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Abstract
In this investigation, we study for a dynamical system aimed at elucidating a disease
model under the influence of environmental stress from a broad perspective. The model is
articulated through both standard differential equations and their Caputo fractional form.
Our methodology involves a numerical approach using the Adams-Bashforth-Moulton
technique to solve the system of differential equations, including the initial conditions.
The existence, uniqueness and convergence of the technique are also briefly discussed.
This study aims not only to improve the current technique, but also to introduce a novel
design for obtaining numerical solutions to issues discussed in the existing literature, thus
paving the way for further research. We also perform a stability analysis focusing on the
coexistence equilibrium. In addition, we present visualisations of the results to elucidate
the behaviour of the system, time evolution and phase plane plots with respect to specific
parameters.
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1. Introduction
Over the past couple of decades, many people lost their lives due to infectious diseases,

some of which gave rise to large scale epidemic outbreaks. These include swine flu, SARS,
Ebola and Coronavirus which is still ongoing and needs critical treatment strategies. In
order to understand the disease mechanism and develop new ideas to control and pre-
vent these diseases, mathematical models associated with the procedure of the disease,
transmission rate as well as the infection related factors are needed.

Although hundreds of pioneering study for infectious diseases exist in the literature,
mathematical modelling of the epidemic diseases traces its roots back to influential work
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performed by [37], who theoretically investigated the transmission and control of infec-
tious diseases. Then, because of continuously emerging epidemic outbreaks, great deal of
specific and general realistic formulation have been developed, see [44, 45, 57, 59, 60] for
some studies for the mathematical applications of infectious diseases occurred in various
conditions.

Since the transmission of infectious diseases is affected by many direct and indirect
factors, one of the primary topics in mathematical epidemiology is to investigate the con-
sequences of different environmental and disease related reasons. Most of the available
data on infectious disease modelling is based on direct transmission, where the infection
is transmitted depending on the direct contact rate with infectious individuals. However,
disease route and transmission rate are influenced by various factors including environ-
mental conditions such as pollution (in air, soil and water), that damages the immune
system of healthy individuals and leave them more prone to infection. This environmen-
tal fluctuation may give rise to increase in the infection transmission among individuals.
Although mathematical modelling for analysing the impact of environmental pollution for
disease transmission has a great importance, the existing studies in the literature are quite
rare [42]. Besides some other works that take the role of environmental fluctuations and
climate into account for some specific diseases such as vector-born diseases have been per-
formed. For instance, bifurcation Analysis of a SIRS Epidemic Model has been investigated
by Alexander and Moghadas [2]. It has been demonstrated that the basic reproductive
number remains independent of incidence functional form. Two kinds of incidence are in-
vestigated, namely, unbounded and saturated contact rates and detailed theoretical results
are provided, which are then numerically illustrated. The results determine the ranges for
the periodicity behavior of the model based on two crucial parameters: the basic reproduc-
tive number and the rate of loss of natural immunity. A weather-driven model of malaria
transmission is presented in [34]. The paper presents a mathematical-biological model of
parasite dynamics, which includes both weather-dependent stages within the vector and
weather-independent stages within the host. Numerical assessments of the model concern-
ing both time and space demonstrate its ability to qualitatively reconstruct the incidence
of infection. Yang et. al. [61] created a mathematical model to evaluate how temperature
affects the probability of a dengue outbreak. Lafferty [46] studied the ecology of climate
change and infectious diseases. The author states that climate can influence species dis-
tributions through the impact on physiology caused by temperature and precipitation.
Dobson [20] investigated climate variability, global change, immunity, and the dynamics
of infectious diseases. For a comprehensive review on the topic we refer the reader to the
above references.

Fractional calculus and its applications play an important role in engineering, physics,
chemistry, biology, and other fields [52]. In this context, fractional derivatives bring a
comprehensive concept for describing miscellaneous process and materials by hereditary
and memory properties. Correspondingly, the fractional differential equations open fur-
ther discussions and their applications provide a useful mathematical tool for dynamical
systems from the modelling, numerical, and controlling aspects. The outcomes of such
investigation give us a better understanding of the underlying mechanism of the systems.
Besides, data-fitting, non-locality, and nonlinear modelling research studies benefit from
fractional calculus. On the other hand, non well-behaved, singularities of the solutions,
and some limitations of the models which consist of the fractional differential equations
have difficulties to obtain the solutions of the systems.

