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Highlights 

• This paper focuses on ordinary least squares estimation of Weibull modulus by a new rank estimator. 

• The new estimator is a quadratic function of ranks of order statistics, its parameters are optimized by simulations. 

• The new estimator performs much better than well-known rank estimators for a large range of sample sizes. 

• The new estimator performs better than the Maximum Likelihood Method for sample sizes less than 37. 
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Abstract 

The Weibull distribution is widely used in reliability analysis to evaluate the failure behavior and 

lifetime characteristics of various systems and components. One of the most commonly used 

methods for estimating the parameters of the Weibull distribution is the ordinary least squares 

(OLS) technique, which is based on fitting a linear regression model to the transformed data. This 

paper proposes a new rank estimator for ordinary least squares estimation of Weibull modulus, a 

key parameter used as a measure of variability in the data. The new rank estimator is a quadratic 

function of the ranks of order statistics, with three parameters that are optimized by Monte Carlo 

simulations. Using relative efficiency as a criterion, the performance of the new rank estimator is 

compared with three commonly used rank estimators, mean, median and Hazen rank estimators, 

which are linear functions of the ranks of order statistics. The results show that the new rank 

estimator has a significant advantage over the other rank estimators for any sample size between 

3 and 150. The findings also imply that other nonlinear functions, such as cubic polynomials, 

could be applied to further improve the efficiency of the parameter estimators of the ordinary 

least squares method.  
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1. INTRODUCTION 

 

The Weibull distribution is one of the most widely used probability distributions in life testing and reliability 

studies. The distribution was developed by Weibull [1] and has found use in many different areas of application 

such as wind-speed analysis, unemployment durations analysis, material strength analysis as well as reliability 

analysis [2–4].  

 

The two-parameter Weibull distribution function is given by 

 

( ) ( )1F x exp x /


 = − −
 

 (1) 

 

where   is the shape parameter or Weibull modulus, and   is the scale parameter. 

  

There are several methods for estimating the parameters of the Weibull distribution such as the Maximum 

Likelihood Estimation (MLE) method, the Ordinary Least Squares (OLS) method, the Weighted Least Squares 

method, the Moments methods, the Generalized Means Squares method and the Bayesian Estimation method 
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[3–7]. Among them, the OLS method and the MLE method have been the most commonly used methods for 

estimating the parameters in general reliability applications: The ML method is popular among statisticians 

because of its distributional optimality properties in large samples; many engineers, on the other hand, have 

used ordinary least squares (OLS) because of its simplicity and familiar probability plots [8,9]. These two 

methods also allow constructing confidence intervals for the parameters.  

 

The OLS method requires using rank estimators (also called probability indices or plotting positions) [3,8]. 

They are usually in the general form of ( ) ( ) ( )F̂ i i a n b= − +  for complete data, where n is the sample size 

and ( )F̂ i  is the rank estimator for the ith order statistic [10,11]. Several formulae with fixed values of a and b 

have been proposed in previous studies, such as the median rank with a = 0.3 and b = 0.4, as discussed in the 

following section.   

 

Further, some formulae have been proposed in the materials science literature where a and b vary with the 

sample size; a and b ranging from 0 to 1 are considered in these studies. Most of them have been developed for 

the unbiased estimation of the Weibull modulus [12–17]; because it is used as a measure of variability of 

strength measurements. Only one of these studies has been on unbiased estimation of the scale parameter [16]. 

In general, these formulae are shown to perform better than the ones with the fixed a and b, in terms of estimator 

variance. Another frequently used rank estimator is ( ) ( ) ( )2 1F̂ i i a n a= − − + [18]; however, no literature 

study has investigated the determination of a values that vary with sample size to achieve unbiased (or 

minimum variance estimation) of Weibull parameters using this rank estimator. 

 

Motivated by the performance of the formulae with variable a and b, this study focuses on developing a rank 

estimator for OLS estimation of the Weibull modulus with minimum Mean Squared Error (MSE) for complete 

samples. The previously discussed rank estimators, namely ( ) ( ) ( )F̂ i i a n b= − +  and 

( ) ( ) ( )2 1F̂ i i a n a= − − + , are linear functions of the ranks of order statistic i. Suppose that there is a rank 

estimator ( ) ( )F̂ i h i= minimizing the MSE of OLS estimator of Weibull modulus, where ( )h i is a nonlinear 

function of i and its coefficients vary with the sample size. According to the Taylor expansion of ( )h i , a second-

degree polynomial is the simplest nonlinear approximation for ( )h i . Therefore, this study proposes, a quadratic 

function, ( ) ( ) ( )2F̂ i i a ci n b= − − +  as a nonlinear rank estimator, and demonstrates that, by a systematic 

optimization of the parameters a, b and c for each sample size, estimators with significantly smaller MSE can 

be obtained. 

