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Abstract
In this paper, we introduce a kind of homology which we call Hawaiian homology to study
and classify pointed topological spaces. The Hawaiian homology group has advantages
over Hawaiian groups. Moreover, the first Hawaiian homology group is isomorphic to the
abelianization of the first Hawaiian group for path-connected and locally path-connected
topological spaces. Since Hawaiian homology has concrete elements and abelian structure,
its calculation is easier than that of the Hawaiian group. Thus we use Hawaiian homology
groups to compare Hawaiian groups, and then we obtain some information about Hawaiian
groups of some wild topological spaces.
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1. Introduction and motivation
Homology is a well-known useful tool of algebraic topology. Since homology has concrete

interpretation, different fields of science apply it as an algebraic modelling of geometric
properties to study their observations mathematically [13]. Homology is a general way of
associating a sequence of algebraic objects, such as abelian groups or modules, with other
mathematical objects such as topological spaces. Homology groups were originally defined
in algebraic topology and then it is generalized in a wide variety of other contexts, such
as group theory, theory of Lie algebra, Galois theory and algebraic geometry.

The original motivation for defining homology groups was to distinguish shapes by
examining their holes. Homology group has a famous characteristic, the Betti number,
which is known as the various counting of the number of holes of the spaces, and by this
fact, the Betti number helps to classify spaces. The nth Betti number is defined as the
rank of the nth homology group of the given topological space.

There are many different homology theories, each of which has its advantages, applica-
tions, and defects [1, 20]. A particular type of mathematical object, such as a topological
space or a group, may have one or more associated homology theories. When the underly-
ing object has a geometric interpretation as a topological space, the nth homology group
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represents the behavior in the dimension n. Most homology groups or modules may be
formulated as derived functors on appropriate abelian categories, measuring the failure of
a functor to be exact.

In Section 2, we define a Hawaiian homology similar to the singular homology theory
associated with a chain complex of shrinking sequences of singular simplexes tending to
the base point. Thus, it is natural that Hawaiian homology groups depend on the choice
of the base point. More precisely, the Hawaiian homology is a covariant functor from
the category of pointed topological spaces to the category of abelian groups. We see that
Hawaiian homology groups depend on the local behavior of the spaces at their base points.
This is a great difference between the Hawaiian homology and the singular homology, the
latter depends only on the homotopy type of space, while the base point has an essential
role in calculating the Hawaiian homology. In fact, the Hawaiian homology is invariant
under base point preserving homotopies, called pointed homotopies. We present some
examples to clarify the effects of choice of the base point and pointed homotopies.

Also, we investigate basic properties of the Hawaiian homology, including the Hawaiian
homology of the singletons, disjoint union, homotopic maps, and so on. Then we present
a close relation between the Hawaiian homology group and Hawaiian group of topological
spaces. The first Hawaiian homology group is isomorphic to the abelianization of the first
Hawaiian group for any path-connected and locally path-connected topological space. The
nth Hawaiian group of a pointed topological space was defined by Karimov and Repovš
[15] as the set of all pointed homotopy classes of continuous maps with a group operation
coming from the operation of nth homotopy groups. The nth Hawaiian group, defined
below, is a covariant functor from the category of pointed topological spaces to the category
of groups, denoted by Hn(X,x0), where (X,x0) is a pointed topological space.

Definition 1.1 ([15]). Let (X,x0) be a pointed space, let [−] denote the class of pointed
homotopy, and let n = 1, 2, . . .. Then the nth Hawaiian group of (X,x0) is defined
by Hn(X,x0) = {[f ] : f : (HEn, θ) → (X,x0)} with the multiplication induced by
(f∗g)|Sn

k
= f |Sn

k
·g|Sn

k
(k ∈ N) for any [f ], [g] ∈ Hn(X,x0), where · denotes the concatenation

of n-loops.

The Hawaiian group functor has some advantages over other well-known covariant func-
tors from the category of topological spaces to the category of groups. Unlike homotopy
and homology group, Hawaiian group is not preserved by free homotopies. As an exam-
ple, consider the cone space C(HE1), where HE1 denotes the one-dimensional Hawaiian
earring. Since cone spaces are contractible, their homotopy, homology, and cohomology
groups are trivial [15], but the first Hawaiian group of C(HE1) is uncountable [15]. Also,
by using this functor, we can study some local behaviors of spaces. For instance, if X
has a countable local basis at x0 and the nth Hawaiian group Hn(X,x0) is countable,
then X is locally n-simply connected at x0 (see [15, Theorem 2]). For a space X having
a countable local basis at x0, Hn(CX, x) is trivial if and only if X is locally n-simply
connected at x0 and it is uncountable otherwise [2, Corollaries 2.16 and 2.17]. Hence, un-
like homotopy groups, Hawaiian groups depend on the behavior of the space at the base
point. In this regard, there are path-connected spaces whose Hawaiian groups are not
isomorphic at different points, such as the n-dimensional Hawaiian earring, where n ≥ 2
(see [2, Corollary 2.11]). In this paper, we show that the Hawaiian homology groups have
the advantages of Hawaiian groups, from the viewpoint of homology. Moreover, Hawaiian
homology groups have more concrete elements, and also they can be computed by tech-
niques of abelian groups (see theorem 6.2), while there rarely exist similar techniques to
calculate Hawaiian groups. By using these facts, we use Hawaiian homology groups to
study and classify pointed topological spaces; for instance, the first Hawaiian homology
group of the Harmonic archipelago at the origin is not isomorphic to the first Hawaiian
homology group at any other points. Also since the first Hawaiian homology group for
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any locally path-connected space is the abelianization of the first Hawaiian group, it can
help us to investigate the structure of Hawaiian groups. Since the first Hawaiian homology
groups are not isomorphic at different points, we conclude that the first Hawaiian groups
at different points of Harmonic archipelago are not isomorphic.

In Section 3, by employing Hawaiian homology groups, we compare Hawaiian groups
of some pointed spaces, for instance, the Harmonic archipelago, Griffiths space, Hawaiian
earrings, and so on. Moreover, we calculate Hawaiian homology groups of the Harmonic
archipelago and prove that the first Hawaiian homology and the first singular homology
groups of the Harmonic archipelago are isomorphic. The Harmonic archipelago is an
element of a class of spaces called archipelago spaces constructed by attaching loops to
some weak join of spaces. Hawaiian earrings belong to the class of weak join spaces defined
as follows.

Definition 1.2 ([6,10]). The weak join of a family of spaces {(Xi, xi); i ∈ I}, denoted by
(X,x∗) =

∨̃
i∈I(Xi, xi), is the underlying space of wedge space (X̂, x̂∗) =

∨
i∈I(Xi, xi) with

the weak topology with respect to Xi’s, except at the common point. Every open neigh-
borhood in X at x∗ is of the form

⋃
i∈F Ui ∪

⋃
i∈I\F Xi, where Ui is an open neighborhood

at xi in Xi ⊂ X and F is a finite subset of I (see [6, Section 2] and [10, p. 18]).

In [17, Definition 2.1], small n-Hawaiian loop was defined as a small map from HEn to
any space X.

In this paper, all spaces are assumed to be first countable. Moreover, by ̂ p we mean
the p-adic completion of a group and P denotes the set of all primes.

2. Hawaiian homology groups
In this section, we introduce the Hawaiian homology as a new invariant from the cate-

gory of pointed topological spaces to the category of abelian groups. First, we define the
Hawaiian simplex in the natural way. That is, the disjoint union of a countably infinite
family of Euclidean simplexes whose diameters tend to zero together with the origin as
the cluster point.

Definition 2.1. Let ∆n
k = ∆n/k = {a ∈ Rn+1| ka ∈ ∆n}, for k = 1, 2, . . ., where ∆n

denotes the standard Euclidean n-simplex, and let ∆n
0 = {θ}, where θ denotes the origin.

The n-Hawaiian simplex is defined as follows:

H∆n =
∞⋃
k=0

∆n
k .

Moreover, an n-Hawaiian simplex in the given space (X,x0) is a continuous map σn :
(H∆n, θ) → (X,x0). The restriction of σn on the kth simplex ∆n

k can be regarded as
a singular n-chain in X, denoted by σnk = σn|∆n

k
. Note that the sequence {σnk} is null-

convergent; That is for any open set U around x0, all the images of σnk ’s are contained in
U except a finite number.

As in the definition of singular homology, the group Sn(X,x0) is defined as the free
abelian group generated by all n-Hawaiian simplexes in (X,x0). To define the boundary
homomorphism ∂n : Sn(X,x0) → Sn−1(X,x0), we need to introduce face maps. Let
k ∈ N. Consider εni,k : ∆n−1

k → ∆n
k as the map defined by the ith face-map on Euclidean

(n − 1)-simplex together with the appropriate coefficient associated with k ∈ N. Then
let εni =

⋃∞
k=0 ε

n
i,k :

⋃∞
k=0 ∆n−1

k →
⋃∞
k=0 ∆n

k be the map obtained by the union of all εni,k’s
for k ∈ N and the constant map for k = 0. The mapping εni is continuous, because
∆n−1
k is mapped into ∆n

k by a continuous mapping for each k ∈ N and then it maps each
convergent sequence to a convergent sequence. Then εni is called the ith face-map of the
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n-Hawaiian simplex. Now the boundary map ∂n : Sn(X,x0) → Sn−1(x, x0) is defined by
∂n(σn) =

∑n
i=0(−1)iσ ◦ εni . Then we have the following chain complex:

· · · −→ Sn(X,x0) ∂n−→Sn−1(X,x0) ∂n−1−→ · · · −→ S1(X,x0) ∂1−→S0(X,x0) ∂0−→ 0.