From another point of view, numerical approximation of the dynamical systems com-
prising fractional differential equations with initial and boundary values can be obtained
by several techniques. A good example of one of these techniques is a well-known algo-
rithm called the predictor-corrector method of Adams-Bashforth-Moulton which is applied
on some biological models [12], [21], [54]. Besides, collocation approach by block-pulse
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functions and Bernoulli polynomials is used for the solution nonlinear fractional integro-
differential equations [49], the solutions of a differential equations system including frac-
tional order in the sense of Caputo have been obtained by the sinc collocation numerical
method and introduced by Hatipoğlu et al. [33], Frobenius method for solving fractional
differential equations [40], and RungeKutta method for solving dynamic systems in the ap-
plication of neural network for nonlinear dusty plasma [11] are different approaches used in
the field. The sextic B-spline collocation scheme was employed in [51] to derive the approx-
imate solution for the generalized equal width wave equation.The modelling aspect of the
fractional differential equations is widely used in many research areas. Particularly, these
equations have received a great attention in medical applications. This also relates the
infectious diseases for being defined by dynamical systems including parameters and the
non-integer order differential equations. Here, the non-integer order differential equations
may help to explain the dynamical systems in a comprehensive aspect. Therefore, we apply
the modelling techniques on the construction of the systems which are explained clearly
by analyses and simulations. In fact, the current studies show us the crucial results on
the subject such as numerical investigation for the Q fever disease by the fractal-fractional
operators [4], the novel coronavirus expressed by the Caputo fractional epidemic model
[38], the general fractional model for the COVID-19 with isolation as a comparative study
[9], and so on.

In the literature of ecological modelling, the imprecision of the environment would cause
complexities in the fractional order model of interaction of species, for example see [39].
In this framework, differential models for environmental pollution based on fractional
order derivatives gain the attraction of several researchers due to the advantages of the
fractional derivatives mentioned above. In the following articles focused on environmental
stress, authors introduce that fractional order models perform better than integer order
models. In [26], authors have modelled the atmospheric distribution of pollutants in the
sense of Caputo fractional derivative. Here, the solutions of the fractional models have
been compared with real data. It has been seen that the fractional derivative models
perform better than the ordinary models existing in the literature. In [27], a model on
the distribution of contaminants has been constructed for the planetary boundary layer.
According to the findings, it has been found that there should be a relation between
the physical structure of the turbulent flow and the order of the fractional derivative.
Another work on the dispersion of pollutants in the planetary boundary layer that have
better results for non-integer order model than integer order model is [50]. The [50]. The
authors have showed that the best results are obtained for fractional order α = 0.95 by
simulation results from the fractional order model. Also in [1] authors have extended a
fractional integer order model for waterborne diseases in case of environmental stressors.

Recently there are several studies in the literature which focus on the fractional order
models of infectious diseases. A relatively new non-integer order epidemiological model
for chickenpox virus is proposed in [53]. Here, authors have compared the efficiency of
the various fractional order derivative definitions. In [47] authors have the impact of
environmental pollution and the fractional parameters (memory effect) of the economic
variables on economic growth. A relatively new model to investigate the transmission of
transmission of infectious diseases in a predator and prey system has been proposed in
[25]. Regarding the findings of the study the model based on fractional-order operators
real-world phenomena better than the model based on integer-order differential equations
because of their memory-related properties. Another fractional compartment model that
involves involves maternally-derived immunity (M), susceptible (S), exposed (E), infected
(I) and recovered/Immune (R) compartments has been presented in [3], based on the frac-
tional derivative. Here, authors have found that the fractional model fits the real data
better than the classic MSEIR model. The paper [5] examines the effect of memory on
gonorrhoea transmission in a structured population using Caputo’s fractional derivative.
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For this purpose the dynamics of gonorrhea spread between females and males is studied.
In addition to numerical results the stability and sensitivity analysis are given. Authors
showed the importance of memory in a structured population in comparison to previous
studies. The study [6] focuses on the fractional order model of the heartwater disease
spread between domestic ruminants and amblyomma ticks involving Caputo derivatives.
The numerical simulations demonstrate that a modification of memory impacts the ba-
sic reproduction number. Additionally, vaccinated domestic ruminants exhibit a smooth
trajectory as the fractional order diminishes. This implies that vaccinating domestic ru-
minants gradually promotes the quantity of healthy domestic ruminants.

By better representing complex dynamics, Caputo derivative models help to improve bi-
ological and epidemiological systems. Caputo derivative models store previous states and
inputs, in particular when the initial conditions are not equal to zero. This makes it possi-
ble to model phenomena with memory and to exhibit certain relaxing behaviors observed
in real processes. Caputo-derivative dynamics can model long-term memory effects and
describe biological processes more precisely by incorporating non-integer-order derivatives.
This is because memory affects biological systems’ cell signals, immune reactions, neuronal
function, and disease susceptibility. Moreover, ecological and epidemiological parameters
can be estimated and identified using Caputo derivative systems. Control strategies, such
as vaccination programs to prevent the spread of disease, can then be designed using these
parameters. To the best of our knowledge the model presented by [42] has been studied in
various perspectives such as modelling of COVID-19 [36, 43], an agent based modeling of
disaster response and recovery phases [56], modeling of Zika outbreak [41] and a delayed
SIS modeling to examine the effects of environmental pollution [29]. However the effect of
the memory on the proposed model has not been studied so far. Therefore this research
builds on the improvement of [42] with memory effect by the motivation of successful re-
sults of fractional derivatives in models [4], [38], [9], and [1]. By taking into account the
memory effect via Caputo fractional-order derivative, we developed a fractional model to
show the role of environmental pollution in the development of disease transmission dy-
namics using a new application for the successful fractional method studied by Garrappa
et al. [22].

