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The Weibull distribution is widely used in reliability analysis to evaluate the failure behavior and
Received: 29 May 2023 lifetime characteristics of various systems and components. One of the most commonly used
Accepted: 22 July 2024 methods for estimating the parameters of the Weibull distribution is the ordinary least squares
(OLS) technique, which is based on fitting a linear regression model to the transformed data. This
paper proposes a new rank estimator for ordinary least squares estimation of Weibull modulus, a

Keywords key parameter used as a measure of variability in the data. The new rank estimator is a quadratic
Weibull distribution fl_mctior_1 of the ranks of _order gta_ltistics, With_thr_ee parameters that are optimized by Mor)te Carl_o
Weibull modulus simulations. Using relative efficiency as a criterion, the performance of the new rank estimator is
Ordinary least squares compared with three commonly used rank estimators, mean, median and Hazen rank estimators,
Rank estimator which are linear functions of the ranks of order statistics. The results show that the new rank

estimator has a significant advantage over the other rank estimators for any sample size between
3 and 150. The findings also imply that other nonlinear functions, such as cubic polynomials,
could be applied to further improve the efficiency of the parameter estimators of the ordinary
least squares method.

1. INTRODUCTION

M)

where £ is the shape parameter or Weibull modulus, and « is the scale parameter.

There are several methods for estimating the parameters of the Weibull distribution such as the Maximum
Likelihood Estimation (MLE) method, the Ordinary Least Squares (OLS) method, the Weighted Least Squares
method, the Moments methods, the Generalized Means Squares method and the Bayesian Estimation method
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[3-7]. Among them, the OLS method and the MLE method have been the most commonly used methods for
estimating the parameters in general reliability applications: The ML method is popular among statisticians
because of its distributional optimality properties in large samples; many engineers, on the other hand, have
used ordinary least squares (OLS) because of its simplicity and familiar probability plots [8,9]. These two
methods also allow constructing confidence intervals for the parameters.

The OLS method requires using rank estimators (also called probability indices or plotting positions) [3,8].
They are usually in the general form of F (i)=(i—a)/(n+b) for complete data, where n ishe sample size

esofaandb
ssed in the

and F (i) is the rank estimator for the ith order statistic [10,11]. Several formulae with fixed v.

have been proposed in previous studies, such as the median rank with a = 0.3 and b =,
following section.

Further, some formulae have been proposed in the materials science literat vary with the
eveloped for
the unbiased estimation of the Weibull modulus [12-17]; because it i easure of variability of

study has investigated the determination of a values thag vary Wi fze to achieve unbiased (or
minimum variance estimation) of Weibull parameters usi i i

variable a and b study focuses on developing a rank
estimator for OLS estimation of the Weibull modulys with minimum Mean Squared Error (MSE) for complete

estimators,  namely F(i)=(i—a)/(n+b)  and
F(i)=(i-a)/(n-2a+1), are linear functions ranks of order statistic i. Suppose that there is a rank

function, If(i)z(i - linear rank estimator, and demonstrates that, by a systematic

optimization of the paramet
be obtained.

or each sample size, estimators with significantly smaller MSE can

Finally, pe jgmulations are coded and run in the R programming language which uses

Merse i an ber generator as the default generator whose cycle period is 219937-1 [19]. The
foll i organized as follows: After a concise discussion of the OLS method, a systematic
an uaed ¥8 develop a new rank estimator for estimating Weibull modulus using Monte Carlo

simulati ic tool. The rank estimator, proposed as a result of this analysis, is then compared with
the OLS m ith commonly used rank estimators.

2. ORDINARY LEAST SQUARES(OLS) METHOD

Equation (1) becomes a straight line by a double logarithmic transformation:

y=In[-In(1-F(X))]=BInX - pIna. )
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This is in linear form and the least squares method can be used to estimate Weibull parameters. Suppose that
X, X,,..., X, are a random sample from Equation (1), and that Xy X X, are the associated order

n

statistics. Then Equation (2) can be can be rewritten as

y, =|n[—|n(1—F(x(i)))}ﬁlnx(i)—ﬁlna 3)

where X,),X;,,....X, are ordered observations, and F(x(i)) values can be estimated usif§g various rank

n

estimators If(x(i)). Considering the familiar form of a regression equation, Y = left side of

estimates are calculated as #=a and @ =exp(-b/ ).