Remark 2.2. To define Hawaiian homology group, we must verify the equality ∂n∂n+1 =
0. It can be checked by the definition of boundary homomorphism as follows. Let σ be
an (n+ 1)-Hawaiian simplex.

∂n∂n+1(σ) = ∂n
( n+1∑
j=0

(−1)jσ ◦ εn+1
j

)
=

∑
i,j

(−1)i+jσ ◦ εn+1
j ◦ εni

=
∑
i,j

(−1)i+j
∞⋃
k=0

(
σk ◦ εn+1

j,k ◦ εni,k
)
,

=
∑
j≤i

(−1)i+j
∞⋃
k=0

(
σk ◦ εn+1

j,k ◦ εni,k
)

+
∑
i<j

(−1)i+j
∞⋃
k=0

(
σk ◦ εn+1

j,k ◦ εni,k
)
.

By [20, Lemma 4.5], if i < j, then εn+1
j,k εni,k = εn+1

i,k εnj−1,k. Thus by replacement in the
second sum,

∂n∂n+1σ =
∑
j≤i

(−1)i+j
∞⋃
k=0

(
σkε

n+1
j,k εni,k

)
+

∑
i<j

(−1)i+j
∞⋃
k=0

(
σkε

n+1
i,k εnj−1,k

)
.

Change variables in the second sum as p := i and q := j − 1. Then∑
j<i

(−1)i+j
∞⋃
k=0

(
σkε

n+1
i,k εnj−1,k

)
=

∑
p≤q

(−1)p+q+1
∞⋃
k=0

(
σkε

n+1
p,k ε

n
q,k

)
.

Again replace indexes with j := p and i := q, and then

∂n∂n+1(σ) =
∑
j≤i

(−1)i+j
∞⋃
k=0

(
σkε

n+1
j,k εni,k

)
+

∑
j≤i

(−1)j+i+1
∞⋃
k=0

(
σkε

n+1
j,k εni,k

)
=

∑
j≤i

(
(−1)i+j + (−1)j+i+1)( ∞⋃

k=0

(
σkε

n+1
j,k εni,k

))

=
∑
j≤i

(
0
)( ∞⋃

k=0

(
σkε

n+1
j,k εni,k

))
= 0.

Now, we are able to define the Hawaiian homology group as follows.

Definition 2.3. Let (X,x0) be a pointed topological space. Then the nth Hawaiian
homology group of (X,x0), denoted by Hn(X,x0), equals the quotient group Zn(X,x0)

Bn(X,x0) ,
where Zn(X,x0) = ker ∂n and Bn(X,x0) = im ∂n+1. By clsα = α + Bn(X,x0) we mean
the homology class of α.

As a simple example, we compute the first Hawaiian homology group of the unit circle.

Example 2.4. Let S1 denote the circle with radius 1 in the Euclidean space. Then
H1(S1, a) = Zn(S1,a)

Bn(S1,a) . Define ψ : Zn(S1, a) →
∑

ℵ0 H1(S1) by the rule ψ(σn) = {clsσn|∆n
k
}k∈N.

Since simplexes {σn|∆n
k
}k∈N tend to be small, they are contained in a contractible subset,
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and then they may be replaced with constant simplexes. Hence just a finite number of
non-null-homotopic simplexes remain. Therefore, H1(S1, a) ∼=

∑
ℵ0 H1(S1) ∼=

∑
ℵ0 Z.

By Definition 2.3, for each pointed topological space, there corresponds a sequence of
abelian groups. To define a functor Hn : Top∗ → Ab, n ≥ 0, from the category of pointed
topological spaces to the category of abelian groups, we need to define morphisms; that is,
for each pointed map f : (X,x) → (Y, y), a homomorphism Hn(f) : Hn(X,x) → Hn(Y, y)
exists that satisfies

(i) Hn(idX) = idHn(X,x),
(ii) Hn(f ◦ g) = Hn(f) ◦ Hn(g).

As in the definition of the functor of singular homology group [20, p. 66], we define Hn(f) :
Hn(X,x) → Hn(Y, y) by cls zn 7→ cls f#(zn), where f# : Sn(X,x) → Sn(Y, y) is defined
by f#(

∑
mσσ) =

∑
mσ(f ◦ σ). The same argument as used in [20, Theorem 4.10] implies

that Hn(f) satisfies conditions (i) and (ii), and then Hn is a functor. Then it is natural
to ask if the Hawaiian homology functor preserves pointed homotopy mappings. There
are some differences between the singular homology group, the most familiar homology
theory, and the Hawaiian homology group. The first one is the preservation of homotopy
mappings; for the singular homology group, every free homotopy equivalence induces an
isomorphism, but for the Hawaiian homology group, if the homotopy mapping does not
preserve the base point, it does not necessarily induce an isomorphism (see Example 3.6).

Now it is natural to know if the Hawaiian homology functors satisfy the homology
axioms.

3. Axioms of homology
In homology theory, there are five properties called axioms of homology or sometimes

called Eilenberg-Steenrood axioms, which consists of dimension axiom, additivity, homo-
topy, exactness and excision. These axioms classify different theories of homology and
also help to calculate the homology group of some spaces such as n-spheres. We see that
the Hawaiian homology groups do not satisfy all of these axioms. In the following we
investigate homology axioms for Hawaiian homology. Three axioms of dimension, excision
and exactness hold for arbitrary spaces, but two axioms of homotopy and additivity hold
with some conditions and modifications.

3.1. Dimension, excision and exactness axioms
Dimension axiom. For the Hawaiian homology group, similar to the singular homology
group, the axiom of dimension can be verified directly by calculating boundary homomor-
phism as follows; see also [20, Theorem 4.12].

Proposition 3.1. Let X = {x} be the one-point space. Then Hn(X,x) = 0 for n ≥ 1.

Proof. Let n ≥ 1. Since X has only one point, there is just one chain and all the
groups Sn(X,x) are isomorphic to the infinite cyclic group Z. Also for the boundary
homomorphism

∂n(σ) =
n∑
i=0

σ ◦ εni =
{

0 if n is odd
−1 if n is even

, (3.1)

because σ ◦ εni is an (n − 1)-simplex, and there is just one (n − 1)-simplex being the
generator 1. Then by equality (3.1),

Zn(X,x) = ker ∂n =
{
Sn(X,x) if n is odd
0 if n is even

,



1612 H. Torabi, H. Mirebrahimi, A. Babaee

and

Bn(X,x) = im ∂n+1 =
{

0 if n+ 1 is odd
Sn(X,x) if n+ 1 is even

=
{
Sn(X,x) if n is odd
0 if n is even

.

Hence if n is odd, Hn(X,x) = ker ∂n
im ∂n+1

= Sn(X,x)
Sn(X,x) = 0, and if n is even, Hn(X,x) = ker ∂n

im ∂n+1
=

0
0 = 0. Then we are done. □

Exactness axiom. For the rest of section, we address two axioms of exactness and exci-
sion. The axiom of exactness in homology states that each pair of spaces (X,A) induces a
long exact sequence in homology groups, via the inclusions i : A → X and j : X → (X,A);

· · · → Hn(A) Hn(i)−−−→ Hn(X) Hn(j)−−−−→Hn(X,A) ds

−→Hn−1(A) → · · · .

The homomorphism ds is called the standard connecting homomorphism, which is obtained
by the Zig-zag Lemma [19, Lemma 24.1]. We first, need to define relative Hawaiian
homology. Let x0 ∈ A ⊆ X. One can consider Sn(A, x0) ⊆ Sn(X,x0), and homomorphism
δn is induced by the boundary homomorphism ∂n. Then one achieve chain complex

· · · −→ Sn+1(X,x0)
Sn+1(A, x0)

δn+1−−−→ Sn(X,x0)
Sn(A, x0)

δn−→ Sn−1(X,x0)
Sn−1(A, x0)

−→ · · · .

Then the relative n-Hawaiian cycles and the relative n-Hawaiian boundaries can be defined
as follows:

Zn(X,A, x0) = {γ ∈ Sn(X,x0); ∂nγ ∈ Sn−1(A, x0)},
Bn(X,A, x0) = Bn(X,x0) + Sn(A, x0).

Relative homology groups are defined as Hn(X,A, x0) = Zn(X,A,x0)
Bn(X,A,x0) for n ≥ 0.

