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Abstract. We find conditions on k, n ∈ N, where 3 ≤ k ≤ n for which a

permutation in Sn can be written as a product of distinct k-cycles in Sn+i\Sn,

for some i ∈ N. This result generalizes a problem that was solved in 2010 in

an episode of the television show Futurama: the so-called Futurama Theorem.
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1. Introduction

In the 2010 Writers Guild Award-winning episode of Futurama, The Prisoner of

Benda [5], Professor Farnsworth and Amy build a machine that can swap the brains

of any two people. The two use the machine to swap brains with each other, but

then discover that once two people have swapped with each other, the machine does

not swap them back. More characters get involved until the group is thoroughly

mixed up, and they start looking for ways to return to their own heads.

We want to consider each brain swap done by the Professor’s machine as a func-

tion that exchanges two elements in a set and fixes everything else: a transposition.

Hence, we define Sn to be the group of n! permutations of the set {1, 2, . . . , n}, and

we adopt all standard notation about objects in Sn.

Now we can look at each brain swap as a transposition in Sn, where n is the

number of characters involved in the brain-swapping. Hence, the problem consists

in writing the inverse of a permutation as a product of transpositions that (1) are

all distinct, and (2) were not already used in constructing the original permutation.

The solution given in the Futurama episode relies on involving two additional

people; these two characters were not involved in any of the original swaps, and so

they have no restrictions on who they can swap brains with. For example, using
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the additional ‘characters’ x and y, we have

(1 2)−1 = (x y)(2 x)(1 y)(2 y)(1 x).

This can be done for any permutation, and leads to the following theorem.

Theorem 1.1 (Keeler, 2010). Let n ∈ N, n ≥ 2. The inverse of any permutation

in Sn can be written as a product of distinct transpositions in Sn+2 \ Sn.

Although Ken Keeler (writer and executive producer for Futurama at the time)

never published the proof of his theorem, the proof given in the episode as well as a

write-up of the idea may be found in [3]. This was, most probably, the first time in

which a theorem was proved for the purpose to advance the narrative of a TV show,

and thus it made it to the (internet) news [4,7] and was also mentioned in books,

such as Simon Singh’s The Simpsons and Their Mathematical Secrets [6]. Of course,

this aroused the interest of mathematicians and, naturally, it did not take too long

before articles were published about the problem (see [1] and [2]). Moreover, the

solution given by Evans, Huang, and Nguyen in [1] is optimal in the sense that it

uses the minimal number of cycles and the minimal number of additional elements.

In that article, they also gave necessary and sufficient conditions on m and n for

the identity permutation to be expressible as a product of m distinct transpositions

in Sn.

Although usually referred as The Futurama Theorem, in this work we will refer

to Theorem 1.1 as Keeler’s Theorem.

2. Products of k-cycles, k > 2

Now we are interested in learning what would happen if Professor Farnsworth

and Amy had created a machine that swapped several brains at once. We will

assume that this machine contains a round table with k chairs and that when k

people are seated around the table, the machine transfers each person’s brain to

the person on his/her right. For example, for k = 5, the machine would do

Professor −→ Amy −→ Bender −→ Leela −→ Fry −→ Professor

The problem of undoing what the machine did in the example above would

be easy if the machine did not have ‘issues’ and worked even when the same set

of five characters sat around the machine for a second time; we could use that

(1 2 3 4 5)−1 = (5 4 3 2 1) or that (1 2 3 4 5)−1 = (1 2 3 4 5)4 to obtain the

inverse of the original permutation. That would be too easy, even for TV math.

Hence, to make this interesting, if σ is the k-cycle associated to a brain transfer
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that has been previously carried out, then the machine would not perform a brain

transfer associated to σi, for all i ∈ N. We will solve this problem in our main

result (Theorem 2.2), after the following definitions and remark.

A permutation, σ ∈ Sn, is even if it can be written as the product of an even

number of transpositions (including σ = e), otherwise permutation are odd. The

set of all even permutations in Sn is a subgroup of Sn denoted An. Note that

k-cycles are even/odd depending on k being odd/even, respectively.