 

Finally, all the Monte Carlo simulations are coded and run in the R programming language which uses 

Mersenne-Twister random number generator as the default generator whose cycle period is 219937-1 [19]. The 

following sections are organized as follows: After a concise discussion of the OLS method, a systematic 

analysis is introduced to develop a new rank estimator for estimating Weibull modulus using Monte Carlo 

simulations as the basic tool. The rank estimator, proposed as a result of this analysis, is then compared with 

the OLS methods with commonly used rank estimators. 

 

2. ORDINARY LEAST SQUARES(OLS) METHOD 

 

Equation (1) becomes a straight line by a double logarithmic transformation: 

 

( )( )1y ln ln F X ln X ln   = − − = −  . (2) 
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This is in linear form and the least squares method can be used to estimate Weibull parameters. Suppose that 

1 2 nX ,X ,...,X  are a random sample from Equation (1), and that ( ) ( ) ( )1 2 n
X ,X ,...,X  are the associated order 

statistics. Then Equation (2) can be can be rewritten as  

 

( )( )( ) ( )1i i i
y ln ln F x ln x ln   = − − = −

  
 (3) 

 

where ( ) ( ) ( )1 2 n
x ,x ,...,x  are ordered observations, and ( )( )i

F x  values can be estimated using various rank 

estimators ( )( )i
F̂ x . Considering the familiar form of a regression equation, Y aZ b= + , the left side of 

Equation (3) corresponds to Y, ln X  corresponds to Z,   corresponds to a, and ln −  corresponds to b. 

Using ( )ix  and 
iF  pairs in Equation (3), a and b are obtained by the OLS procedure. Then the Weibull parameter 

estimates are calculated as ˆ a =  and ( )ˆˆ exp b / = − .  

 

The most common rank estimators, ( )( )i
F̂ x , or simply ( )F̂ i , of ( )( )i

F x  that are used for complete samples are 

median rank, 

 

( ) ( ) ( )0 3 0 4F̂ i i . / n .= − +  (4a) 

 

mean rank, 

 

( ) ( )1F̂ i i / n= +  (4b) 

 

and Hazen rank,  

 

( ) ( )0 5F̂ i i . / n= −  (4c) 

 

[11,20]. There are also some recently proposed rank estimators that are discussed in the previous section. A 

comprehensive list of rank estimators used for complete samples can be found in [10]. 

 

An important property of the OLS estimators is that ̂   is a pivotal statistic, hence its distribution does not 

depend on the parameters   and  [21]. This allows simulating samples with a particular choice of   and   

values. In this study they are set as 1 =  and 1 = , then the results will be valid any other   and   values.  

 

3. A NEW RANK ESTIMATOR 

 

The rank estimators in Equations (4a)-(4c) as well as the ones in the form of ( ) ( ) ( )F̂ i i a n b= − +  with a and 

b varying with n, are either a measure of central tendency for the random variable ( )( )i
F x , or close to one such 

measure for each i; because, a and b are between 0 to 1. This study deviates from this common approach in that 

it uses a quadratic function of i; 

 

( ) ( ) ( )2F̂ i i a ci n b= − − +  (5) 
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with three parameters, a, b, and c. This function is expected to produce estimates that are significantly away 

from the mean rank or the median rank, at least for some i.  

 

The Basic Simulation (BS) procedure employed in this study involves generating a sample of n values from a 

Weibull distribution with parameters 1 =  and 1 = ; estimating ̂  using OLS with a combination of a, b 

and c values in Equation (5) (or any rank estimator with one or two fixed parameters such as in Equations (4a)-

(4c) that will be used for comparison) and repeating this R times to compute the MSE of ̂ . 

 

In order for the left-hand side in Equation (3) to exist, ( )F̂ i  should be strictly greater than 0 and less than 1. 

To satisfy this condition, we keep the numerator in Equation (5) strictly between 0 and n for all 1i , ,n= , and 

the denominator greater than or equal to n. Our initial trials with the BS procedure using various a, b and c 

values showed that negative c values result in larger MSE values as compared to positive ones. They also 

showed that non-negative a values along with non-negative c values consistently produced smaller MSEs. As 

a result, we decided to use non-negative a and c values throughout this study keeping ( )2i a ci− −  in Equation 

(5) strictly between 0 and n. Also, nonnegative b values are used to satisfy ( )0 1F̂ i  . 

 

( )F̂ i should be a strictly increasing function of i, thus, ( )ˆdF i di  should be positive:  

 

( ) ( ) ( )2 1 0ˆdF i di ci n b= − + +  . (6) 

 

Then, 1 2 1c i,i ,...,n = , and as a result  

 

1 2c n  (7) 

 

Also ( )0 F̂ i : 

 

( ) ( )2 0i a ci n b− − +   (8) 

 

Then  

  

( ) 2c i a i − . (9) 

 

The right-hand side of this inequality takes its maximum value at either i = 1 or i = n. This result along with 

Equation (7) can be summarized as follows: 

 

( ) ( ) 21 2 1c min n , n a n , a − − . (10) 

 

There is also an upper bound for ( )F̂ i ; ( ) 1F̂ i  , hence ( ) ( )2i a ci n b− −  + . Then, ( ) 2c a b n i i − + + − . 