The organisation of the paper is as follows. In Section 2, firstly the classical infectious
disease model comprising the impact of pollution is taken into consideration. Here, the
equilibria and stability analysis are revisited in Section 2.1. Then the corresponding
system of fractional differential equations is described in Section 2.2. Section 3 deals
with the numerical procedure. Particularly, the predictor-corrector or Predict, Evaluate,
Correct, Evaluate (PECE) method of Adams-Bashforth-Moulton approach. In Section 4,
single parameter bifurcation diagram of the model is performed and time evolutions of the
fractional model with various order are compared. Lastly, in Section 5 summary of the
work is presented and possible future directions are discussed.

2. Mathematical preliminaries
2.1. Kumari and Sharma classical model

Here, we analyse the role of environmental pollution on the development of disease dy-
namics regarding a compartmental model which is proposed by Kumari and Sharma [42].
In this context, a total population of N size is divided into three class (i) susceptible class
where individuals are not affected by environmental pollution (X) (ii) susceptible class
where individuals are exposed to pollution (P ) and (iii) infected class (Y ). It is assumed
that environmental pollution does not have a direct role on the contact rate and hence
susceptible can only get infection through direct contact with infected individuals. How-
ever, environmental pollution may weaken the immune system of individuals and make
them more prone to infection.
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The classical model proposed by Kumari and Sharma [42] is given by
dX(t)

dt
= mA − θX(t) − λX(t)Y (t) − nξY (t) − µX(t) = f(X, P, Y ), (2.1)

dP (t)
dt

= (1 − m)A + θX(t) − λ(1 + δλ′)P (t)Y (t) + (1 − n)ξY (t) − µP (t)

= g(X, P, Y ), (2.2)
dY (t)

dt
= λX(t)Y (t) + λ(1 + δλ′)P (t)Y (t) − (ξ + φ + µ)Y (t) = h(X, P, Y ), (2.3)

subject to non-negative initial conditions
X(0) ≥ 0, P (0) ≥ 0 Y (0) ≥ 0.

All parameters in the system are considered positive and their description are presented
in Table 1. In the system given by Equations (2.1)-(2.3), where λ(1 + δλ′) stands for the
transmission ratio of individuals affected by pollution. Besides (1 − n) of the recovered
population is transferred into pollution affected stressed class. Individuals from class X
enter the class P at a constant rate represented by the parameter θ. The natural death
rate for all classes is denoted by µ, and the recovery rate is presented by ξ. For more
detailed information on model description, we refer the reader to [42].

Table 1. Parameters and variables used in the model (2.1)-(2.3).

parameter/variables biological meaning
A recruitment rate of newborns
λ transmission rate of the disease
δ the strength of environmental pollution that affects transmission
λ′ gauge impact of pollution
θ the ratio of susceptible class who are transmitted into stressed class
µ natural death rate for all classes (X, P, Y )
ξ the recovery ratio of infected individuals
ϕ disease related death ratio
n the ratio of recovery individuals moving to susceptible class

2.2. Fractional differential equations
Fractional differential equations provide some useful properties for a further analysis of

the models used for real world phenomena. In this section an effective numerical method,
based on [22], will be considered to solve the fractional order problem corresponding to
the model given in Eqs. (2.1)-(2.3).

In order to better understand the effect of the memory on the model (2.1)-(2.3), we con-
sider the improved version with fractional order derivatives of the model given by [42].The
fractional mathematical model corresponding to the system (2.1)-(2.3) is given by

Dα
0,tX(t) = mA − θX(t) − λX(t)Y (t) − nξY (t) − µX(t) = fα(X, P, Y ), (2.4)

Dα
0,tP (t) = (1 − m)A + θX(t) − λ(1 + δλ′)P (t)Y (t) + (1 − n)ξY (t) − µP (t)

= gα(X, P, Y ), (2.5)
Dα

0,tY (t) = λX(t)Y (t) + λ(1 + δλ′)P (t)Y (t) − (ξ + φ + µ)Y (t) = hα(X, P, Y ), (2.6)
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where Dα
∗ is the differential operator in the sense of Caputo and subject to initial conditions,

i.e.
Dα

∗ u(t) = Jn−αDnu(t), (2.7)
X(0) ≥ 0, P (0), ≥ 0 Y (0) ≥ 0,

where n := ⌈α⌉ is the nearest integer to α around 1. Besides, we have X(t) = u1(t), P (t) =
u2(t), Y (t) = u3(t) for any us(t), (s = 1, 2, 3). We also describe the RiemannLiouville
integral operator Jβ for the order of β > 0.

Jβu(t) = 1
Γ(β)

∫ t0

t
(t − v)β−1u(v)dv. (2.8)

For α = 1, we obtain a specific state for the RiemannLiouville integral operator. This is
called as the generalisation of the standard integral [22]. On the other hand, we consider
the formulation in (2.8) and by using the integral of (2.7)

u(t) :=
n−1∑
µ=0

uµ(0) tµ

µ! + 1
Γ[α]

∫ t

t0
[(t − v)α−1f(v, u(v))]dv. (2.9)

Then we obtain a Volterra integral equation.