Remark 2.1. We are assuming that we are working with a machine that swaps

cyclically the brains of k people at a time. That is, we are working with k-cycles.

Note that, if k is odd then k-cycles are even permutations and thus our problem

would reside in An.

Theorem 2.2. Let n, k ∈ N be such that n > 2, k ≥ 3, and n ≥ k. If σ ∈ Sn,

then, σ−1 can be written as a product of k-cycles

σ−1 = τ1τ2 · · · τt,

under the following conditions

• if k = 3 and σ ∈ An, then τi ∈ An+1 \An.

• if k > 3 and σ ∈ An, then τi ∈ Sn+(k−3) \ Sn.

• if k = 2j, for some j ∈ N, and σ ∈ Sn \An, then τi ∈ Sn+3(j−1) \ Sn.

for all i = 1, 2, . . . , t, and τi /∈< τj >, for all i 6= j.

The proof of Theorem 2.2 follows from Theorem 2.5, Theorem 2.6, and Theorem

2.7. We will start our study with what will end up being an interesting special case:

k = 3.

2.1. Products of 3-cycles. It turns out that, in this case, we only need one extra

element to construct the inverse of any permutation in An.

Lemma 2.3. Let n ∈ N, n > 2, and let σ ∈ An be a k-cycle, for some odd k > 1.

Then, σ−1 can be written as a product of 3-cycles

σ−1 = τ1τ2 · · · τt

where τi ∈ An+1 \An, for all i = 1, 2, . . . , t, and τi /∈< τj >, for all i 6= j.

Proof. For k = 3 we get (1 2 3) = (x 3 1)(x 1 2), and for every 3 < k ≤ n, k odd,

and x > n, consider the product

(1 2 · · · k − 1 k) = (x k 1)(x k − 2 k − 1) · · · (x 3 4)(x 1 2).
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The result is now immediate, as the inverse of any odd cycle is also an odd cycle,

and the 3-cycles used in the product fix different sets of elements. �

Lemma 2.4. Let α, β ∈ Sn, n > 2, be two disjoint even cycles. Then, (αβ)−1 can

be written as a product of 3-cycles

(αβ)−1 = τ1τ2 · · · τt,

where τi ∈ An+1 \An, for all i = 1, 2, . . . , t, and τi /∈< τj >, for all i 6= j.

Proof. Let β−1 = (a1 a2 · · · ar) and α−1 = (b1 b2 · · · bs) be two disjoint cycles,

where r and s are even. Note that (αβ)−1 = β−1α−1 ∈ An can be written as

β−1α−1 = (a1 a2)(b1 b2) (a2 a3 · · · ar)(b2 b3 · · · bs)

= (b2 b1 x)(b1 a2 x)(a2 a1 x)(a1 b1 x) (a2 a3 · · · ar)(b2 b3 · · · bs).

Note that the last two cycles in the product are odd, and thus we can write

them as a product of 3-cycles, as indicated in Lemma 2.3. It is easy to see now

that (αβ)−1 can be written as claimed. �

We summarize the previous two lemmas, and make explicit our main result for

k = 3, in the following theorem.

Theorem 2.5. Let σ ∈ An, n > 2. Then, σ−1 can be written as a product of

3-cycles

σ−1 = τ1τ2 · · · τt,

where τi ∈ An+1 \An, for all i = 1, 2, . . . , t, and τi /∈< τj >, for all i 6= j.

Proof. Given σ ∈ An, we know we can write σ−1 as a product of disjoint cycles.

Moreover, after rearrangement (if needed) we can put all the appearing even cycles

(if any) in pairs. Hence, Lemmas 2.3 and 2.4 guarantee the desired factorization of

σ−1. �

2.2. The case σ ∈ An with k > 3. Now we want to learn what would happen if

the Professor’s machine swapped k brains cyclically, where k > 3, and the end result

of all the brain-swapping ended up being represented by an even permutation. In

order to do that we need to set some notation.