We intend to rewrite and prove the axiom of exactness for Hawaiian homology groups,
by using Zig-zag Lemma in Proposition 3.2. The Zig-zag Lemma states that for chain
complexes C = {Cp, ∂C}, D = {Dp, ∂D} and E = {Ep, ∂E} and chain maps φ and ψ, the
following short exact sequence of chain complexes 0 −→ C

φ−→ D
ψ−→ E −→ 0 leads to a

long exact homology sequence:

· · · −→ Hp(C) φ∗−→ Hp(D) ψ∗−→ Hp(E) ∂∗−→ Hp−1(D) −→ · · · ,

where ∂∗ is induced by the boundary operator in D [19, Lemma 24.1].

Proposition 3.2. Let x0 ∈ A ⊆ X. Then the following sequence is exact

· · · → Hn(A, x0) i∗−→ Hn(X,x0) j∗−→Hn(X,A, x0) d−→Hn−1(A, x0) → · · · . (3.2)
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Proof. By Zig-zag lemma we need to verify that the following sequence of chain maps is
exact

...

��

...

��

...

��

0 // Sn−1(A, x0) i∗ //

��

Sn−1(X,x0)
q //

��

Sn−1(X,x0)
Sn−1(A,x0)

��

// 0

0 // Sn(A, x0) i∗ //

��

Sn(X,x0)
q //

��

Sn(X,x0)
Sn(A,x0)

��

//

��

0

0 // Sn+1(A, x0) i∗ //

��

Sn+1(X,x0)
q //

��

Sn+1(X,x0)
Sn+1(A,x0)

��

// 0

...
...

...
Since i∗ is induced by the inclusion, it is injective. Also, q is the quotient homomorphism
on the image of i∗, and then ker q = im i∗. Moreover, q is a quotient homomorphism, and
then it is onto. Therefore, the sequence of chain complexes 0 −→ S(A, x0) i∗−→ S(X,x0) q−→
S(X,x0)/S(A, x0) −→ 0 is exact. Thus by Zig-zag Lemma, the sequence (3.2) is exact. □
Excision axiom. The axiom of excision in homology theory states that for two subspaces
X1 and X2 of X, if X = X◦

1 ∪X◦
1 , then the inclusion i : (X1, X1 ∩X2) ↪→ (X,X2) induces

isomorphism on homology groups.

Proposition 3.3. Let X = X◦
1 ∪X◦

1 and x0 ∈ X◦
1 ∩X◦

1 . Then
i∗ : Hn(X1, X1 ∩X2) → Hn(X,X2),

is an isomorphism for all n.

Proof. By [20, Lemma 6.11], it suffices to show that the inclusion S∗(X1) + S∗(X2) →
S∗(X) induces isomorphism in homology. We need a straightforward adaption of the proof
of [20, Theorem 6.17]. First define θ : [γ1 + γ2] 7→ cls (γ1 + γ2). As the rule is defined by
addition, θ is homomorphism. Then θ is surjective and injective by a similar argument
as used in [20, Theorem 6.17], when [20, Lemma 6.12 and Lemma 6.16] are rewritten for
Hawaiian cases. □

3.2. Homotopy and additivity axioms
Homotopy axiom. For the Hawaiian homology groups, homotopy axiom holds if the
homotopy mapping preserves the base point (Proposition 3.4). Moreover, consider the
cone over the 1-dimensional Hawaiian earring. Its 1st Hawaiian homology group at some
point is not trivial (See Example 3.6), while it is contractible.

Proposition 3.4. Let f, g : (X,x0) → (Y, y0) be pointed maps and let F : f ' g rel {x0}.
Then Hn(f) = Hn(g) for n ≥ 0.

Proof. To prove the equality Hn(f) = Hn(g), for every n-Hawaiian simplex α, we show
that Hn(f)(clsα) = Hn(g)(clsα). It is equivalent to f#(α) − g#(α) being the boundary
of an (n + 1)-Hawaiian simplex. By [20, Theorem 4.23], we have F : f ' g, and then
f s#(α|∆n

k
)−gs#(α|∆n

k
) is equal to the boundary of an (n+1)-simplex βk in Y ; the simplex βk

is constructed by F (α|∆n
k
,−) for k = 0, 1, 2, . . . . Since F is a pointed homotopy mapping,

and I is compact, the images of βk’s are convergent to the point y0 (for a detailed proof
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see [2, Theorem 2.13]). Then one can define the (n + 1)-Hawaiian simplex β = ∪∞
k=0βk,

where β0 is the constant map at the point y0. Moreover, since fs#(α|∆n
k
) − gs#(α|∆n

k
) for

each k = 0, 1, . . ., f#(α) − g#(α) equals the boundary of β. □

A space X is called semi-locally contractible at x0 if there exists an open neighborhood
U of x0 such that the inclusion map i : U → X is nullhomotopic. A space X is called
semi-locally strongly contractible at the point x0 if there exists an open neighborhood U
of x0 such that the inclusion map i : U → X is homotopic to the constant map relative to
the point x0. Obviously if X is semi-locally strongly contractible at x, it is semi-locally
contractible at x too. If X is semi-locally stronlgy contractible, then since the image of
any Hawaiian simplex is contained in U except a finite number of standard simplexes
and U can be contracted to x0, Hawaiian simplexes have no information more than finite
standard simplexes. Example 2.4 calculates the Hawaiian homology group of the circle S1,
and it is formally generalized as follows.

Corollary 3.5. Let X be semi-locally strongly contractible at the point x0. Then

Hn(X,x0) ∼=
∑
ℵ0

Hn(X).

Proof. Since
∑

ℵ0 Hn(X) is a subgroup of
∏

ℵ0 Hn(X), the elements are of the form
{bk}k∈N where bk = 0 for all but finitely many k’s. For each k ∈ N, we consider the
kth factor Hn(X) as a subgroup of Hn(X,x0), where each simplex vanishes except the kth
one corresponded to the elements of Hn(X). The intersections vanish, because each factor
is corresponded to a unique k ∈ N. It remains to verify that Hn(X,x0) is generated by∑

ℵ0 Hn(X). Let σ be an n-Hawaiian simplex in X at x0. Since X is semi-locally strongly
contractible at x0, there exists a neighborhood U of x0 that is contractible in X at x0.
Since each n-Hawaiian simplex is a union of null-convergent standard n-simplexes (see
[2]), there is K ∈ N such that im(σk) ⊆ U for k ≥ K. Then

⋃
k≥K σk is null-homotopic in

X, and thus Hn(X,x0) is generated by
∑

ℵ0 Hn(X). □

We present a space in Example 3.6 to prove that a free homotopy equivalence does not
necessarily induce the isomorphism on Hawaiian homology groups.

Example 3.6. Let C(HE1) = HE1×[0, 1]/HE1×{1} be the cone over the one-dimensional
Hawaiian earring and θ be the origin at the bottom HE1. Since the cones are contractible,
the homotopy axiom implies that the homology group must vanish, but it does not hold
for the first Hawaiian homology group. To prove this, consider the simple 1-Hawaiian
simplex σ whose image is the Hawaiian earring at the bottom HE1 × {0}. This Hawaiian
simplex is contained in Z1(CHE1, θ) = ker ∂1, and also there is no 2-Hawaiian simplex
whose boundary equals σ. Therefore H1(C(HE1, θ) 6= 0.

Example 3.6 emphasises the difference between Hawaiian homology and singular ho-
mology groups. That is all the singular homology groups vanishes for contractible spaces,
but it does not hold for Hawaiian homology groups as seen in Example 3.6. However,
there are some relations between Hawaiian homology and singular homology groups, such
as the isomorphism proven in Corollary 3.5.

Null convergent homology groups. Hawaiian homology group is defined by convergent
sequences of simplexes. Now there is a question; may we define Hawaiian homology by
convergent sequences of singular n-chains not using Hawaiian simplexes? If the group is
defined by convergent sequences of n-chains, the abelian group structure does not seem
to be the same as that of the Hawaiian homology group. First, we intend to explain
what we mean by convergence. For a sequence (ci) of n-chains ci =

∑
σ aσσ, where each

σ : ∆n → X is a singular n-simplex, let supp (ci) =
⋃
σ(∆n). Let us say that the sequence
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(ci) converges to a point x0 of X, written as limn→∞ ci = x0, if for each neighborhood U
of x0, there exists an integer n such that supp (cm) ⊆ U for each m ≥ n.

Definition 3.7. Let HSn(X,x0) be the subgroup of the countably infinite product of
standard n-chains consisting of convergent ones, that is

HSn(X,x0) = {(ci)| lim
i→∞

ci = x0}.

Consider the boundary operator ∂n : HSn(X,x0) → HSn−1(X,x0) as the restriction of
the countable product of the standard boundary operators on standard n-chains. Then
the group HLn(X,x0) could be defined by HLn(X,x0) = ker ∂n/im ∂n+1.

One can straightforwardly check that HSn(X,x0) and then HLn(X,x0) have group
structures that seems to be related to Hawaiian homology groups.

Problem 3.8. Are groups HLn(X,x0) and Hn(X,x0) isomorphic for n ∈ N?

There is a natural relation between group HLn(X,x0) and countably infinite product
of nth singular homology group as follows.