The most common rank estimators, F (x(i)) ,orsimply F (i), of F omplete samples are

median rank,

F(i)=(i-0.3)/(n+0.4) (4a)
mean rank,

F(i)=i/(n+1) (4b)
and Hazen rank,

F(i)=(i-05)/n (4c)

d rank estimators that are discussed in the previous section. A

The rank estifors in Equations (4a)-(4c) as well as the ones in the form of F(i)=(i—a)/(n+b) with aand
b varying with n, are either a measure of central tendency for the random variable F (x(i)) , or close to one such

measure for each i; because, a and b are between 0 to 1. This study deviates from this common approach in that
it uses a quadratic function of i;

A

F(i):(i—a—ciz)/(n+b) (5)
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with three parameters, a, b, and c. This function is expected to produce estimates that are significantly away
from the mean rank or the median rank, at least for some i.

The Basic Simulation (BS) procedure employed in this study involves generating a sample of n values from a
Weibull distribution with parameters o =1 and £ =1; estimating ,B using OLS with a combination of a, b
and c values in Equation (5) (or any rank estimator with one or two fixed parameters such as in Equations (4a)-
(4c) that will be used for comparison) and repeating this R times to compute the MSE of ﬂ .

In order for the left-hand side in Equation (3) to exist, F (|) should be strictly greater tan 0 aRd less than 1.

the denominator greater than or equal to n. Our initial trials with the BS proce
values showed that negative c¢ values result in larger MSE values as compal

dF (i)/di=(-2ci +1)/(n+b)>0. (6)
Then, ¢ <1/2i,i=1,..,n, and as a result
c<1/2n (7
Also 0<F(i):
(i-a—ci*)/(n+b)>0 (8)
Then
©)

this ifequality takes its maximum value at either i = 1 or i = n. This result along with
arized as follows:

~a)/n*1-a}. (10)

There is also an upper bound for F(i); F(i)<1, hence (i-a—ci*)<(n+b). Then, c>—(a+b+n-i)/i’.

The right-hand side of this inequality takes its maximum value at i = n: c>—(a+b)/n2 . However, in this
study, only nonnegative values of a, b and ¢ are considered, which renders this inequality redundant.



Burak BIRGOREN/ GU J Sci, 38(1): x-X (2025)

Equation (10) reveals that there is a relationship between parameters a and ¢ in Equation (5), however, b can
be chosen independently of a and c. Finally a<1, otherwise, If(l) in Equation (5) becomes negative for
nonnegative c values.

Consequently, in this study, the values of a, b and ¢ will be generated in such away that b>0, 0<a<1, ¢>0
and satisfying Equation (10).

4. THE GENERAL SIMULATION APPROACH

optimal (a,
b, ¢) combination with the minimum MSE(a, b, c) value for each n, and if possible, tofor parameter
as a smooth continuous function of n. One particular problem about this formulati
may change inconsistently with changing n [10]. One possible reason for this is

inconsistent parameter values, we decided to use exhaustive enumeratio
multivariate optimization procedure such as the Nelder-Mead method

e MSE performance as the others. It turns out that the
its value can be specified independently of a and c.

obtaining any rank esti
Equation (5) already i gative effect. Therefore, this choice will allow obtaining rank

First a small seto i £ 3,5, 10, 20, 40, 80, 120 and 150, were selected. Then for each sample size,
awasc with increments of 5, =0.02, and ¢ was changed from 0.002 to an upper limit

defi 0) with 5, = 0.002 for each a value. For each (a, c) combination generated in this way,
and f 0, 0.4 and 1, the BS procedure was run with R = 500,000. Then 3-D plots of the root
mean sq MSE(a, b, c), were drawn for each b. After examining the plots for possible locations of
aminimum rch space was narrowed, increments were reduced as &, = 0.01 and &, = 0.001, and R was

increased to 14000,000. Figure 1 illustrates the response surface of the RMSE(a, b, ¢) function as 3-D plots for
b=0,0.4and 1, and for n = 10, 40 and 80 on a narrow parameter space of a and c.