The right-hand side of this inequality takes its maximum value at i = n: ( ) 2c a b n − + . However, in this 

study, only nonnegative values of a, b and c are considered, which renders this inequality redundant. 
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Equation (10) reveals that there is a relationship between parameters a and c in Equation (5), however, b can 

be chosen independently of a and c. Finally 1a  , otherwise, ( )1F̂  in Equation (5) becomes negative for 

nonnegative c values. 

 

Consequently, in this study, the values of a, b and c will be generated in such a way that 0b  , 0 1a  , 0c   

and satisfying Equation (10). 

 
4. THE GENERAL SIMULATION APPROACH 

 
MSE in the BS procedure is a stochastic function of a, b and c: MSE(a, b, c). The aim is to find an optimal (a, 

b, c) combination with the minimum MSE(a, b, c) value for each n, and if possible, to formulate each parameter 

as a smooth continuous function of n. One particular problem about this formulation is that a parameter’s value 

may change inconsistently with changing n [10]. One possible reason for this is the existence of multiple optima 

or similarly a flat response surface in certain regions of the parameter space. To avoid producing such 

inconsistent parameter values, we decided to use exhaustive enumeration of the parameters instead of using a 

multivariate optimization procedure such as the Nelder-Mead method. 

  

To this end, the general approach in this study is to use extensive Monte-Carlo simulations using the BS 

procedure at every a, b and c value combination for a selected parameter space. In order to reduce prohibitively 

long simulation run times, we will first increase the value of each parameter with larger increments of   with 

a smaller simulation run number R; then will decrease   and increase R gradually to increase simulation 

precision. This will be illustrated immediately in the following section. 

 

Still, working with three parameters simultaneously is computationally expensive: A useful strategy for this is 

to fix some parameter that is not as significant on the MSE performance as the others. It turns out that the 

parameter b is a good candidate for this purpose, since its value can be specified independently of a and c. 

 
5. SEARCH FOR A VALUE OF THE PARAMETER b WITH THE SMALLEST MSE 

A reasonable search interval for the parameter b is [0, 1], because numbers larger than 1 is likely to prevent 

obtaining any rank estimator values close to mean or median rank; the quadratic form of the numerator of 

Equation (5) already has such a potential negative effect. Therefore, this choice will allow obtaining rank 

estimators close to a measure of central tendency if such a choice produces a minimal MSE. Initially it would 

be natural to choose b = 0, 0.4 and 1, following Equations (4a)-(4c). 

 

First a small set of sample sizes n = 3, 5, 10, 20, 40, 80, 120 and 150, were selected. Then for each sample size, 

a was changed from 0.02 to 0.98 with increments of 
a  = 0.02, and c was changed from 0.002 to an upper limit 

defined by Equation (10) with 
c  = 0.002 for each a value. For each (a, c) combination generated in this way, 

and for each value of b = 0, 0.4 and 1, the BS procedure was run with R = 500,000. Then 3-D plots of the root 

mean squared error, RMSE(a, b, c), were drawn for each b. After examining the plots for possible locations of 

a minimum, the search space was narrowed, increments were reduced as 
a  = 0.01 and 

c  = 0.001, and R was 

increased to 1,000,000. Figure 1 illustrates the response surface of the RMSE(a, b, c) function as 3-D plots for 

b = 0, 0.4 and 1, and for n = 10, 40 and 80 on a narrow parameter space of a and c.  

 

Similar plots drawn for other n (n = 3, 5, 20, 120 and 150) as well as the plots in Figure 1 indicated that for any 

particular n the response surfaces are nearly identical for b values of 0, 0.4, and 1. Furthermore, the RMSE 

values for these b values were very similar, as depicted in Figure 1. However, b = 1 consistently resulted in the 

lowest RMSE values, thus making it the preferred value to be used in Equation (5). Given the fixed value of b, 

the remaining objective is to determine the optimal a and c values that produce the minimum RMSE (or 
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equivalently minimum MSE). These values were already computed for the small set of sample sizes used in 

this section. In the following section, we will present a computationally efficient method for computing the 

optimal a and c values for all the remaining sample sizes, ranging from 3 to 150. 

 

 

 

 
Figure 1. RMSE values for various a, b and c values for n =10, 40 and 80 

 
6. SEARCH FOR THE OPTIMAL VALUES OF THE PARAMETERS a AND c 

 

The optimal values of parameters a and c were initially computed for 
a = 0.01 and 

c =0.001 for b = 1. By 

conducting a search in the vicinity of these optimal values with a much higher precision of 
a = 0.0001 and 

c  

= 0.0001 (the final precision values used in this study), the following results are obtained: 
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Table 1. Optimal a and c values for selected n (b = 1) 

n optimal a optimal c 

3 0 0.1666 

5 0.5799 0.1000 

10 0.8298 0.0500 

20 0.9382 0.0250 

40 0.9825 0.0125 

80 0.9943 0.0048 

120 0.9971 0.0025 

150 0.9980 0.0018 

 

Based on the increasing and decreasing values in the second and third columns of Table 1, we assumed that the 

optimal value of a is an increasing function of n, while the optimal value of c is a decreasing function of n. 