2.3. Steady states and stability
Here we express the steady states of the model given by (2.1)-(2.3). As stated in [42]

and in many other infectious disease models in the literature, the model has a trivial
disease free steady state S1 = (X∗, P∗, 0) and coexisting state S2 = (X∗, P ∗, Y ∗), which
can be explicitly found using dX

dt = dP
dt = dY

dt = 0. Thus the disease free state (Y∗ = 0) is

X∗ = mA

θ + µ
, P∗ = 1

µ

(
(1 − m)A + mAθ

θ + µ

)
, Y∗ = 0,

and coexisting state is

X∗ = ξ + φ + µ

λ
− (1 + δλ′)P ∗,

Y ∗ = (1 − m)λA + θ(ξ + φ + µ) − λ [θ(1 + δλ′) + µ] P ∗

λ (λ(1 + δλ′)P ∗ − (1 − n)ξ)
.

Here the variable P is solved from Ψ3P 2 + Ψ2P + Ψ1 = 0 leading to a positive root

P ∗ = −Ψ2 −
√

Ψ2 − 4Ψ1Ψ3
2Ψ3

, (2.10)

where
Ψ1 = a1a6a9 + a1a3a10 + a6a7 + a3a8,

Ψ2 = a9(a1a5 + a2a6) + a10(a2a3 + a1a4) + a5a7 + a4a8,

Ψ3 = a2a5a9 + a2a4a10,

with

a1 = ξ + φ + µ

λ
, a2 = −(1 + δλ′), a3 = (1 − m)λA + θ(ξ + φ + µ),

a4 = −λ
[
θ(1 + δλ′) + µ

]
, a5 = λ2(1 + δλ′), a6 = −λ(1 − n)ξ,

a7 = −mA, a8 = −nξ, a9 = θ + µ, a10 = λ.
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Linearisation around the steady state, where Si = Si + S̃2 (i = 1, 2) gives the Jacobian
matrix which can be written in a general form

J =

fX fP fY

gX gP gY

hX hP hY

∣∣∣∣∣∣
Si

, i = 1, 2,

where
fX = −θ − λY − µ, fP = 0, fY = −λX + nξ,

gX = θ gP = −λ(1 + δλ′)Y − µ, gY = −λ(1 + δλ′)P + (1 − n)ξ,

hX = λY, hP = λ(1 + δλ′)Y, hY = λX + λ(1 + δλ′)P − (ξ + φ + µ).
Here the accents (̃·) are omitted for simplicity.

3. Numerical procedure
In the 20th century, the importance of numerical scheme to investigate the approximate

solutions of the initial value problems is well-known and the research direction of the field
focused on such techniques. J.C. Butcher introduced a comprehensive study regarding
the historical evolution of such methods [10]. The essential proposal for the extension of
these techniques is applied to the system of differential equations. Therefore, we obtain
beneficial results to understand approximations to the dynamical systems which support
getting a comprehensive insight into the outcomes of behavioural approach of the dynam-
ical systems. Early research by Bashforth and Adams (1883) and Runge (1895) describes
fundamental aspects of step-by-step methods which let us have a methodological approxi-
mation to the solutions of the problems. A basic idea of step-by-step methods was applied
to the computer-based algorithms which then gave an efficient utilization to enrich the
techniques. Therefore, we acquire a better understanding to improve these approaches for
the dynamical system requirements.
The elemental aspect of the Adams-Bashforth methods is mainly to establish a stepwise
approach to the solution. Thus, we consider mesh points also denote the step sizes. Then
the differential equation is represented by the integral on the given interval. This step
continues with approximation by the interpolation polynomial. Afterward, substitution
by using Newton’s interpolation formula, we obtain an essential formulation. Besides, a
series is applied to the interpolation and we get an approximation of the solution. On the
other hand, the variable step sizes are also applied to Adams-Bashforth methods to obtain
an approximation [48].
Here, we consider the numerical approximation for the solution of the dynamical system
in (2.4)-(2.6) including the initial values in (2.7). As we described at the Introduction, we
consider the schematic algorithms for the explicit multistep methods, particularly present
technique. In a general scheme, Adams-Bashforth method is known as one of the explicit
multistep methods. A special class of the method is used to provide numerical solutions of
the problems which are given in the form (2.4)-(2.7). Particularly, we describe a multistep
method for such investigation, more specifically, the PECE method of Adams-Bashforth-
Moulton approach. We consider the solution of the problem (2.4)-(2.7) is represented by
(2.9). Here, the derivation of Eq. (2.9) gives us a correspondence to the integral defined
by the initial conditions in (2.7). Therefore, we introduce the solution of (2.9) instead of
the initial value problem.
First, we introduce the equations in (2.4)-(2.6) [13], [14], [15], [31], [23].