Similar plots drawn for other n (n =3, 5, 20, 120 and 150) as well as the plots in Figure 1 indicated that for any
particular n the response surfaces are nearly identical for b values of 0, 0.4, and 1. Furthermore, the RMSE
values for these b values were very similar, as depicted in Figure 1. However, b = 1 consistently resulted in the
lowest RMSE values, thus making it the preferred value to be used in Equation (5). Given the fixed value of b,
the remaining objective is to determine the optimal a and c values that produce the minimum RMSE (or
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equivalently minimum MSE). These values were already computed for the small set of sample sizes used in
this section. In the following section, we will present a computationally efficient method for computing the
optimal a and ¢ values for all the remaining sample sizes, ranging from 3 to 150.

b=0,n=10, minRMSE =0.2963 b=0.4, n=10, min RMSE =0.2962 b=1, n=10, min RMSE = 0.2962

0.010"
0103
0.012

b =0.4, n =40, min RMSE = 0.1405 b =1,n =40, min RMSE = 0.1405

RMSE

K
P

\ C
0004 P

b =0, n =80, min RMSE =0.1009 b =0.4, n = 80, min RMSE = 0.1009 b =1, n =80, min RMSE =0.1009
igure 1. RMSE values for various a, b and ¢ values for n =10, 40 and 80

6. SEARCH FOR THE OPTIMAL VALUES OF THE PARAMETERS a AND ¢

The optimal values of parameters a and ¢ were initially computed for ¢, = 0.01 and 5,=0.001 for b = 1. By
conducting a search in the vicinity of these optimal values with a much higher precision of §,=0.0001 and &,
= 0.0001 (the final precision values used in this study), the following results are obtained:
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Table 1. Optimal a and c values for selected n (b = 1)
n optimal a optimal ¢
3 0 0.1666
5 0.5799 0.1000
10 0.8298 0.0500
20 0.9382 0.0250
40 0.9825 0.0125
80 0.9943 0.0048
120 0.9971 0.0025
150 0.9980 0.0018

Based on the increasing and decreasing values in the second and third columns
optimal value of a is an increasing function of n, while the optimal value function of n.
Then, for the case of 40 < n < 80, the optimal values of a should be bet , and optimal
ed a search to find

the optimums for the mid-point of the interval [40, 80], n = 60, wit isi 0l and &, =0.001,
and R = 1,000,000. This requires producing all a values in the i with increments of &,
, and producing all ¢ values in the interval [0.0048, 0.0125] that arg satisf tion (10) with increments
of &,.

This resulted in the optimal values of a and ¢ being 0.991 and 0.007; ectively. We then conducted a search

in the vicinity of these optimal values, using final precision values of &, = 0.0001 and &, = 0.0001,

producing the final optimums of 0.9908 and 3.0071%or n = 60. We added these values as an additional row for
n =60 in Table 1. After this update, for n nd 60, the optimal values of a should be between 0.9825
and 0.9908 (the upper bound is updated), and t inal values of ¢ should be between 0.0048 and 0.0071
(the upper bound is updated). Then this procedure was ted targeting the optimums for n = 50.

Using this simulation optimization edure inYsuccessively narrower intervals in an iterative manner, we
computed the optimal value

Whilean i gorithm such as the Nelder-Mead method could have been used to find the optimums more
efficiently, th88€ methods may produce inconsistent results, as previously mentioned. Additionally, it should
be noted thatthe optimal values of ¢ occurred at the upper limits defined by Equation (10), which could
potentially cause difficulties in the application of numerical algorithms. Although our simulation optimization
procedure is computationally expensive, Table 2 shows that it yielded smoothly increasing a values and
smoothly decreasing c values as n increased, providing a reliable and consistent method for finding the optimal
values of a and c.
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Table 2. Optimal a and ¢ values for F(i)=(i—a-ci’)/(n+b) minimizing MSE; b = 1