Then, for the case of 40 < n < 80, the optimal values of a should be between 0.9825 and 0.9943, and optimal 

values of c should be between 0.0048 and 0.0125, according to Table 1. We then performed a search to find 

the optimums for the mid-point of the interval [40, 80], n = 60, with a precision of 
a  = 0.001 and 

c  = 0.001, 

and R = 1,000,000. This requires producing all a values in the interval [0.9825, 0.9943] with increments of 
a

, and producing all c values in the interval [0.0048, 0.0125] that are satisfying Equation (10) with increments 

of 
c . 

 

This resulted in the optimal values of a and c being 0.991 and 0.007, respectively. We then conducted a search 

in the vicinity of these optimal values, using the final precision values of 
a = 0.0001 and 

c  = 0.0001, 

producing the final optimums of 0.9908 and 0.0071 for n = 60. We added these values as an additional row for 

n = 60 in Table 1. After this update, for n between 40 and 60, the optimal values of a should be between 0.9825 

and 0.9908 (the upper bound is updated), and the optimal values of c should be between 0.0048 and 0.0071 

(the upper bound is updated). Then this procedure was repeated targeting the optimums for n = 50. 

 

Using this simulation optimization procedure in successively narrower intervals in an iterative manner, we 

computed the optimal values for each n value in the interval of [40,80]. We repeated the procedure for all initial 

intervals in Table 1 ([3,5], [5,10], [10,20], etc.), until we computed the optimal values of a and c for each n 

value between 3 and 150. The results are presented in Table 2.  

 

We could have used a numerical algorithm such as the Nelder-Mead method that would produce the optimums 

much more efficiently, but they may be inconsistently changing (inconsistent ups and downs) with increasing 

n, as mentioned before. Also note that the optimal values of c happened at the upper limits defined by Equation 

(10) that would likely cause troubles in the application of numerical algorithms. Although being 

computationally expensive, our procedure produced smoothly increasing a values and smoothly increasing c 

values by increasing n. 

 

While a numerical algorithm such as the Nelder-Mead method could have been used to find the optimums more 

efficiently, these methods may produce inconsistent results, as previously mentioned. Additionally, it should 

be noted that the optimal values of c occurred at the upper limits defined by Equation (10), which could 

potentially cause difficulties in the application of numerical algorithms. Although our simulation optimization 

procedure is computationally expensive, Table 2 shows that it yielded smoothly increasing a values and 

smoothly decreasing c values as n increased, providing a reliable and consistent method for finding the optimal 

values of a and c. 
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Table 2. Optimal a and c values for ( ) ( ) ( )2F̂ i i a ci n b= − − +  minimizing MSE; b = 1 