Proposition 3.9. Let X be a path-connected space. The natural corresponding ψ :
HLn(X,x0) →

∏
ℵ0 Hn(X) is a homomorphism.

Proof. Define ψ : HLn(X,x0) →
∏

ℵ0 Hn(X) by the rule Let (ci)im ∂n+1 be an element
of HLn(X,x0). Put ψ(ci)im ∂n+1 := (ciim ∂sn+1), where ∂s is the standard boundary
homomorphism. To prove well-definedness, let (ci)im ∂n+1 = (bi)im ∂n+1. Then (ci− bi) ∈
im ∂n+1. Thus there is (ai) ∈ HSn+1(X,x0) such that ∂n+1(ai) = (ci − bi). That is
ci−bi = ∂sn+1ai, for each i ∈ N, because the boundary homomorphism ∂n+1 is the product
of standard boundary homomorphisms on the components. Then ci− bi ∈ im ∂sn+1. Hence
ciim ∂sn+1 = biim ∂sn+1 for each i ∈ N. This means that ψ is well-defined. To prove ψ is a
homomorphism, consider (ci)im ∂n+1 and (bi)im ∂n+1 as arbitrary elements of HLn(X,x0).

ψ
(
(ci)im ∂n+1 + (bi)im ∂n+1

)
= ψ

(
(ci + bi)im ∂n+1

)
= (ci + biim ∂sn+1)
= (ciim ∂sn+1 + biim ∂sn+1)
= (ciim ∂sn+1) + (biim ∂sn+1)
= ψ(ci)im ∂n+1 + ψ(bi)im ∂n+1,

and then ψ is a homomorphism. □
The homomorphic image of the homomorphism ψ introduced in Proposition 3.9, is an

abelian group which we denote by Ln(X,x0). This group consists of all sequences of
classes of convergent n-chains to the base point x0. Recall that homotopy contractions
make Hawaiian homology groups vanish whenever they preserve the base points. How-
ever Ln group is a subgroup of

∏
ℵ0 Hn(X), and then it is trivial for contractible spaces,

distinguishing it from the Hawaiian homology group. Although, these two groups may
be isomorphic for some locally trivial spaces as proven in the following for semi-locally
contractible spaces; See Corollary 3.5.

Proposition 3.10. Let X be a path-connected space, which is semi-locally contractible at
x0 ∈ X. Then

Ln(X,x0) ∼=
∑
ℵ0

Hn(X).

Proof. Since Ln(X,x0) is the image of homomorphism defined in Proposition 3.9, ψ :
HLn(X,x0) →

∏
ℵ0 Hn(X), it suffices to show that imψ =

∑
ℵ0 Hn(X). Let ψ(ci)im ∂n+1 =

(ciim ∂sn+1) ∈ imψ. There is an open neighborhood U of x0 such that the inclusion
i : U → X is nullhomotopic. Since (ci) ∈ HSn(X,x0), there is m ∈ N such that
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supp (ci) ⊆ U for i ≥ m. Then ci can be considered as an n-chain in U for i ≥ m.
Since i is nullhomotopoic, by the homotopy axiom for singular homology, Hn(i) is the
trivial homomorphism. Then ciim ∂sn+1 = Hn(i)(ciim ∂sn+1) = 0 for i ≥ m. That is
ψ(ci) = (ciim ∂sn+1) ∈

∑
ℵ0 Hn(X). Now let (ciim ∂sn+1) ∈

∑
ℵ0 Hn(X). Then for some

m ∈ N, we have ciim ∂sn+1 = 0 if i ≥ m. Put bi = ci for i < m and bi = 0 for i ≥ m. Thus
ψ(bi)im ∂n+1 = (biim ∂sn+1) = (ciim ∂sn+1). Also, since bi = 0 for i ≥ m, supp (bi) ⊆ U if
i ≥ m for any open neighborhood U of x0. Hence lim bi = x0, and then (bi) ∈ HSn(X,x0).
Moreover, note that ∂n is induced by countably infinite copies of the standard boundary
homomorphism ∂sn; That is ∂n(bi) = (∂snbi) = (∂snc1, . . . , ∂

s
ncm−1, ∂

s
n0, ∂sn0, . . .) = (0, . . . , 0),

because (ci) ∈
∑

ℵ0 Hn(X), and then ci ∈ ker ∂sn, and also ∂sn0 = 0 for i ≥ m. Therefore,
(bi) ∈ ker ∂n. □

Now by Corollary 3.5 and Proposition 3.10, if X is semi-locally strongly contractible at
x0, then

Hn(X,x0) ∼=
∑
ℵ0

Hn(X) ∼= Ln(X,x0).

Note that a similar isomorphism holds for the nth Hawaiian group and the Ln group
defined in [2, Theorem 2.5]. The Ln groups were defined by null-convergent sequences of
n-loops; For a pointed space (X,x), Ln(X,x) is the subset of

∏
ℵ0 πn(X,x) consisting of

all sequences of homotopy classes {[fi]}, where {fi} is null-convergent [2, Definition 2.6].

Additivity axiom. A modified version of the additivity axiom holds for Hawaiian ho-
mology group as stated in Theorem 3.11. Moreover, Example 3.12 shows that classical
additivity axiom does not hold for Hawaiian homology. Recall that X is called semi-locally
path-connected at x ∈ X if there is an open neighborhood U of x such that U is path-
connected in X; That is any two points x1 and x2 in U can be connected by a path in
X.

Theorem 3.11. Let X be semi-locally path-connected at point x0, let {Xλ} be the family
of path components with x0 ∈ Xλ0, and let n ≥ 0. Then

Hn(X,x0) ∼=
( ∑
λ 6=λ0

∑
ℵ0

Hn(Xλ)
)

⊕ Hn(Xλ0 , x0). (3.3)

Proof. First, note that for each finite sequence of standard simplexes, one may construct
a Hawaiian simplex by vanishing all terms of the sequence except the finite number of
given simplexes. Therefore,

∑
ℵ0 Hn(Xλ) can be considered as a natural subgroup of

Hn(X,x0). Moreover, consider two elements clsσ, clsβ ∈ Hn(Xλ0 , x0). If clsσ = clsβ,
then σ − β equals the boundary of some (n + 1)-Hawaiian simplexes in Xλ0 . Thus it
holds for σ − β as an n-Hawaiian simplex in X. Then clsσ = clsβ in Hn(X,x0). Hence,
Hn(Xλ0 , x0) is a subgroup of Hn(X,x0). Also, since X is semi-locally path-connected,
there exists a path-connected open neighborhood, namely U of X at x0. We show that
the abelian group Hn(X,x0) is generated by the family of subgroups {

∑
ℵ0 Hn(Xλ)}λ 6=λ0 ∪

{Hn(Xλ0 , x0)}. To prove this, consider a Hawaiian simplex σ. Then there is a natural
number K such that if k ≥ K, then im(σ(∆n

k)) ⊆ U . Note that since U is path-connected,
U ⊆ Xλ0 , and then im(σ|⋃

k≥K
∆n

k
) ⊆ Xλ0 . Therefore, σ|⋃

k≥K
∆n

k
can be considered as an

element of Hn(Xλ0 , x0) and the other standard simplexes ∆n
k , k < K, are generated by∑

λ6=λ0

∑
ℵ0 Hn(Xλ), as desired. Since these subgroups have trivial intersections, because

of the path-connectedness of simplexes, the isomorphism holds. □

Now, we present an example to show that the isomorphism (3.3) differs from the corre-
sponding statement for the singular homology,

Hn(X) ∼=
∑
λ

Hn(Xλ).
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Example 3.12. Consider the space X = HE2∪̇S2 and the point a ∈ S2. Then H2(X, a) ∼=∑
ℵ0 H2(HE2) ⊕ H2(S2, a) =

∑
ℵ0

∏
ℵ0 Z ⊕

∑
ℵ0 Z [10]. On the other hand, H2(HE2, θ) ⊕

H2(S2, a) ∼=
∏

ℵ0

∑
ℵ0 Z ⊕

∑
ℵ0 Z and these two groups are not isomorphic [11].

4. Hurewicz theorem for Hawaiian homology
By a well-known fact called Hurewicz theorem, for path-connected spaces, two func-

tors of homotopy and homology are connected. In fact, for a path-connected space X,
there exists a surjective homomorphism φs : π1(X,x0) → H1(X) whose kernel equals the
commutator subgroup of π1(X,x0). A similar relation exists between Hawaiian homology
and Hawaiian groups of pointed spaces. For each pointed space (X,x0), there exists a
homomorphism φ : H1(X,x0) → H1(X,x0). The homomorphism φ is surjective and its
kernel equals the commutator subgroup if X is path-connected and locally path-connected
at x0.

Theorem 4.1. Let X be a path-connected space that is locally path-connected at x0. Then
the homomorphism φ : H1(X,x0) → H1(X,x0) is surjective whose kernel equals the com-
mutator subgroup of H1(X,x0).