Dα
∗ [X(t)] = f(X, P, Y ), (3.1)

Dα
∗ [P (t)] = g(X, P, Y ), (3.2)

Dα
∗ [Y (t)] = h(X, P, Y ). (3.3)
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For 0 < α < 1 the Volterra equation (2.9) is considered as weakly singular while we
acknowledge the general solution of the right-hand side equations [15]. For the simplicity,
we have

Dα
∗ [u(t)] = f(X, P, Y ). (3.4)

Now, we focus on the solution of the weakly singular Volterra equation (2.9). Thus, we
consider the nodes tj for all j = 0, 1, ..., n + 1 and for the step size h > 0 which is defined
as h = b/n + 1 for n + 1 steps [8]. Therefore, we obtain the approximation

u(tn+1) = u(tn) +
∫ tn+1

tn

f(v, u(v))dv, (3.5)

which represents the integration of (3.4). We follow the steps in the implicit one-step
AdamsMoulton algorithm by using the trapezoidal quadrature formula for two-points [23],
[8], [24], [16]. Subsequently, we consider the approximation for h > 0 and name it uh(tn).
Then we provide

uh(tn+1) = uh(tn) + h

2
[f(tn, uh(tn)) + f(tn+1, uh(tn+1))]. (3.6)

Now, we consider the prior approximation by defining uP
h (tn+1) which is called predictor

in AdamsMoulton method [16]. We replace it in the trapezoidal quadrature formula by
using the rectangle rule and we obtain the following explicit formulation

uP
h (tn+1) = uh(tn) + h f(tn, uh(tn)). (3.7)

This method formulation is called as the forward Euler (also known as Adams-Bashforth)
technique which is described in detail in [32]. Afterwards, we obtain the following equation
by using (3.6)

uP
h (tn+1) = uh(tn) + h

2
[f(tn, uh(tn)) + f(tn+1, uP

h (tn+1))]. (3.8)

Furthermore, we construct the scheme by using the product trapezoidal quadrature for-
mula and the nodes. We achieve the next step by a product integration and consider the
nodes together with the weight function (tn+1 − .)β−1 [13]. Afterwards, we replace the
integral in (2.9). The approximation is applied to∫ tn+1

t0
(tn+1 − v)β−1g(v)dv ≈

∫ tn+1

t0
(tn+1 − v)β−1gn+1(v)dv, (3.9)

where gn+1 is the interpolant function of g also it has the piecewise linearity [24]. It is
applied on the nodes tj for all j = 0, 1, ..., n + 1. Then we continue with the explicit
calculation [16] ∫ tn+1

t0
(tn+1 − v)β−1gn+1(v)dv =

n+1∑
j=0

aj,n+1g(tj), (3.10)

where we define aj,n+1

aj,n+1 =
∫ tn+1

t0
(tn + 1 − v)β−1φj,n+1(v)dv, (3.11)

together with

φj,n+1(v) =


v−tj−1
tj−tj−1

, if tj−1 < v < tj ,
tj+1−v
tj+1−tj

, if tj < v < tj+1,

0, otherwise.

(3.12)
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If we consider the nodes as equispaced for tj = t0 + jh, (h is a fixed integer), we compile
(3.11) with (3.12) and we obtain a reduction of (3.11) [13]

aj,n+1 =


hβ

β(β+1)(nβ+1 − (n − β)(n + 1)β), if j = 0,
hβ

β(β+1) , if j = n + 1,
(3.13)

where we examine the case 1 ≥ j ≥ 1 for our formulation and we get

aj,n+1 = hβ

β(β + 1)
((n − j + 2)β+1 − 2(n − j + 1)β+1 + (n − j)β+1). (3.14)

This is called as corrector formula and it supports us to have the fractional form of the
one-step Adams-Moulton technique. Accordingly, we obtain

un+1(tn+1) = u0(tn+1) + 1
Γ(β)

 n∑
j=0

aj,n+1 f(tj , uj) + an+1,n+1 f(tn+1, uP
n+1)

 . (3.15)

Now, we compute uP
n+1 by using the determined predictor formulation. We follow the

steps from the Adams-Bashforth tecnique in generalised case. Then we replace it to the
integral in (2.9) [13]. ∫ tn+1

t0
(tn+1 − v)β−1g(v)dv ≈

n∑
j=0

ℓj,n+1g(tj), (3.16)

where ℓj,n+1 is defined as

ℓj,n+1 =
∫ tj+1

tj

(tn+1 − v)β−1dv = 1
β

(
(tn+1 − tj)β − (tn+1 − tj+1)β

)
. (3.17)

Subsequently, we describe (3.17) for the equispaced nodes as

ℓj,n+1 = hβ

β

(
(n + 1 − j)β − (n − j)β

)
. (3.18)

Furthermore, we determine the predictor as

uP
n+1(tn+1 = u0(tn+1) + 1

Γ(β)

n∑
j=0

ℓj,n+1f(tj , uj). (3.19)

Accordingly, we calculate the function f(tn+1, uP
n+1) after we provide the predictor uP

n+1
in Eq. (3.19) by using the corrector in (3.15). Aftermath, we deal with the integration by
the evaluation of f(tn+1, un+1). Consequently, we accomplish the fractional form of the
Adams-Bashforth-Moulton method. The technique is known as the step-by-step implicit
method by using the analogue version of the classical Adams-Moulton method with the
combination of the Adams-Bashforth method. Due to the algorithm steps, the method
is simply known as the predictor-corrector technique which described in [24], [13] as the
PECE method. This algorithm provides us guarantee for the numerical solutions by means
of its properties which are introduced in the following part [13], [16], [55], [17].