n a c n a c n a c n a c 

3 0 0.1666 43 0.9845 0.0115 83 0.9946 0.0045 123 0.9972 0.0025 

4 0.3339 0.1250 44 0.9850 0.0111 84 0.9947 0.0044 124 0.9972 0.0026 

5 0.5799 0.1000 45 0.9855 0.0107 85 0.9948 0.0043 125 0.9973 0.0024 

6 0.6775 0.0833 46 0.9860 0.0104 86 0.9949 0.0042 126 0.9973 0.0024 

7 0.7356 0.0714 47 0.9865 0.0101 87 0.9950 0.0042 127 0.9973 0.0025 

8 0.7757 0.0625 48 0.9869 0.0098 88 0.9951 0.0041 128 0.9974 0.0023 

9 0.8060 0.0555 49 0.9874 0.0096 89 0.9952 0.0040 129 0.9974 0.0023 

10 0.8298 0.0500 50 0.9878 0.0094 90 0.9953 0.0040 130 0.9974 0.0024 

11 0.8496 0.0454 51 0.9881 0.0090 91 0.9954 0.0039 131 0.9975 0.0022 

12 0.8659 0.0416 52 0.9885 0.0088 92 0.9954 0.0037 132 0.9975 0.0023 

13 0.8799 0.0384 53 0.9888 0.0085 93 0.9955 0.0037 133 0.9975 0.0023 

14 0.8920 0.0357 54 0.9892 0.0084 94 0.9956 0.0037 134 0.9976 0.0021 

15 0.9023 0.0333 55 0.9895 0.0082 95 0.9957 0.0037 135 0.9976 0.0022 

16 0.9112 0.0312 56 0.9898 0.008p 96 0.9958 0.0036 136 0.9976 0.0022 

17 0.9194 0.0294 57 0.9901 0.0078 97 0.9958 0.0035 137 0.9977 0.0020 

18 0.9262 0.0277 58 0.9903 0.0075 98 0.9959 0.0035 138 0.9977 0.0021 

19 0.9326 0.0263 59 0.9906 0.0074 99 0.9960 0.0034 139 0.9977 0.0021 

20 0.9382 0.0250 60 0.9908 0.0071 100 0.9960 0.0033 140 0.9978 0.0019 

21 0.9431 0.0238 61 0.9911 0.0070 101 0.9961 0.0033 141 0.9978 0.0019 

22 0.9475 0.0227 62 0.9913 0.0068 102 0.9962 0.0033 142 0.9978 0.0020 

23 0.9514 0.0217 63 0.9915 0.0067 103 0.9962 0.0032 143 0.9978 0.0020 

24 0.9549 0.0208 64 0.9917 0.0065 104 0.9963 0.0032 144 0.9979 0.0018 

25 0.9582 0.0200 65 0.9920 0.0065 105 0.9963 0.0030 145 0.9979 0.0019 

26 0.9611 0.0192 66 0.9921 0.0062 106 0.9964 0.0031 146 0.9979 0.0019 

27 0.9637 0.0185 67 0.9923 0.0061 107 0.9965 0.0030 147 0.9979 0.0019 

28 0.9660 0.0178 68 0.9925 0.0060 108 0.9965 0.0030 148 0.9980 0.0018 

29 0.9682 0.0172 69 0.9927 0.0059 109 0.9966 0.0029 149 0.9980 0.0018 

30 0.9700 0.0166 70 0.9929 0.0058 110 0.9966 0.0030 150 0.9980 0.0018 

31 0.9719 0.0161 71 0.9930 0.0056 111 0.9967 0.0029    
32 0.9736 0.0156 72 0.9932 0.0055 112 0.9967 0.0029    
33 0.9750 0.0151 73 0.9933 0.0054 113 0.9968 0.0028    
34 0.9764 0.0147 74 0.9935 0.0053 114 0.9968 0.0028    
35 0.9775 0.0142 75 0.9936 0.0052 115 0.9969 0.0027    
36 0.9787 0.0138 76 0.9938 0.0052 116 0.9969 0.0027    
37 0.9799 0.0135 77 0.9939 0.0050 117 0.9970 0.0026    
38 0.9808 0.0131 78 0.9940 0.0049 118 0.9970 0.0026    
39 0.9817 0.0128 79 0.9941 0.0047 119 0.9970 0.0027    
40 0.9825 0.0125 80 0.9943 0.0048 120 0.9971 0.0025    
41 0.9832 0.0121 81 0.9944 0.0047 121 0.9971 0.0026    
42 0.9839 0.0118 82 0.9945 0.0046 122 0.9972 0.0024    

 
7. A COMPARISON BETWEEN VALUES OF THE NEW RANK ESTIMATOR AND THE MEDIAN 

RANK ESTIMATOR 

 

Before making any comparison in terms of efficiencies of the estimators, it will be helpful to see how different 

the values of the new rank estimator are from the values produced by the estimators in Equations (4a)-(4c). 

Choosing only one of them will be sufficient since they produce very close rank values; therefore, we selected 

the median rank in Equation (4a). 

 

Figure 2 provides a graphical comparison between the values of the new rank estimator and the median rank 

estimator. The values of the former are always greater than the values of the former, and the difference becomes 

larger as the value of i increases. 
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Figure 2. A comparison between values of the new rank estimator and median rank estimator 

 
8. A COMPARISON IN TERMS OF RELATIVE EFFICIENCIES 

 
In order to compare the performance of the new rank estimator with those in Equations (4a)-(4c), we will use 

relative efficiencies; we will also make a comparison to with the MLE method. Let �̂�𝑚, �̂�𝑑, �̂�ℎ ,  �̂�𝑛 and �̂�𝑚𝑙  be 

the estimators computed by the OLS method using the mean rank, median rank, Hazen rank and the new rank 

estimators, and the MLE method, respectively. The relative efficiency of estimator �̂�1 with respect to �̂�2 is 

given by RE(�̂�1, �̂�2)=MSE(�̂�1)/MSE(�̂�2). For example, if RE(�̂�𝑛, �̂�𝑑) = 0.80, this would indicate that the 

necessary sample size for the OLS method using �̂�𝑛 is 80% of that needed for the OLS method using �̂�𝑑 to 

achieve approximately equal overall accuracy [8]. 

 

Table 3a-3b summarize the results obtained from running the BS procedure for each estimator with R = 

1,000,000 for each sample size between 3 and 150. It presents MSE values and means of �̂�𝑛 as well as relative 

efficiencies for all the samples sizes.  

 

First a comparison among the OLS estimators are presented: for sample sizes greater than 10, relative 

efficiencies are between 0.65 and 0.85: As n goes from 10 to 40, RE(�̂�𝑛, �̂�𝑚) goes from 0.84 to 0.76 and stays 

close to 0.76 for n > 40; a similar behavior is observed for the other relative efficiencies. RE(�̂�𝑛, �̂�𝑑) goes from 

0.87 to 0.67, and stays almost the same for n > 40, and RE(�̂�𝑛, �̂�ℎ) goes from 0.70 to 0.75, and stays almost the 

same for n > 40. As the sample decreases below 10, the relative efficiency with respect to mean rank and Hazen 

rank drops in an accelerating manner and reaches down to 0.16 and 0.11 for n = 3, respectively. For the median 

rank, it increases slightly first as n goes down to 6 from 10, and then it sharply decreases, reaching 0.25 for n 

= 3. Therefore, for any sample size between 3 and 150 the new rank estimator has a significant advantage over 

the other three rank estimators.  