Proof. First, we correspond an element of H1(X,x0) for each map f : (HE1, θ) → (X,x0).
Let η :

⋃∞
k=0 ∆1

k → HE1 maps each ∆1
k onto S1

k homeomorphically except at the vertices
mapped to the base point θ. Then fη is a 1-Hawaiian simplex in X at x0. Also ∂(fη) =⋃∞
k=0 fkηk(ek1) −

⋃∞
k=0 fkηk(ek0) =

⋃∞
k=0

(
fkηk(ek1) − fkηk(ek0)

)
=

⋃∞
k=0 0 = 0, where ηk :

∆k → S1
k is the restriction of η to the kth standard 1-simplex. Thus fη ∈ im(∂1). Hence

one can define φ : H1(X,x0) → H1(X,x0) by φ([f ]) = cls fη.
To prove well-definedness, let f ' g rel{θ}. Then fk ' gk rel{θ} for each k = 0, 1, . . .,

where fk and gk are the restrictions of f and g, respectively, to the kth circle S1
k. By the

standard Hurewicz theorem, cls fkηk = cls gkηk for k = 0, 1, . . .. Thus cls (fkηk−gkηk) = 0,
and then fkηk − gkηk belongs to the image of ∂, the boundary of some linear composition
of standard 2-simplex

∑n
j=1mjσ

j
k. By the proof of the standard Hurewicz theorem [20,

Lemma 4.26], this standard 2-simplex is constructed by the homotopy mapping Hk : fk '
gk for k = 1, 2, . . .. Since Hk is the restriction of the homotopy H : f ' g to the kth
circle, the image of Hk is null-convergent. Hence for any open neighborhood U of x0,
im (Hk) ⊆ U if k ≥ K for some K ∈ N (see [2, Definition 2.1]). Therefore, im(∪nj=0σ

j
k) is

null-convergent and then ∪∞
k=0

∑n
j=1mnσ

j
k, where the 0-simplex is the constant standard

simplex, is a linear composition of 2-Hawaiian simplexes, whose boundary equals fη− gη.
Hence cls f − g = 0, and then cls f = cls g. It implies that φ is well-defined.

Moreover, φ is a homomorphism. To prove this, consider two elements [f ] and [g] in
the group H1(X,x0). Then the following sequence of equalities holds:

φ([f ][g]) = φ([f ∗ g]) = cls (f ∗ g)η = cls ∪∞
k=0 (fk ∗ gk)ηk.

We must verify the equality
cls ∪∞

k=0 (fk ∗ gk)ηk = cls ∪∞
k=0 fkηk + cls ∪∞

k=0 gkηk.

Equivalently, we must find a composition of 1-Hawaiian simplexes whose boundary equals
∪∞
k=0(fk ∗ gk)ηk − ∪∞

k=0fkηk − ∪∞
k=0gkηk. By the proof of the standard Hurewicz theorem

[20, Theorem 4.27], there exists a sequence of composition of standard 2-simplexes, namely∑n
j=1mnσ

j
k (k ∈ N) constructed by the maps fk∗gk, fk, and gk such that ∂(

∑n
j=1mnσ

j
k) =

(fk ∗ gk)ηk − fkηk − gkηk. It remains to verify that the sequence {
∑n
j=1mnσ

j
k} is null-

convergent. Since the maps fk ∗ gk, fk, and gk are null-convergent, so is
∑n
j=1mnσ

j
k

(k ∈ N). Therefore, ∪∞
k=0

∑n
j=1mnσ

j
k is a 2-Hawaiian simplex, and also its boundary

equals ∪∞
k=0(fk ∗ gk)ηk − ∪∞

k=0fkηk − ∪∞
k=0gkηk = (f ∗ g)η − fη − gη. Thus cls (f ∗ g)η =

cls fη + cls gη, and then φ is a homomorphism.
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To prove surjectivity of the homomorphism φ, we consider an element cls σ of H1(x, x0).
By the restriction to the kth 1-simplex, denoted by σk, one can use the standard Hurewicz
theorem [20, Theorem 4.29], to obtain a sequence of maps fk defined from S1 to X such
that φs([fk]) = cls σk. If σk =

∑m
i=0 σ

i
k, then by the proof of [20, Theorem 4.29], fk is

defined by the concatenation of a sequence of simplexes and some paths between the base
point x0 and the end points of simplexes. Since X is locally path-connected at x0 having a
countable local basis, one can consider a sequence of nested open neighborhoods {Ui}i∈N
of x0 such that each element Ui is path-connected in Ui+1. Therefore, the sequence fk can
be considered to be null-convergent. Then define f |S1

k
= fk. Since {fk} is null-convergent,

f is continuous by [2, Lemma 2.2], and also φ([f ]) = σ.
To compute the kernel of φ, we use some parts of proof of the original Hurewicz theorem.

Recall that (H1(X,x0))′ ⊆ kerφ, because the group H1(X,x0) is abelian. Now let [f ] ∈
kerφ be an arbitrary element. Since [f ] ∈ kerφ, φ([f ]) = 0; That is cls fη = 0. Thus fη ∈
im ∂2. Equivalently there exists an 2-Hawaiian chain σ =

∑
i niσi such that ∂2(σ) = fη.

We can write ni = ±1, and then for each σi, ∂σi = τi0 − τi1 + τi2 for three 1-Hawaiian
simplexes τij . Notice that

fη = ∂
∑
i

niσi =
∑
i

ni∂σi =
∑
i

ni(τi0 − τi1 + τi2) =
∑
i,j

(−1)jniτij . (4.1)

But fη is a 1-Hawaiian simplex, and all 1-Hawaiian simplexes make a basis for the set
of 1-chains. That is all the τij must form cancelling pairs except for one being equal to
fη. Now for each k ∈ N, by the [20, proof of Theorem 4.29], one can consider [f |S1

k
]

as an element of π1(X,x0)′ by a rearrangement γk = ak,1bk,1a
−1
k,1b

−1
k,1 . . . ak,m, bk,ma

−1
k,mb

−1
k.m

formed by
∑
i,j(−1)jniτij |∆1

k
η−1|S1

k
together with some paths joining the base point x0 to

the standard simpexes τij |∆1
k
. Since X is locally path-connected at x0, we can consider

those joining paths tend to x0. Also τij |∆1
k

tend to x0, because τij is a 1-Hawaiian simplex.
Hence γk tend to x0. Define γ : HE1 → X by γ|S1

k
= γk. Then [γ] belongs to H1(X,x0),

because γk’s are null-convergent. It remains to prove that [γ] ∈ H1(X,x0)′. We know
that [γk]’s belong to π1(X,x0)′ and they have some form α1β1α

−1
1 β−1

1 . . . αjβjα
−1
j β−1

j .
But by [20, proof of Theorem 4.29], γk’s are obtained by a fixed pattern using restric-
tions of Hawaiian simplexes τij ’s introduced in Equation (4.1). Therefore the length of
sequence, m does not depend on k and it is fixed for all γk’s. Also all of the sequences of
loops {ak,1}, . . . , {ak,m}, {bk,1}, . . . , {bk,m} are null-convergent. Thus one can define a, b :
(HE1, θ) → (X,x0) by ai|Sk

= ak,i and bi|Sk
= bk,i. Then γ = a1b1a

−1
1 b−1

1 . . . ambma
−1
m b−1

m

and therefore [γ] belongs to H1(X,x0)′ by [2, Lemma 2.2 (i)]. Moreover, since f |S1
k
’s and

γk’s are pairwise homotopic and only different in some null-convergent paths, the sequence
of homotopies is null-convergent. Then by [2, Lemma 2.2 (ii)], [f ] = [γ] in H1(X,x0). □

By Theorem 4.1 and the first isomorphism theorem, it holds that

H1(X,x0) ∼=
H1(X,x0)(
H1(x, x0)

)′ ,

where
(
H1(x, x0)

)′ denotes the commutator subgroup of the given group
(
H1(x, x0)

)
. Then

the first Hawaiian homology group is isomorphic to the abelianization of the first Hawaiian
group for path-connected and locally path-connected pointed topological spaces. This fact
helps us to study Hawaiian groups of topological spaces by Hawaiian homology.

5. Higmann-complete Hawaiian groups
Herfort and Hojka proved that the fundamental group of archipelago spaces is a Higman-

complete group, a group introduced as a non-abelian form of cotorsion groups; for more
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details, see [14, Definition 1]. In the rest of the paper, all the spaces are assumed to be
path-connected.

Definition 5.1 ([14]). A group G is Higman-complete if for any sequence f1, f2, . . . ∈ G
and for a given sequence of words with two alphabets w1, w2, . . ., there exists a sequence
h1, h2, . . . ∈ G such that all equations hi = wi(fi, hi+1) hold simultaneously.

The first example of non-abelian Higman-complete groups are the fundamental groups
of the spaces having small loops [14]. Virk [22] defined small loop as a loop α based at
a point x such that for every open neighbourhood U of x, there exists a loop homotopic
to α contained in U . The following lemma states that the first Hawaiian group of any
space whose loops at the base point are small, belongs to the class of Higman-complete
groups. This fact also holds for the fundamental group of archipelago spaces [14]. The
well-known archipelago space was defined and studied by Virk [22], which is an example
of spaces containing small loops.