3.1. Convergence
Here, the existence and uniqueness of the solutions and the convergent of the method

are proposed below [17]:

Theorem 3.1. Let be C := [0, b] × [u(0) − γ, u(0) + γ] for any b > 0 and γ > 0. Besides,
let us consider a continuous function f : C → R. Now, we define b := min{b, (γΓ(α +
1)/ ∥f∥∞)1/α}. Thus, the initial value problem (2.4)-(2.7) is solved by the existence of a
function u : [0, b] → R [17].
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Proof. The proof is obtained by using the integral operator with the order α which
was defined in (2.8). Therefore, the transmission for the fractional calculus is acquired
(see [55], Sec. 2, [19], Sec. 3, and [17], p. 235). Here, we apply (2.8) to both sides
of the system in (3.1)-(3.3). A convex, closed, and nonempty to itself set is defined
V = {u ∈ C[0, b] : ∥u(t) − u(0)∥∞ ≤ γ} which is mapped from J . Then we consider
continuity property of the operator J in (2.8). Besides, Lipschitz property of the function
f is used. By the help of continuity of f on a compact set, we say that there it is uniformly
continuous and we use the ε definition and prove the continuity property of J . After that
we can easily see the J(V) is pointwise bounded. Then we can show that

|Ju(t1) − Ju(t2)| = 1
Γ(α)

∣∣∣∣∫ t1

0
(t1 − v)α−1f(v, u(v))dv −

∫ t2

0
(t2 − v)α−1f(v, u(v))dv

∣∣∣∣
= 1

Γ(α)

∣∣∣∣∫ t1

0
((t1 − v)α−1 − (t2 − v)α−1)f(v, u(v))dv +

∫ t2

t1
(t2 − v)α−1f(v, u(v))dv

∣∣∣∣
≤ ∥f∥∞

Γ(α)

∣∣∣∣∫ t1

0
((t1 − v)α−1 − (t2 − v)α−1)f(v, u(v))dv +

∫ t2

t1
(t2 − v)α−1f(v, u(v))dv

∣∣∣∣
= ∥f∥∞

Γ(α + 1)
(2(t2 − t1)α + tα

1 − tα
2 ) (3.20)

≤ 2 ∥f∥∞
Γ(α + 1)

(t2 − t1)α (3.21)

where 0 ≤ t1 ≤ t2 ≤ b. For an arbitrary δ > 0, we have |t2 − t1| < δ and obtain

|Ju(t1)Ju(t2)| ≤ 2 ∥f∥∞
Γ(α + 1)

δα.

Then we use the Arzelà-Ascoli and the Shauder’s fixed point theorems, with the idea of
J(V) is equicontinuous, to show every sequence of is of uniformly convergent and J(V) is
obtained as relatively compact and the solution of (2.4)-(2.7) is found by a fixed point in
J regarding J(V). □
Theorem 3.2. Let be C := [0, b] × [u(0) − γ, u(0) + γ] for any b > 0 and γ > 0. Besides,
let us consider a continuous function f : C → R bounded by b and satisfies the Lipschitz
condition:

∥f(x, y) − f(x, z)∥ ≤ L|y − z|.
There exists a function u : [0, b] → R for b in (3.1) and L > 0 is a constant [17].

We know that the problem in (2.4)-(2.7) is equivalent to Eq. (2.9) when f is continuous.
The uniqueness theorem is proven by using the generalised version of Banach’s fixed point
theorem [58].

Theorem 3.3. Let us consider B is a Banach space, have its closed and nonempty subset
J , and γn ≥ 0 where n ∈ N. We also have

∑∞
n=0 γn is convergent, then

∥Jnv − Jny∥ ≤ γn ∥v − y∥ , (3.22)
where n ∈ N and v, y ∈ J for J : V → V. Therefore, we have has a unique fixed point v∗

in J where (Jnv0)∞
n=1 converges to v∗ for v0 ∈ J [17].

Proof. (Theorem 3.2) Let us consider a reduced equation in (2.9) and define a nonempty
set V = {u ∈ C[0, b] : ∥u(t) − u(0)∥∞ ≤ γ} in Banach space for the functions which are
continuous and in the interval [0, b]. We already know that the operator J is continuous
and now, see that is of fixed point. In (3.20), we have that Ju is also continuous. Therefore,
Ju ∈ C when u ∈ C and J : C → C. Then we obtain

∥Jnu(t) − Jnũ(t)∥L∞[0,b] ≤ (Ltα)n

Γ(1 + αn)
∥u(t) − ũ(t)∥L∞[0,b] (3.23)
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For n − 1 −→ n:
∥Jnu(t) − Jnũ(t)∥L∞[0,b] =