 

The new rank estimator is as efficient as the maximum likelihood estimator for n < 37 as shown in the last 

column of Table 3a. RE(�̂�𝑛, �̂�𝑚𝑙) is between 0.60 and 0.90 for n between 10 and 25; however, similar to the 

relative efficiencies of the other rank estimators, it drops acceleratingly as n decreases below 10 reaching down 

to a surprisingly low value of 0.07 for n = 3. The maximum likelihood estimator exhibits a better performance 

for n > 38; RE(�̂�𝑛, �̂�𝑚𝑙) increases almost linearly with n reaching up to 1.32 for n = 150. This is an expected 

result because of the optimality properties of the maximum likelihood estimators in large samples.  

 

Finally, the mean values in Table 3 show that �̂�𝑛 values are biased; they underestimate the Weibull modulus 

(the true parameter value is 1, but all the expected values are less than 1). As the sample sizes increases the bias 

becomes smaller, and is less than 1% for n > 100. 
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Table 3a. Comparison using relative efficiencies for n between 3 and 80 

n MSE(�̂�𝑛) E(�̂�𝑛) RE(�̂�𝑛 , �̂�𝑚) RE(�̂�𝑛 , �̂�𝑑) RE(�̂�𝑛 , �̂�ℎ) RE(�̂�𝑛 , �̂�𝑚𝑙) n MSE(�̂�𝑛) E(�̂�𝑛) RE(�̂�𝑛 , �̂�𝑚) RE(�̂�𝑛 , �̂�𝑑) RE(�̂�𝑛 , �̂�ℎ) RE(�̂�𝑛 , �̂�𝑚𝑙) 

3 1.318 0.518 0.16 0.25 0.11 0.07 42 0.019 0.980 0.76 0.67 0.75 1.05 
4 0.388 0.612 0.46 0.66 0.32 0.19 43 0.018 0.980 0.76 0.67 0.75 1.05 