Lemma 5.2. If all 1-loops at the point x ∈ X are small, then H1(X,x) is Higmann-
complete. If the same is true for n-loops, n ≥ 2, then Hn(X,x) is cotorsion.

Proof. Let all 1-loops be small at x ∈ X. Assume that f : HE1 → X is a 1-Hawaiian loop
at x. First, we show that f is a small 1-Hawaiian loop. That is for each open neighborhood
U of x, there is a homotopic representative g ' f with image contained in U . Since f
is continuous, there is K ∈ N such that im(f |S1

k
) ⊆ U for k ≥ K. Moreover, by the

assumption, all f |S1
k
’s are small. For k < K, define gk as the homotopic representative

1-loop of f |S1
k

with image in U . Now put g : HE1 → X as g|S1
k

= gk for k < K, and
g|S1

k
= f |S1

k
for k ≥ K, which is homotopic to f by [2, Lemma 2.2]. In [14, Theorem 4],

it was shown that π1(X,x) is Higmann-complete if all 1-loops at x in X are small. Let
f1, f2, . . . be a sequence of elements in G = H1(X,x) and w1, w2, . . . a sequence of words.
Also let {Ui}i∈N be the local basis at x. Similar to [14, Proof of Theorem 4], we inductively
construct maps ηi by subdivision HE1 into equal pieces such that for hi := [ηi] ∈ G all
equations hi = wi(fi, hi+1) hold.

By the first part of the proof, each fi is small. Then a representing γi of fi enclosed
in the neighbourhood Ui of x exists. We use γi as the reversed map corresponding to the
group element f−1

i . The word w1 has finite word length, so subdivide each circle in HE1,
as the domain of η1, into accordingly many pieces of equal size. For each place in w1
occupied by an f1 (or f−1

1 ) define η1, restricted to the corresponding piece of HE1, equal
to an appropriately scaled copy of γ1 (or γ1), and leave the other parts undefined for now.
Now proceed in this manner for w2, again splitting HE1 into as many pieces as the length
of w2, and then setting η2 equal to a scaled copy of γ2 (or γ2) for each piece corresponding
to f2 (or f−1

2 ). Then fill the partially defined η2 into the pieces of the domain of η1 that
correspond to h2 in the word w1 (and the reversed η2 for h−1

2 ). Going forward, each
time the partial definition of ηi is extended, it is reinserted in the definition of η−1

i , and
recursively all the way to η1. Note that each endpoint of an piece is always mapped to the
basepoint by the γi, so bordering definitions do match up properly. After running through
all infinitely many steps of this construction, each ηi is defined everywhere on HE1. but
for a closed, totally disconnected set of limit points; set ηi constant to the basepoint on
this set. Thus ηi is well-defined. Now clearly, ηi is continuous restricted to the interior
of a piece corresponding to some fn (or f−1

n ), with n ≥ i. For b ∈ HE1 not within such
a piece, b is mapped to the base point and the left (resp. right) continuity follows either
from the continuity of the adjacent piece, or, in the absence of such, from the fact that
the pieces converging to b eventually enclose their image in an arbitrary neighbourhood
U of x; in this case, the (one-sided) neighbourhood around b can be chosen small enough
that it does not intersect any of the finitely many pieces that are not mapped into U .
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In summary, we have constructed a sequence of loops ηi, each concatenation according
to the word wi of the loops γi and ηi+1. Hence, the equations hi = wi(fi, hi+1) of the
corresponding elements fi, hi ∈ G all hold, as desired. Therefore, H1(X,x) is Higmann-
complete. Similarly, if all n-loops are small, n ≥ 2, then πn(X,x) and Hn(X,x) are
Higmann-complete. Since πn(X,x) and Hn(X,x) are abelian, by [14, Theorem 3], they
are cotorsion. □

Theorem 4.1 presents a version of Hurewicz theorem for Hawaiian groups and Hawaiian
homology groups. Now we use that theorem to obtain the following corollary.

Corollary 5.3. Let X be locally path-connected at x, and let all 1-loops at x be small.
Then the first Hawaiian homology group H1(X,x) is cotorsion.

Proof. Since all 1-loops at x are small, by Theorem 5.2, H1(X,x) is Higmann-complete.
Also by Theorem 4.1, the group H1(X,x) is the epimorphic image of the group H1(X,x).
Then it is Higmann-complete by [14, Lemma 2]. Moreover, every abelian group is Higmann-
complete if and only if it is cotorsion [14, Theorem 3]. Therefore H1(X,x) is cotorsion. □

If all n-loops at a point are small, then both nth homotopy and nth Hawaiian groups
are Higman-complete. Note that the homotopy groups on path-connected spaces do not
depend on the choice of the base point. It implies that πn(X,x) is Higmann-complete if
all n-loops at some points of X are small, but it is not true for Hawaiian groups. Some
counterexamples are demonstrated in Corollary 5.12, by applying the following lemma.

Lemma 5.4. Let X be semi-locally strongly contractible at x0 and let n ≥ 2. If H1(X,x0)
is not torsion, then neither H1(X,x0) is cotorsion, nor H1(X,x0) is Higman-complete.
Moreover, if πn(X,x0) is not torsion, then Hn(X,x0) is not cotorsion.

Proof. Since X is semi-locally strongly contractible at x, by Corollary 3.5, the isomor-
phism H1(X,x) ∼=

∑
ℵ0 H1(X) holds. If H1(X,x) is cotorsion, then

∑
ℵ0 H1(X) is cotor-

sion. Thus by [12, Chap. 9, Proposition 6.10], H1(X) is torsion, which is a contradic-
tion. By [2, Theorem 2.5], H1(X,x0) ∼=

∏W
ℵ0 π1(X,x0). If H1(X,x0) is Higman-complete,

then
∏W

ℵ0 π1(X,x0) is Higmann-complete. Thus by [14, Theorem 3], its abelianization
H1(X,x) ∼=

∑
ℵ0 H1(X) is cotorsion, which does not hold. □

Two notions of weak direct product (
∏W ) and direct sum (

∑
) are defined for families

of groups, and they are almost the same, but direct sum is used only if the given groups
are abelian and weak direct product is used for any family {Gi}i of groups and denoted
by

∏W
i Gi being the subgroup of

∏
i∈I Gi consisting of all elements {gi}i∈I of

∏
i∈I Gi such

that gi = ei, for all i ∈ I except a finite number..
CW spaces are semi-locally strongly contractible at any point, and then by Lemma 5.4,

the following corollary is obtained.

Corollary 5.5. Let X be a CW space with torsion-free first homology group. Then
H1(X,x) is not Higman-complete for all x ∈ X. Moreover, if Hn(X) is torsion-free,
then Hn(X,x) is not cotorsion for x ∈ X.

If Hn(X,x) is Higman-complete for some x ∈ X, then so is πn(X,x) as an epimorphic
image of Hn(X,x), but the converse statement does not hold. There are spaces such
that their homotopy groups are Higman-complete but neither of their Hawaiian group nor
Hawaiian homology groups are; see the following example.

Example 5.6. Consider a Higman-complete torsion-free group, namely Q, and X =
K(Q, 1) as the Eilenberg–MacLane space corresponded to Q. Then H1(X) ∼= π1(X) ∼=
Q, which is Higman-complete because it is cotorsion. Moreover, since X is semi-locally
strongly contractible at any point x, H1(X,x) ∼=

∑
ℵ0 π1(X,x) ∼=

∑
ℵ0 Q by [2, Theorem

2.5]. Since X is a CW space and H1(X) is torsion-free, by Corollary 5.5, H1(X,x) is not
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Higman-complete for each x ∈ X. Also, H1(X,x) ∼=
∑

ℵ0 H1(X) ∼=
∑

ℵ0 Q by Corollary
3.5, and then H1(X,x) is not cotorsion for each x ∈ X by Corollary 5.5.

Some pseudomanifolds satisfy the conditions of Corollary 5.5; see [18, Theorem 8.2].

Corollary 5.7. The first Hawaiian group of an orientable two-dimensional pseudomani-
fold X is not Higman-complete. Also its first Hawaiian homology group H1(X,x) is not
cotorsion for all x ∈ X.

Archipelago groups are the first examples of Higman-complete groups. They are in-
troduced as the fundamental groups of archipelago spaces. The well-known Harmonic
archipelago is a non-locally Euclidean space, which was introduced to study non-semi-
locally simply connected spaces and it is the first example of spaces having small loops.
This space was generalized to archipelago space [7]. Herfort and Hojka [14] computed the
singular homology groups of archipelago spaces. In this paper, we use a similar argument
to present Hawaiian homology groups of the archipelago spaces.

Definition 5.8 ([7]). Let {(Xi, xi)}i∈I be a family of pointed spaces. Then the archipelago
space A = A({Xi}i∈I) on the given family is defined as the mapping cone on the natural
continuous bijection f :

∨
i∈I(Xi, xi) →

∨̃
i∈I(Xi, xi). Let X =

∨
i∈I(Xi, xi) and Y =∨̃

i∈I(Xi, xi) and x∗ be join point of Y . The quotient space Cf is obtained from (X×I)∪Y
by identifying (x, 0) with f(x) for any x ∈ X and X × {1} is collapsed to a point.