n a C n a C n a C n a C

0| 0.1666 43 | 09845 | 0.0115 83 | 00946 | 00045 | 123 | 09972 | 0.0025
03339 | 0.1250 44 | 09850 | 0.0111 84 | 00947 | 00044 | 124 | 09972 | 0.0026
05799 | 0.1000 45 | 09855 | 0.0107 85 | 09948 | 00043 | 125 | 09973 | 0.0024
0.0833 46 | 00860 | 00104 86 | 09949 | 00042 | 126 | 09973 | 0.0024
0.7356 | 0.0714 47 | 09865 | 0.0101 87 | 09950 | 00042 | 127 | 09973 | 0.0025
07757 | 0.0625 48 | 09869 | 0.0098 88 | 00951 | 00041 | 128 | 09974 | 0.0023
0.8060 | 0.0555 49 | 09874 | 0.0096 89 | 09952 | 00040 | 129 | 0.9974
10 | 08298 | 0.0500 50 | 09878 | 0.0094 90 | 009953 | 0.0040 | 130
11| 0849 | 0.0454 51| 09881 | 0.0090 91 | 00954 | 0.0039 | 131
12 | 08659 | 00416 52 | 09885 | 0.0088 92 | 09954 | 00037 | 132
13 | 08799 | 0.0384 53 | 09888 | 0.0085 93 | 09955 | 0.0037 | 133
14 | 08920 | 0.0357 54 | 09892 | 0.0084 94 | 0.9956
15 | 09023 | 00333 55 | 09895 | 0.0082 95 | 0.9957

©o|o|N|o|u| s|w
o
o
\1
~
gl

16 0.9112 0.0312 56 0.9898 0.008p 96 0.9958 ;
17 0.9194 0.0294 57 0.9901 0.0078 97 0.9958 0.0020
18 0.9262 0.0277 58 0.9903 0.0075 0.0021
19 0.9326 0.0263 59 0.9906 0.0074 0.0021
20 0.9382 0.0250 60 0.9908 0.0071 0.0019
21 0.9431 0.0238 61 0.9911 0.0070 0.0019
22 0.9475 0.0227 62 0.9913 0.0068 0.0020
23 0.9514 0.0217 63 0.9915 0.0067 0.0020
24 0.9549 0.0208 64 0.9917 0.0065 0.0018
25 0.9582 0.0200 65 0.9920 0.0065 0.0019
26 0.9611 0.0192 66 0.9921 0.006 0.9964 0.0019
27 0.9637 0.0185 67 0.9923 0.9965 0.0030 147 0.9979 0.0019
28 0.9660 0.0178 68 0.9925 0.9965 0.0030 148 0.9980 0.0018
29 0.9682 0.0172 69 0.9927 0.9966 0.0029 149 0.9980 0.0018
30 0.9700 0.0166 70 0.9929 _0.9966 0.0030 150 0.9980 0.0018
31 0.9719 0.0161 71 930 0.9967 0.0029
32 0.9736 0.0156 72 932 0.9967 0.0029
33 0.9750 0.0151 73 0 0.0054 113 0.9968 0.0028
34 0.9764 0.0147 0.99 0.005 114 0.9968 0.0028
35 0.9775 0.0142 0.9936 115 0.9969 0.0027
36 0.9787 0.01 76 0.9938 70052 116 0.9969 0.0027
37 0.9799 0.0135 7 70.0050 117 0.9970 0.0026
38 0.9808 0.0131 0.99 0.0049 118 0.9970 0.0026
128 79 9041 0.0047 119 0.9970 0.0027
; 80 .9943 0.0048 120 0.9971 0.0025
012 r 0.9944 0.0047 121 0.9971 0.0026

| 0.9945 0.0046 122 0.9972 0.0024

the values of the new rank estimator are from the values produced by the estimators in Equations (4a)-(4c).
Choosing only one of them will be sufficient since they produce very close rank values; therefore, we selected
the median rank in Equation (4a).

Figure 2 provides a graphical comparison between the values of the new rank estimator and the median rank
estimator. The values of the former are always greater than the values of the former, and the difference becomes
larger as the value of i increases.
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the estimators computed by the OLS method using the
estimators, and the MLE method, respectively. The relative
given by RE(B;, £,)=MSE(S,)/MSE(f,). For example, if RE(S,,,
necessary sample size for the OLS method usin
achieve approximately equal overall accura

of estimator B, with respect to 3, is
= 0.80, this would indicate that the

rank, it i
=3.T sample size between 3 and 150 the new rank estimator has a significant advantage over
hpators.