5 0.243 0.758 0.66 0.87 0.47 0.26 44 0.018 0.980 0.76 0.67 0.75 1.05 

6 0.177 0.824 0.76 0.92 0.56 0.36 45 0.018 0.981 0.76 0.67 0.75 1.06 

7 0.140 0.861 0.81 0.92 0.62 0.44 46 0.017 0.981 0.76 0.67 0.75 1.06 

8 0.117 0.885 0.83 0.91 0.66 0.49 47 0.017 0.982 0.75 0.67 0.75 1.07 

9 0.100 0.902 0.84 0.89 0.68 0.54 48 0.017 0.982 0.75 0.67 0.75 1.08 

10 0.088 0.914 0.84 0.87 0.70 0.58 49 0.016 0.983 0.75 0.67 0.75 1.08 

11 0.078 0.924 0.84 0.85 0.71 0.61 50 0.016 0.982 0.75 0.66 0.75 1.08 

12 0.070 0.931 0.84 0.83 0.72 0.65 51 0.016 0.983 0.75 0.66 0.75 1.10 

13 0.064 0.937 0.84 0.82 0.73 0.68 52 0.015 0.984 0.75 0.66 0.75 1.10 

14 0.059 0.942 0.83 0.80 0.74 0.71 53 0.015 0.984 0.75 0.66 0.75 1.10 

15 0.055 0.947 0.83 0.79 0.74 0.73 54 0.015 0.984 0.75 0.66 0.75 1.11 

16 0.051 0.950 0.83 0.78 0.74 0.75 55 0.015 0.984 0.75 0.66 0.75 1.11 

17 0.048 0.953 0.82 0.77 0.75 0.78 56 0.014 0.984 0.75 0.66 0.75 1.11 

18 0.045 0.956 0.82 0.76 0.75 0.80 57 0.014 0.985 0.75 0.66 0.75 1.11 

19 0.042 0.959 0.81 0.75 0.75 0.82 58 0.014 0.985 0.75 0.66 0.76 1.12 

20 0.040 0.961 0.81 0.74 0.75 0.84 59 0.014 0.985 0.75 0.66 0.76 1.13 

21 0.038 0.963 0.80 0.74 0.75 0.85 60 0.013 0.986 0.75 0.66 0.76 1.13 

22 0.036 0.964 0.80 0.73 0.75 0.86 61 0.013 0.986 0.75 0.66 0.76 1.13 

23 0.035 0.966 0.80 0.73 0.75 0.87 62 0.013 0.986 0.75 0.66 0.76 1.14 

24 0.033 0.967 0.79 0.72 0.75 0.89 63 0.013 0.985 0.75 0.66 0.76 1.14 

25 0.032 0.968 0.79 0.71 0.75 0.91 64 0.013 0.986 0.75 0.66 0.76 1.14 

26 0.030 0.970 0.79 0.71 0.75 0.90 65 0.012 0.987 0.75 0.66 0.76 1.14 

27 0.029 0.971 0.78 0.71 0.75 0.91 66 0.012 0.986 0.75 0.66 0.76 1.14 

28 0.028 0.972 0.78 0.70 0.75 0.93 67 0.012 0.986 0.75 0.66 0.76 1.14 

29 0.027 0.973 0.78 0.70 0.75 0.95 68 0.012 0.986 0.75 0.66 0.76 1.15 

30 0.026 0.973 0.78 0.70 0.75 0.95 69 0.012 0.987 0.75 0.66 0.76 1.16 

31 0.025 0.974 0.77 0.69 0.75 0.97 70 0.012 0.988 0.75 0.66 0.76 1.16 

32 0.025 0.975 0.77 0.69 0.75 0.97 71 0.011 0.987 0.75 0.66 0.76 1.17 

33 0.024 0.976 0.77 0.69 0.75 0.98 72 0.011 0.988 0.75 0.66 0.76 1.17 

34 0.023 0.976 0.77 0.68 0.75 1.00 73 0.011 0.987 0.75 0.66 0.76 1.17 

35 0.023 0.976 0.77 0.68 0.75 1.00 74 0.011 0.988 0.75 0.66 0.76 1.18 

36 0.022 0.977 0.76 0.68 0.75 1.00 75 0.011 0.987 0.75 0.66 0.76 1.18 

37 0.021 0.978 0.76 0.68 0.75 1.01 76 0.011 0.988 0.75 0.66 0.76 1.18 

38 0.021 0.979 0.76 0.68 0.75 1.02 77 0.011 0.988 0.75 0.66 0.76 1.18 

39 0.020 0.979 0.76 0.68 0.75 1.02 78 0.010 0.988 0.75 0.66 0.76 1.18 

40 0.020 0.979 0.76 0.67 0.75 1.03 79 0.010 0.989 0.75 0.66 0.76 1.19 

41 0.019 0.980 0.76 0.67 0.75 1.03 80 0.010 0.989 0.75 0.66 0.76 1.20 
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Table 3b. Comparison using relative efficiencies for n between 81 and 150 

n MSE(�̂�𝑛) E(�̂�𝑛) RE(�̂�𝑛 , �̂�𝑚) RE(�̂�𝑛 , �̂�𝑑) RE(�̂�𝑛 , �̂�ℎ) RE(�̂�𝑛 , �̂�𝑚𝑙) n MSE(�̂�𝑛) E(�̂�𝑛) RE(�̂�𝑛 , �̂�𝑚) RE(�̂�𝑛 , �̂�𝑑) RE(�̂�𝑛 , �̂�ℎ) RE(�̂�𝑛 , �̂�𝑚𝑙) 

81 0.010 0.989 0.75 0.66 0.76 1.21 116 0.007 0.991 0.75 0.66 0.77 1.26 
82 0.010 0.989 0.75 0.66 0.76 1.20 117 0.007 0.994 0.75 0.67 0.77 1.27 