Archipelago spaces are examples of wild spaces. Free σ-groups are also fundamental
groups of some wild spaces [9, Theorem A.1]. Indeed free σ-groups are not Higman-
complete with behaves similar to free abelian groups, which are not cotorsion.

Remark 5.9. If {Gi}I is a family of groups such that Ab(Gi) is not cotorsion for some
i ∈ I, then the free product ∗IGi and free σ-product ⊛IGi are not Higman-complete.
In fact, there are natural epimorphisms ⊛IGi →

∏
I Gi and ∗IGi →

∏W
I Gi. Then Gi

and hence Ab(Gi) are their epimorphic images for all i ∈ I. If either ⊛IGi or ∗IGi is
Higman-complete, then so is Gi for all i ∈ I by [14, Lemma 2]. Thus Ab(Gi) is cotorsion
for all i ∈ I by [14, Theorem 3].

By Lemma 5.4, Hawaiian groups of semi-locally strongly contractible spaces are not
Higman-complete. In the following result, we see that there are spaces, such as the one-
dimensional Hawaiian earring, that are not semi-locally strongly contractible and their
Hawaiian groups are Higman-complete.

Theorem 5.10. Let {Xi}i∈I be a family of connected spaces, let X =
∨̃
IXi, and let x

be the common point. If H1(Xi) is not cotorsion for some i ∈ I, then H1(X,x) is not
cotorsion, and moreover, π1(X,x) and H1(X,x) are not Higman-complete.

Proof. Since Xi is a retract of the space X, there exits a natural epimorphism H1(X,x) →
H1(Xi, xi) induced by the Hawaiian homology functor. Also by [9, Theorem A.1], we have
π1(X,x) ∼= ⊛IGi, where Gi = π1(Xi, xi). If H1(X,x) is Higman-complete, then so is its
epimorphic image H1(Xi) by [14, Lemma 2] for all i ∈ I. Thus, since H1(Xi) is abelian
by [14, Theorem 3], it must be cotorsion for all i ∈ I. □

Theorem 5.10 and Lemma 5.2 imply Corollary 5.12 which compares the first Hawaiian
groups of some weak join space and the Griffiths space over the space. One can generalize
Griffiths space G(Xi) over an arbitrary family of spaces {Xi}N as the wedge of two cones
on

∨̃
NXi.

Definition 5.11. Let {(Xi, xi)}i∈I be a family of pointed spaces, (X,x∗) =
∨̃

(Xi, xi)
be the weak join space, and C1 and C2 be two copies of the cone over X. Also let
y1 = (x∗, 0) ∈ C1 and y2 = (x∗, 0) ∈ C2 be the base points in corresponded cones. Then
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the Griffiths space G = G(Xi) over the family {Xi}i∈I is defined as the wedge of two spaces
(C1, y1) and (C2, y2) and denoted by G(Xi); That G = G(Xi) is the disjoint union of C1
and C2 with y1 and y2 are identified to a point.

Corollary 5.12. Let {Xi}i∈I be as in Theorem 5.10, let X =
∨̃
i∈I be the week join

space, let A(Xi) be the archipelago space, and let G(Xi) be the Griffiths space on X. Then
H1(A(Xi), x∗) 6∼= H1(X,x∗), and also, H1(G(Xi), x∗) 6∼= H1(X,x∗).

In the following theorem, we prove that for two points of the archipelago spaces, the
Hawaiian groups are not isomorphic and depend on the base points. Thus archipelago
spaces are other examples of path-connected spaces whose Hawaiian groups depend on
the base points at different points.

Theorem 5.13. Let {Xi}i∈I be a family of spaces such that Xi is locally strongly con-
tractible at its base point xi, and let A = Ai∈I(Xi) be the archipelago space over the family
{(Xi, xi)}. If a ∈ A is any point other than common point x, then H1(A, x) 6∼= H1(A, a).

Proof. By [14, Theorem 8], H1(A) ∼=
∏

ℵ0
Z∑

ℵ0
Z , which is torsion-free by [5]. Since A is

semi-locally strongly contractible at a, by Lemma 5.4, H1(A, a) is not Higman-complete.
Also, since all 1-loops at x are small (see [14, Lemma 7]), by Lemma 5.2 H1(X,x) is
Higman-complete, and then it is not isomorphic to H1(A, a).

□
Since the Griffiths space is not necessarily semi-locally strongly contractible at a, Lemma

5.4 cannot be used.

Theorem 5.14. Let {Xi}i∈I be a family of spaces such that Xi is locally strongly con-
tractible at its base point xi. If a ∈ G = G({Xi}) is any point other than common point x,
then H1(G, x) 6∼= H1(G, a).

Proof. We show that H1(G, a) is not Higman-complete and H1(G, x) is Higman-complete,
and hence H1(G, a) 6∼= H1(G, x) By [8], G satisfies the premises of Lemma 5.2, and then
H1(G, x) is Higman-complete. If a 6= x∗, then by [3, Theorem 3.2], H1(G, a) has

∏W
ℵ0 π1(G, a)

as a direct factor. Therefore
∑

ℵ0 H1(G) is the epimorphic image of H1(G, a), and by
[14, Lemma 2 and Theorem 3], it is cotorsion. By [12, Proposition 6.10], H1(G) should be
torsion, which contradicts [16, page 2]. □

For both archipelago and Griffiths spaces, by the same argument as Theorems 5.13 and
5.14, we can compare L1(A(Xi)) and L1(G(Xi)) at different points. Then L1 groups of
both of archipelago and Griffiths spaces are not isomorphic at different points. The spaces
are path-connected, which implies that paths do not transfer Hawaiian groups and Ln
groups isomorphically. In the following theorem, we present an equivalent condition for
paths to transfer Hawaiian groups isomorphically. The condition n-SLT introduced in [4],
is sufficient but not necessary. Recall that a path γ from x0 to x1 in a space X is called a
small n-loop transfer (abbreviated to n-SLT), if for every open neighborhood U of x0, there
exists an open neighborhood V of x1, such that for every n-loop β : (In, İn) → (V, x1),
there is an n-loop α : (In, İn) → (U, x0) being homotopic to γ−1

# (β), where γ# is the base
point change isomorphism from πn(X,x0) to πn(X,x1) induced by γ (see [21, p. 381]).

Theorem 5.15. Let X have local nested bases at x0 and x1. A path γ from x0 to x1 in
X, induces the isomorphism Γγ : Hn(X,x0) → Hn(X,x1) if and only if γ and γ−1 are
n-SLT paths preserving null-convergent homotopies of n-loops.

Proof. First assume that Γγ is an isomorphism. We show that γ and the inverse path γ−1

are n-SLT paths. Let {Um} and {Vm} be local nested bases at x0 and x1, respectively.
Assume that U is an open neighborhood of x0 such that for each m ∈ N, there is an
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n-loop βm in Vm at x1 without any homotopic n-loop to γ−1
# (βm) in U . Define β :

(HEn, θ) → (X,x1) by β|Sn
m

= βm. From [2, Lemma 2.2], β is continuous. Since Γγ is an
epimorphism, there is α : (HEn, θ) → (X,x0) such that Γγ([α]) = [β]. Then βk ' γ#(α|Sn

k
)

or equivalently γ−1
# (β|Sn

k
) ' αk = α|Sn

k
. Since α is continuous and U is open, there is K ∈ N

such that if k ≥ K, then im(α|Sn
k
) ⊆ U . This contradicts the definition of β. Therefore, γ

is an n-SLT path. Similarly since Γ−1
γ is an epimorphism, γ−1 is an n-SLT path. Therefore,

for each open neighborhood U of x0, there is an open neighborhood V of x1 such that for
any two n-loops α and α′ in U , there are n-loops β and β′ in V homotopic to γ#(α) and
γ#(α′), respectively. Let {Hk} be a null-convergent sequence of homotopies of n-loops.
That is, there is an increasing sequence of natural numbers, namely {Km}, such that for
Km ≤ k < Km+1, im(Hk) ⊆ Um. Since γ−1 is an n-SLT path, there are n-loops βk and β′

k
with im(βk), im(β′

k) ⊆ Vm such that βk ' γ#(Hk(−, 0)) and β′
k ' γ#(Hk(−, 1)) whenever

Km ≤ k < Km+1. Define f, f ′ : (HEn, θ) → (X,x0) and f, g : (HEn, θ) → (X,x1)
by f |Sn

k
= Hk(−, 0), f ′|Sn

k
= Hk(−, 1), g|Sn

k
= βk, and g′|Sn

k
= β′

k. Now since {Hk}
is null-convergent, we have [f ] = [f ′] by [2, Lemma 2.2]. Also since γ induces a well-
defined homomorphism, Γγ([f ]) = Γγ([f ′]). Therefore, [g] = [g′], or equivalently there
is G : g ' g′. Since G : HEn × I → X is continuous and I is compact, G|Sn

k
×I is

null-convergent. Then {βk} and {β′
k} are homotopic by a null-convergent sequence of

homotopies. Similarly since γ−1 induces the well-defined homomorphism Γ−1
γ , one can

show that γ−1 preserves null-convergent homotopies of n-loops.
The proof of the converse statement is the same as [17, Theorem 5.5]. □

6. The first Hawaiian homology of harmonic archipelago
In this section, we obtain the structure of the first Hawaiian homology of the Harmonic

archipelago spaces, up to isomorphism. In fact, the group is isomorphic to its first singular
homology group. First, we prove that it is locally free; that is, all of its finitely generated
subgroups are free.