The new
column of a. RE(B,,, B, is between 0.60 and 0.90 for n between 10 and 25; however, similar to the
relative efficiehcies of the other rank estimators, it drops acceleratingly as n decreases below 10 reaching down
to a surprisingly low value of 0.07 for n = 3. The maximum likelihood estimator exhibits a better performance
for n > 38; RE(B,,, Bmy) increases almost linearly with n reaching up to 1.32 for n = 150. This is an expected
result because of the optimality properties of the maximum likelihood estimators in large samples.

Finally, the mean values in Table 3 show that [?n values are biased; they underestimate the Weibull modulus
(the true parameter value is 1, but all the expected values are less than 1). As the sample sizes increases the bias
becomes smaller, and is less than 1% for n > 100.
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Table 3a. Comparison using relative efficiencies for n between 3 and 80

N | MSE(Bn) | E(Bn) | RE(Bn, Bm) | RE(Bn, Ba) | RE(By, Brn) | RE(Bn, Bru) | N | MSE(Sy) RE(By, Br) | RE(Bn, Bru)
3 1.318 0.518 0.16 0.25 0.11 0.07 42 0.75 1.05
4 0.388 0.612 0.46 0.66 0.32 0.19 43 0.75 1.05
5 0.243 0.758 0.66 0.87 0.47 0.26 44 0.75 1.05
6 0.177 0.824 0.76 0.92 0.56 0.36 45 0.75 1.06
7 0.140 0.861 0.81 0.92 0.62 0.44 46 0.75 1.06
8 0.117 0.885 0.83 0.91 0.66 0.49 47 0.75 1.07
9 0.100 0.902 0.84 0.89 0.68 0.54 48 0.75 1.08

10 0.088 0.914 0.84 0.87 0.70 0.58 0.75 1.08
11 0.078 0.924 0.84 0.85 0.71 0.61 0.75 1.08
12 0.070 0.931 0.84 0.83 0.72 0.65 . 0.75 1.10
13 0.064 0.937 0.84 0.82 0.73 0.68 0.66 0.75 1.10
14 0.059 0.942 0.83 0.80 0.74 0.71 0.75 0.66 0.75 1.10
15 0.055 0.947 0.83 0.79 0.74 0.73 0.75 0.66 0.75 1.11
16 0.051 0.950 0.83 0.78 0.74 0.75 0.75 0.66 0.75 1.11
17 0.048 0.953 0.82 0.77 0.75 0.78 0.75 0.66 0.75 111
18 0.045 0.956 0.82 0.76 0.75 0.75 0.66 0.75 111
19 0.042 0.959 0.81 0.75 0.75 0.75 0.66 0.76 1.12
20 0.040 0.961 0.81 0.74 0.75 0.75 0.66 0.76 1.13
21 0.038 0.963 0.80 0.74 0.75 0.75 0.66 0.76 1.13
22 0.036 0.964 0.80 0.73 0.75 0.75 0.66 0.76 1.13
23 0.035 0.966 0.80 0.73 0.75 0.75 0.66 0.76 1.14
24 0.033 0.967 0.79 0.72 0.75 0.66 0.76 1.14
25 0.032 0.968 0.79 0.71 0.75 0.66 0.76 1.14
26 0.030 0.970 0.79 0.71 0.75 0.66 0.76 1.14
27 0.029 0.971 0.78 0.71 0.75 0.66 0.76 1.14
28 0.028 0.972 0.78 0.70 0.75 0.66 0.76 1.14
29 0.027 0.973 0.78 0.75 0.66 0.76 1.15
30 0.026 0.973 0.78 0.75 0.66 0.76 1.16
31 0.025 0.974 0.77 0.75 0.66 0.76 1.16
32 0.025 0.975 0.77 0.75 0.66 0.76 1.17
33 0.024 0.976 0.77 0.75 0.66 0.76 1.17
34 0.023 0.976 0.77 0.75 0.66 0.76 1.17
35 0.023 0.976 0.77 0.75 0.66 0.76 1.18
36 0.022 0.977 0.75 0.66 0.76 1.18
37 0.021 0.978 0.75 0.66 0.76 1.18
38 0.021 0.979 0.75 0.66 0.76 1.18
39 0.020 0.9 0.75 0.66 0.76 1.18
40 0.020 0.979 0.75 0.66 0.76 1.19
41 0.019 0.980 0.75 0.66 0.76 1.20
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Table 3b. Comparison using relative efficiencies for n between 81 and 150