∥∥∥J(Jn−1u(t)) − J(Jn−1ũ(t))
∥∥∥

L∞[0,b]

= 1
Γ(α)

sup
0≤ω≤t

∣∣∣∣∫ ω

0
(ω − v)α−1[f(v, Jn−1u(v)) − f(v, Jn−1ũ(v))]dv

∣∣∣∣
On the other hand, it is trivial to see the result for n = 0. By using the Lipschitz
assumption and Chebyschev norm in Eq. (3.22), we can prove (3.23) (see [55], Sec. 2
and [17], p. 232). Then we can easily see the convergence of the γn and we define the
Mittag-Leffler with the order of α:

Mα(Lbα) :=
∞∑

n=0

(Lbα)n

Γ(1 + αn)

Then we obtain the uniqueness result by using the fixed point theorem ([18], Chap. 18). □
Now, we introduce the convergence of the technique as follows:

Theorem 3.4. Let us consider an error bound which is described in the form

max
0≤i≤N

|ti+1 − ti| =
{
O(h2), if α ≥ 1,

O(hp), if α < 1,
(3.24)

where Dα
∗ u ∈ U2[0T ], h = maxi(ti+1 − ti). Besides, we have it for the fixed t∗ > 0,

tj ∈ [t0, t0 + t∗] for α > 0. Then it is convergent of order p [16].

Proof. First we assume that u is the solution of (2.4)-(2.7). Then we have∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1Dα

∗ u(t)dt −
k∑

i=0
di,k+1Dα

∗ u(ti)
∣∣∣∣∣ ≥ U1tν1

k+1hµ1

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1Dα

∗ u(t)dt −
k∑

i=0
ci,k+1Dα

∗ u(ti)
∣∣∣∣∣ ≥ U2tν2

k+1hµ2 (3.25)

where ν1, ν2 ≤ 0 and µ1, µ2 > 0. Therefore, for a suitable T , N = [T/h] and q = min{µ1 +
α, µ2}, we have max0≤i≤N |u(ti) − ui| = O(hp). Secondly, we assume ν1 = ν2 = α > 0,
µ1 = 1, and µ2 = 2. Then the error bound is defined as follows:

q = min{1 + α, 2} =
{

2, if α ≥ 1,

1 + α, ifα < 1,

Finally, we obtain (3.24) for the error bound O(hp) [14], pp. 40-43 and [32], Sec. 5. □
Therefore, we guarantee the existence, uniqueness and convergence of the technique

and the numerical solutions of such a system including the initial conditions. A numerical
model is convergent if and only if a sequence of model solutions with increasingly refined
solution domains approaches a fixed value. Therefore, we obtain consistency for the nu-
merical solutions by the present technique.
Now we apply the algorithm as the next step.

3.2. The algorithm
Here, we consider the algorithmic description for the implementation of the numerical

approach in Section (3) [24]. The algorithmic steps show us practical information regarding
the solution path of the present method. On the other hand, we have a programming based
settlement which lead future directions of the work. Therefore, we present the steps in
(1).
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Algorithm 1 An algorithm to introduce a solution for the problem in (2.4)-(2.6) [24]
Require: Reach approximations of X(t), P (t), and Y (t).
Ensure: Integrate the IVP for the FDEs system, of order α > 0.

DαX(t) := FDE_FUN(T, X(t)) ▷ FDE_FUN is the corresponding vector field of
the system of FDEs
DαP (t) := FDE_FUN(T, P (t)) ▷ Dα is the Caputo fractional derivative
DαY (t) := FDE_FUN(T, Y (t))
X(T_0) = P (T_0) = Y (T_0) ≥ 0
[T, Y ] := FDE_12(α, FDE_FUN, T_0, T_FINAL, Y _0, H, PARA) ▷ H > 0 is the
step-size
while [T, Y ] := FDE_12(α, FDE_FUN, T_0, T_FINAL, Y __0, H, PARA, MU)
do

if MU = 0 then
find the solution by the predictor method. No corrector evaluation.

end if
if MU > 0 then

find the solution by the predictor method. Evaluate the corrector.
end if
if M = 1 then

use the classical PECE method. Evaluate the corrector.
if MU = Inf then

test the convergence for two consecutive iterates. Evaluate the corrector.
end if

end if
end while
[T, Y ] := FDE_12(α, FDE_FUN, T_0, T_FINAL, Y _0, H, PARA, MU, MU_TOL)
▷ test the convergence.

4. Numerical simulations
In this section stability of equilibria and the behavior of the system (2.4)-(2.6) is il-

lustrated. All computations and graphs are computed and plotted by using MATLAB
software. Unless stated otherwise the parameters of the model are fixed to A = 200, θ =
0.004, µ = 0.035, m = 0.8, δ = 0.3, λ = 0.00002, λ′ = 0.1, ϕ = 0.01, ξ = 0.012, n = 0.7.