Theorem 6.1. Let A = A({Xi}) be the archipelago space on {Xi}i∈N, where each Xi is
locally strongly contractible and let x∗ be the common point. If π1(Xi) is free for all i ∈ I
except finitely many indices i, then H1(A, x∗) is locally free.

Proof. Since Xi is locally strongly contractible and first countable at xi, for i ∈ N, there
exists a nested local basis {V i

j }j∈N at xi such that the inclusion mapping V i
j ↪→ V i

j−1
is null homotopic to xi in V i

j−1. Let {Um}m∈N be the local basis at x∗ obtained by
Um = (

∨
i<mV

i
m) ∨

∨̃
i≥mXi. Therefore, the inclusion map Um+1 ↪→ Um is homotopic to

the map retracting each point of Xi onto xi for i < m and identity for the others. The
topology of archipelago spaces implies that the natural basis at the common point can be
retracted onto the neighborhoods {Um}. Consider M as the minimum number such that
π1(Xi) is free for all i ≥ M . Let G = 〈{[f1], [f2], . . . , [fm]}〉 be a subgroup of H1(A, x∗).
Also let w be a word such that w([f1], [f2], . . . , [f l]) is the trivial element. Hence there
exists a homotopy mapping H : w(f1, . . . , f l) ' Cx∗ . Since H is continuous, for each
m ∈ N, there exists Km ∈ N such that im(H|S1

k
×I) is a subset of Um+1 if k ≥ Km. Then,

im(w(f |1S1
k
, f |2S1

k
, . . . , f |lS1

k
)) ⊆ Um for k ≥ Km. Thus r(w(f |1S1

k
, f |2S1

k
, . . . , f |lS1

k
)) induces

a word of 1-loops at x∗ in
∨̃
i≥mXi for k ≥ Km, where r :

∨̃
ℵ0Xi →

∨̃
i≥mXi is the

natural retraction mapping each Xi on to x∗ if i ≤ m and being the identity on the other
indices. Also, r ◦ H|S1

k
×I : r(w(f |1S1

k
, f |2S1

k
, . . . , f |lS1

k
)) ' cx∗ in

∨̃
i≥mXi for k ≥ Km. Since

π1(
∨̃
i≥mXi) is locally free, all 1-loops f jS1

k
are null-homotopic in

∨̃
i≥mXi for 1 ≤ j ≤ l.
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Now by using [2, Lemma 2.2], one can obtain a continuous homotopy to make f j null-
homotopic. It implies that if a finite reduced word is trivial, then all of its generating
elements are trivial, or equivalently the group H1(A, x∗) is locally free. □

In the following theorem, assume that for each i, Xi satisfies the assumption 2 ≤
card

(
π1(Xi, xi)

)
≤ c. Then we present the structure of the first Hawaiian homology group

of some archipelago spaces by using the fact that this group is cotorsion.

Theorem 6.2. Let A = A({Xi}) be the archipelago space on {Xi}i∈N, where each Xi is
locally strongly contractible, and let x∗ be the join point. Also let π1(Xi) be free for all
i ∈ I except a finite number. Then

H1(A, x∗) ∼=
∑
c

Q ⊕
∏
p∈P

∑̂
c

Jp
p

∼=
∏

ℵ0 Z∑
ℵ0 Z

.

Proof. Since all 1-loops at x∗ are small, by Lemma 5.2, H1(A, x∗) is Higman-complete.
Then by [14, Lemma 2], Ab(H1(A, x∗)) is Higman-complete. Thus by [14, Theorem 3],
Ab(H1(A, x∗)) is cotorsion. Moreover, by Theorem 6.1, H1(A, x∗) is locally free. It
was shown that the abelianization of locally free group is torsion-free [14, Lemma 12].
Therefore, the group Ab(H1(A, x∗)) is a torsion-free cotorsion group, and then it is alge-
braically compact. Also, it is torsion-free algebraically compact, and then it is isomorphic
to

∑
m0 Q ⊕

∏
p∈P

∑̂
mp

Jp
p

for some cardinalities m0 and mp (p ∈ P ) [11, pp. 105,169].
Hence, it remains to obtain the cardinalities m0 and mp (p ∈ P ). Moreover, since Xi is
locally strongly contractible, it is locally path-connected, and then the archipelago space
A(Xi) is locally path-connected. Therefore by Theorem 4.1,

H1(A, x∗) ∼= Ab
(
H1(A, x∗)

) ∼=
∑
m0

Q ⊕
∏
p∈P

∑̂
mp

Jp
p

.

First, we show that card
(
H1(A, x∗)

)
≤ c. Thus m0,mp ≤ c, where c is the continuum car-

dinality and p is a prime. Let X =
∨̃
i∈IXi. One can generalize the proof of [17, Theorem

2.8] for the homomorphism i∗ : H1(X,x∗)) → H1(A, x∗), induced by the inclusion, to be
an epimorphism. Therefore, we have card

(
H1(X,x∗)

)
≥ card

(
H1(A, x∗)

)
. By [2, Theo-

rem 2.9], card
(
H1(X,x∗)

)
≤

∏
i∈N card

(
π1(Xi, xi)

)
≤ cℵ0 = c. Thus card

(
H1(A, x∗)

)
≤ c.

Moreover, for an arbitrary pointed space (X,x0), the group π1(X,x0) can be considered
as a subgroup of H1(X,x0). It implies that card

(
H1(X,x0)

)
≥ card

(
π1(X,x0)

)
. We know

that card
(
π1(A, x∗)

)
= c and then card

(
H1(A, x∗)

)
≥ c. Therefore card

(
H1(A, x∗)

)
= c,

and then we have card
(
H1(A, x∗)

)
≤ c, by Theorem 4.1. Thus m0,mp ≤ c. Now we show

that m0,mp ≥ c by constructing an epimorphism.
Since all 1-loops at x∗ are small, by [4, Corollary 4.3], there is an epimorphism ϕ :

H1(A, x∗) →
∏

ℵ0 π1(A, x∗). Also there is an isomorphism π1(A, θ) →
×σ

ℵ0
G

∗ℵ0G
, where G is

either Z or Z2 by [7, Theorem A]. Thus there is an epimorphism H1(HA, x∗) →
∏

ℵ0

×σ
ℵ0
G

∗ℵ0G
.

This induces the epimorphism Ab
(
H1(A, x∗)

)
→ Ab

( ∏
ℵ0

×σ
ℵ0
G

∗ℵ0G

)
. Moreover, for any fam-

ily of groups {Gi}i∈I , there is an epimorphism Ab
( ∏

i∈I Gi
)

→
∏
i∈I Ab(Gi). Since

H1(A, x∗) ∼= Ab
(
H1(A, x∗)

)
, there is an epimorphism H1(A, x∗) →

∏
ℵ0 Ab

(×σ
ℵ0
G

∗ℵ0G

)
. Also,

Ab
(×σ

ℵ0
G

∗ℵ0G

)
is isomorphic to

∏
ℵ0

Z∑
ℵ0

Z if G is either Z or Z2 by [14, Theorem 8]. Hence, we

have an epimorphism H1(A, x∗) →
∏

ℵ0

∏
ℵ0

Z∑
ℵ0

Z . By [11, Corollary 42.2],
∏

ℵ0
Z∑

ℵ0
Z is alge-

braically compact and it is isomorphic to
∑
cQ ⊕

∏
p∈P

∑̂
c Jp

p
by [5]. Then there is an
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epimorphism H1(A, x∗) →
∏

ℵ0

∑
cQ⊕

∏
p∈P

∑̂
c Jp

p
. Equivalently there is an epimorphism∑

m0 Q⊕
∏
p∈P

∑̂
mp

Jp
p

→
∏

ℵ0

( ∑
cQ⊕

∏
p∈P

∑̂
c Jp

p
)

. Therefore, m0,mp ≥ c, and then

m0,mp = c for p ∈ P . Hence H1(A, x∗) ∼=
∑
cQ ⊕

∏
p∈P

∑̂
c Jp

p
, and by [11, Corollary

42.2], H1(A, x∗) ∼=
∏

ℵ0
Z∑

ℵ0
Z . □

Herfort and Hojka [14] proved that the first singular homology group of any archipelago

space is isomorphic to
∏

ℵ0
Z∑

ℵ0
Z . Now by Theorem 6.2, the first singular homology and the

first Hawaiian homology groups are isomorphic for archipelago spaces. It does not hold
for many classes of spaces; for instance, see Example 5.6.
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