference between the default Bayes factors and BI∗
10 . A very small P-value

of 0.0039 showed conformity to the results obtained through the three Bayes factors. Since
reading is a mandatory part of the learning curriculum for students in South Korea, there
is a considerable difference in the two proportions of zero inflations between adults and
students.

Table 6. Results for testing H0 : ω1 = ω2 versus H1 : ω1 6= ω2 for book reading
data

BI
10 BF

10 BI∗
10 P-value

Men vs. Women 0.4204 0.4221 0.3497 0.6054
Men vs. High school 17.522 16.205 14.253 0.0039

5. Concluding remarks
In this paper, we performed Bayesian hypothesis testing for the zero-inflation parame-

ters when two underlying distributions independently follow ZIP distributions. Intrinsic
and fractional approaches were used to calculate the default Bayes factors. An intrinsic
prior associated with the intrinsic approach was derived through a reasonable approxima-
tion. The proposed Bayesian approach and the existing frequentist approach based on the
LRT provided comparable results under the ZIP distribution.

There are some drawbacks to the proposed method. As mentioned in Introduction, we
expected asymptotic equivalence properties for the two Bayes factors; however, increasing
sample sizes did not significantly reduce the relative differences between the two Bayes
factors. The numerical integration blew up when calculating the marginal distribution,
revealing limitations to computing for large sample sizes. Finally, we observed relatively
poorer results when using smaller values of λ.

Finding intrinsic priors based on the exact method is virtually impossible unless a closed
form is available on the expected value of the Bayes factor. This forces us to approximately
calculate the expected value. We did not attempt to derive intrinsic priors based on the
fractional approach by limiting the correction factor. This is mainly due to the fact that
the correction factor requires a complex calculation. However, some of the issues could be
resolved if we were to utilize the approach proposed by Gu et al. [13]. This project may
present considerable challenges for forthcoming research. Research in this direction is in
progress, and we hope to report its results in a future paper.
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