83 0.010 0.989 0.75 0.66 0.76 1.20 118 0.007 0.992 0.75 0.67 0.77 1.26 

84 0.010 0.989 0.75 0.66 0.76 1.20 119 0.007 0.990 0.75 0.67 0.77 1.27 

85 0.010 0.989 0.75 0.66 0.76 1.21 120 0.007 0.993 0.75 0.67 0.77 1.27 

86 0.010 0.989 0.75 0.66 0.76 1.20 121 0.007 0.991 0.75 0.67 0.77 1.27 

87 0.009 0.989 0.75 0.66 0.76 1.21 122 0.007 0.994 0.75 0.67 0.77 1.27 

88 0.009 0.989 0.75 0.66 0.76 1.20 123 0.007 0.992 0.75 0.67 0.77 1.27 

89 0.009 0.990 0.75 0.66 0.76 1.21 124 0.007 0.993 0.75 0.67 0.77 1.27 

90 0.009 0.990 0.75 0.66 0.76 1.22 125 0.007 0.994 0.75 0.67 0.77 1.28 

91 0.009 0.991 0.75 0.66 0.76 1.21 126 0.007 0.991 0.75 0.67 0.77 1.28 

92 0.009 0.989 0.75 0.66 0.76 1.22 127 0.007 0.992 0.75 0.67 0.77 1.28 

93 0.009 0.989 0.75 0.66 0.76 1.23 128 0.007 0.993 0.75 0.67 0.77 1.28 

94 0.009 0.990 0.75 0.66 0.77 1.23 129 0.007 0.991 0.75 0.67 0.78 1.28 

95 0.009 0.991 0.75 0.66 0.77 1.22 130 0.006 0.991 0.76 0.67 0.78 1.28 

96 0.009 0.992 0.75 0.66 0.77 1.24 131 0.006 0.993 0.75 0.67 0.78 1.29 

97 0.008 0.989 0.75 0.66 0.77 1.23 132 0.006 0.993 0.75 0.67 0.78 1.29 

98 0.008 0.990 0.75 0.66 0.77 1.23 133 0.006 0.991 0.76 0.67 0.78 1.29 

99 0.008 0.992 0.75 0.66 0.77 1.22 134 0.006 0.994 0.76 0.67 0.78 1.28 

100 0.008 0.989 0.75 0.66 0.77 1.23 135 0.006 0.993 0.76 0.67 0.78 1.29 

101 0.008 0.990 0.75 0.66 0.77 1.24 136 0.006 0.991 0.76 0.67 0.78 1.30 

102 0.008 0.992 0.75 0.66 0.77 1.23 137 0.006 0.995 0.76 0.67 0.78 1.28 

103 0.008 0.989 0.75 0.66 0.77 1.24 138 0.006 0.994 0.76 0.67 0.78 1.29 

104 0.008 0.991 0.75 0.66 0.77 1.25 139 0.006 0.992 0.76 0.67 0.78 1.30 

105 0.008 0.990 0.75 0.66 0.77 1.25 140 0.006 0.996 0.76 0.67 0.78 1.30 

106 0.008 0.990 0.75 0.66 0.77 1.25 141 0.006 0.994 0.76 0.67 0.78 1.30 

107 0.008 0.993 0.75 0.66 0.77 1.25 142 0.006 0.993 0.76 0.67 0.78 1.30 

108 0.008 0.990 0.75 0.66 0.77 1.24 143 0.006 0.991 0.76 0.67 0.78 1.30 

109 0.008 0.993 0.75 0.66 0.77 1.27 144 0.006 0.996 0.76 0.67 0.78 1.32 

110 0.008 0.990 0.75 0.66 0.77 1.25 145 0.006 0.995 0.76 0.67 0.78 1.31 

111 0.007 0.993 0.75 0.66 0.77 1.26 146 0.006 0.993 0.76 0.67 0.78 1.30 

112 0.007 0.990 0.75 0.66 0.77 1.25 147 0.006 0.991 0.76 0.67 0.78 1.31 

113 0.007 0.993 0.75 0.66 0.77 1.27 148 0.006 0.997 0.76 0.67 0.78 1.32 

114 0.007 0.990 0.75 0.66 0.77 1.26 149 0.006 0.995 0.76 0.67 0.78 1.31 

115 0.007 0.993 0.75 0.66 0.77 1.27 150 0.006 0.993 0.76 0.67 0.78 1.32 
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9. CONCLUSIONS 

 

This paper proposes a nonlinear rank estimator, for the first time in the literature, to be used with the 

ordinary least squares method for estimating the Weibull modulus, a key parameter in reliability analysis. 

The new rank estimator is a quadratic function of the ranks of order statistics, with three parameters that 

are optimized by an extensive simulation procedure. The paper compares the performance of the new rank 

estimator with three commonly used rank estimators in terms of MSE and relative efficiency.  

 

The results show that the new rank estimator consistently outperforms the mean rank, median rank, Hazen 

rank other rank estimators, when used with the OLS method, for sample sizes ranging from 3 to 150, with 

relative efficiencies between 0.65 and 0.85 for sample sizes greater than 10; much smaller relative 

efficiencies are achieved for sample sizes 3 and 4. It also outperforms the maximum likelihood estimator 

for sample sizes less than 37. Moreover, the new rank estimator generates biased estimates of the Weibull 

modulus, but the bias decreases as the sample size increases. Another interesting finding is that the new 

rank estimator produces values that are significantly different from the mean or median rank, especially for 

larger order statistics.  

 

The study has several implications, including the potential to apply other nonlinear functions, such as cubic 

polynomials, to improve the efficiency of the parameter estimators of the ordinary least squares method. 

Additionally, it highlights that rank estimators for ordinary least squares analysis do not necessarily have 

to be a measure of central tendency for the random variable ( )( )i
F x , and the functional properties of 

different rank estimators for various purposes, such as minimum-variance unbiased estimation, may be 

worth exploring in future research. Furthermore, the research may be extended to incorporate weighted 

least squares methods. Finally, quadratic or other nonlinear rank estimators can be applied to other 

distributions with distribution functions having a linear form after a double logarithmic transformation, 

such as the lognormal or extreme value distributions. 

 

However, the research does have some limitations, including its focus on complete samples and not 

accounting for censored or truncated data, which are common in reliability studies. Moreover, it does not 

compare the new rank estimator with other estimation methods, such as the maximum likelihood method 

or the weighted least squares method, or analyze confidence intervals for the parameters. Lastly, while the 

paper is focused on the Weibull modulus, it does not consider the scale parameter. Nonetheless, this may 

be justifiable due to the importance of the Weibull modulus, and the scale parameter can be estimated 

separately using a different method. Future research could address these limitations and further explore the 

potential applications and generalizations of the new rank estimator.   
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