In Figure 1, single parameter bifurcation diagrams for susceptible population (X) in re-
gard to parameters A, δ, λ′, n and µ respectively. Numerical continuation of variables P
and Y can be performed as a function of various system parameters and similar stability
behavior is obtained (not shown here for simplicity). The solid and dotted line represent
the stable branch and dashed line stand for the unstable branch. Here the number of
eigenvalues with a positive real part is 1 for the dashed line. As seen two equilibria, one is
stable and the other is unstable, intersect in a transcritical bifurcation. In Figure 1(b), it
is observed that the continuation in terms of parameters δ and λ′ demonstrate very similar
behaviour for which the dotted line is the stable branch for parameter λ′ and solid line is
the stable branch for parameter δ.

Time evolution of the fractional system (2.4)-(2.6) for two different initial conditions is
given in Figure 2. Firstly, the initial value (X0, P0, Y0) = (200, 100, 300) is considered then
the behavior of the variables X, P and Y in Figure 2 (a,c,e) respectively for various orders
of α such as α = 0.7, α = 0.8, α = 0.9 and α = 1 are presented in order to see the effect of
the memory. Secondly, the initial value (X0, P0, Y0) = (4000, 2000, 4000) is considered and
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Figure 1. Single parameter numerical continuation of variable X with α = 1 in
terms of various parameters.

the graph obtained for various orders of α such as α = 0.7, α = 0.8, α = 0.9 and α = 1 are
presented in order to see the effect of the memoryare demonstrated in Figure 1 (b,d,f).

The results presented in 2 are confirmed with phase plane diagrams of the system (2.4)-
(2.6) in 3-D plane, which is illustrated in Figure 3 for α = 0.7, 0.8, 0.9 and 1. In Figure 3
(a) the initial value (X0, P0, Y0) = (200, 100, 300) is considered and the 3-D graph of the
fractional system with initial points (X0, P0, Y0) = (4000, 2000, 4000) are presented in
Figure 3 (b).

5. Conclusions
Dynamical behavior of infectious diseases helps us to understand disease dynamic which

is mainly affected by environmental pollution. Limited investigation has been performed
to understand the effect of environmental conditions on the spread of diseases. In this
paper, we analysed the dynamics of an epidemic model with environmental stress through
both standard differential equations and its Caputo fractional version. Classic models of
ordinary differential equations do not have memory, as their solutions are independent
of previous instances. One approach to incorporate memory effects into a mathemati-
cal model is by altering the derivative order of a classical model to a non-integer value.
Therefore fractional calculus is a valuable mathematical tool for describing biological sys-
tems characterized by memory effects [7]. In this context, fractional derivatives exhibit
non-local characteristics, effectively capturing memory effects, while time delays convey
information about earlier states [35]. In this study,firstly the classical system given by
(2.1)-(2.3) is revisited and stability analysis around the coexistence equilibrium is deter-
mined [28]. Then the reformulation of the model allows us to analyse the system with
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Figure 2. Time evolution of the system given by (2.4)-(2.6) with parame-
ters given in Section 4 for two different initial conditions (i) (X0, P0, Y0) =
(200, 100, 300) (a,c,e) and (ii) (X0, P0, Y0) = (4000, 2000, 4000) (b,d,f).
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Figure 3. Phase plane plots corresponding to each column in Figure 2 with
(X0, P0, Y0) = (200, 100, 300) (a) and (X0, P0, Y0) = (4000, 2000, 4000) (b).
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fractional order operators in (2.4)-(2.6). We show that the behavior of the classes non-
affected (X), susceptible (P ) and infected (Y ) by environmental pollution with fractional
order derivatives converge to the ordinary differential model while α converges to 1. There-
fore, our results allow flexibility for modelling the dynamics of an epidemic model with
environmental stress. Besides, we consider the Adams-Bashforth-Moulton method for the
solution of the systems including the initial conditions. The technique is guaranteed the
existence, uniqueness and the convergence of the solutions. An appropriate composition
of the numerical method to the fractional problems attracted us to adapt the method to
our model problem. Our study gives an adapted approach for the model problem which
goes toward a novel contribution to the field.

The illustrative results are shown by the figures which give us practical understanding
for the dynamical system analyses and the approximation to the solutions. The model
consists of susceptible populations affected/not affected by pollution and infected indi-
viduals, and it can be expanded to include further refinements such as incorporating the
increasing level of pollution in the environment.For future studies, we can implement the
modified versions of the method by adding the fade memory, additional corrector itera-
tions, different spacing of the mesh, reduction of the arithmetic complexity, and so on.
This provides us to follow the path for investigating further open problems in the field.
By incorporating both fractional derivatives and delays, physical and biological problems
can be more accurately and comprehensively modeled. Thus, fractional tools used in this
paper can be expanded to incorporate time delays, leading to fractional delay differential
equations. This approach is also reserved for the future. Furthermore, especially for pa-
rameter estimation ones, our model could provide more realistic modelling features for the
effects of the environmental pollution with various values of α. Another straightforward
direction would be to extend the model to delay differential equation system and analyse
the dynamics of the interactions among different compartments [30]. Finally, from the
point of numerical solution technique view, various numerical techniques such as those
given in the introduction section can be extended to the proposed model.
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