N | MSE(B,) | E(Bn) | RE(Bn, Bin) | RE(Bn, Ba) | RE(Bn, Br) | RE(By, Bma) | N | MSE(By) | E(Br) E(Bn, Ba) | RE(Bn, Br) | RE(Bn, Bini)
81 0.010 0.989 0.75 0.66 0.76 1.21 | 116 0.66 0.77 1.26
82 0.010 0.989 0.75 0.66 0.76 1.20 | 117 0.67 0.77 1.27
83 0.010 0.989 0.75 0.66 0.76 1.20 | 118 0.67 0.77 1.26
84 0.010 0.989 0.75 0.66 0.76 1.20 | 119 0.67 0.77 1.27
85 0.010 0.989 0.75 0.66 0.76 1.21 ] 120 0.67 0.77 1.27
86 0.010 0.989 0.75 0.66 0.76 1.20 | 121 0.67 0.77 1.27
87 0.009 0.989 0.75 0.66 0.76 1.21 ] 122 0.67 0.77 1.27
88 0.009 0.989 0.75 0.66 0.76 1.20 | 123 0.67 0.77 1.27
89 0.009 0.990 0.75 0.66 0.76 1.21 | 124 0.67 0.77 1.27
90 0.009 0.990 0.75 0.66 0.76 1.22 | 125 0.67 0.77 1.28
91 0.009 0.991 0.75 0.66 0.76 1.21 ] 126 0.67 0.77 1.28
92 0.009 0.989 0.75 0.66 0.76 1.22 27 0.67 0.77 1.28
93 0.009 0.989 0.75 0.66 0.76 1.2 0.67 0.77 1.28
94 0.009 0.990 0.75 0.66 0.77 1.23 0.67 0.78 1.28
95 0.009 0.991 0.75 0.66 0.77 1.22 ] 130 0.67 0.78 1.28
96 0.009 0.992 0.75 0.66 0.77 1.24 ] 131 0.67 0.78 1.29
97 0.008 0.989 0.75 0.66 0.77 1.23 ] 132 0.67 0.78 1.29
98 0.008 0.990 0.75 0.66 0.77 1.23 ] 133 0.67 0.78 1.29
99 0.008 0.992 0.75 0.66 0.77 122 | 134 0.67 0.78 1.28

100 0.008 0.989 0.75 0.66 0: 1.23 ] 135 0.67 0.78 1.29

101 0.008 0.990 0.75 0.66 0.77 136 0.67 0.78 1.30

102 0.008 0.992 0.75 0.66 37 0.67 0.78 1.28

103 0.008 0.989 0.75 0.66 138 0.67 0.78 1.29

104 0.008 0.991 0.75 0.66 1.25 | 139 0.67 0.78 1.30

105 0.008 0.990 0.75 0.66 1.25 | 140 0.67 0.78 1.30

106 0.008 0.990 0.75 125 ] 141 0.67 0.78 1.30

107 0.008 0.993 0.75 1.25 | 142 0.67 0.78 1.30

108 0.008 0.990 0.75 1.24 | 143 0.67 0.78 1.30

109 0.008 0.993 0.75 1.27 | 144 0.67 0.78 1.32

110 0.008 0.990 1.25 | 145 0.67 0.78 1.31

111 0.007 0.993 1.26 | 146 0.67 0.78 1.30

112 0.007 0.990 1.25 | 147 0.67 0.78 131

113 0.007 0.993 1.27 | 148 0.67 0.78 1.32

114 0.007 0.990 1.26 | 149 0.67 0.78 1.31

115 0.007 0.993 1.27 ] 150 0.67 0.78 1.32
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9. CONCLUSIONS

This paper proposes a nonlinear rank estimator, for the first time in the literature, to be used with the
ordinary least squares method for estimating the Weibull modulus, a key parameter in reliability analysis.
The new rank estimator is a quadratic function of the ranks of order statistics, with three parameters that
are optimized by an extensive simulation procedure. The paper compares the performance of the new rank
estimator with three commonly used rank estimators in terms of MSE and relative efficiency.

The results show that the new rank estimator consistently outperforms the mean rank, median rank, Hazen
rank other rank estimators, when used with the OLS method, for sample sizes ranging from 3 to 150, with
relative efficiencies between 0.65 and 0.85 for sample sizes greater than 10; much
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