Fix n, k ∈ N, where k > 3 and n > 2. We define the following ordered lists of

numbers

[x]n,k = x1 x2 . . . xk−3

[x]−1
n,k = xk−3 . . . x2 x1
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where xi ∈ N and xi > n, for all i = 1, 2, . . . , k − 3, and xi 6= xj , for all i 6= j ∈
{1, 2, . . . , k − 3}. We will use these lists to write cycles. For example (1 2 [x]3,7) =

(1 2 x1 x2 x3 x4), where x1, x2, x3, x4 > 3 are four distinct integers.

Theorem 2.6. Let n, k ∈ N be such that n > 2 and k > 3. If σ ∈ An, then, σ
−1

can be written as a product of k-cycles

σ−1 = τ1τ2 · · · τt,

where τi ∈ Sn+(k−3) \ Sn, for all i = 1, 2, . . . , t, and τi /∈< τj >, for all i 6= j.

Proof. We will first prove that every element σ ∈ An can be written as a product

of k-cycles, then we will prove that the factors used satisfy the conditions claimed

in the theorem.

We know that every element in An can be written as a disjoint product of odd

cycles and an even number of even cycles. We will first deal with u-cycles for odd

u > 1. For u = 3 we can write

(1 2 3) = (1 3 2 [x]−1
n,k)(2 1 3 [x]n,k), (1)

and so we need k− 3 new elements to write a 3-cycle as a product of k-cycles. For

u > 3 we know that every u-cycle in An can be written as a product of u−1
2 distinct

3-cycles as follows:

(a1 a2 · · · au) = (a1 a2 a3)(a3 a4 a5) · · · (au−2 au−1 au). (2)

So, if σ ∈ An is a u-cycle with u > 3, then we write it as in Equation (2). After

that we write each of the 3-cycles in that product as a product of two k-cycles, as

discussed in Equation (1) above. Hence, we can write σ as a product of k-cycles by

incorporating k − 3 new elements.

For products of two even cycles we let α = (b1 b2 · · · br) and β = (c1 c2 · · · cs),
where r and s are even. Note that αβ ∈ An can be written as

αβ = (b1 b2)(c1 c2) (b2 b3 · · · br)(c2 c3 · · · cs) (3)

= (c2 c1 b2 [x]−1
n,k)(b2 b1 c1 [x]n,k) (b2 b3 · · · br)(c2 c3 · · · cs)

where the first two cycles needed k − 3 new elements to have length k, and all the

other cycles involved are odd, and thus can be written as products of k-cycles.

In order to see that all the k-cycles obtained in the product describing σ−1

generate distinct subgroups of An+(k−3) we start with the two k-cycles in Equation

(1). These cycles, say τ1 = (1 3 2 [x]−1
n,k) and τ2 = (2 1 3 [x]n,k), generate distinct

subgroups of An because, although they ‘move’ the same set of k elements, if they
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did not then we would get τ i2 = τ1, for some i. However, if we look at τ i2(2) we can

see that the only possibility for τ i2 = τ1 to happen would be when i = k − 1, but it

is easy to see that τk−1
2 = τ−1

2 6= τ1.

Next we notice that the k-cycles obtained by applying Equation (1) to each of the

3-cycles in Equation (2) either come in pairs as in Equation (1) (already discussed),

or are k-cycles that ‘move’ different sets of elements; in the latter case we get that

the groups generated by such cycles intersect trivially, as no power, i = 1, . . . , k−1,

of a k-cycle τ can fix any of the k elements that τ does not fix.

Now, if we took Equation (3) and applied the previous two paragraphs to it

we would get that (b2 b3 · · · br)(c2 c3 · · · cs) is written into k-cycles that generate

distinct subgroups. These subgroups are also distinct to the ones generated by

(c2 c1 b2 [x]−1
n,k) and (b2 b1 c1 [x]n,k), as the latter k-cycles ‘move’ a different set

of elements than the k−-cycles in the factorization of (b2 b3 · · · br)(c2 c3 · · · cs).
We get that all the k-cycles obtained in the factorization of αβ generated distinct

subgroups.

It is immediate that a permutation τ yields a product of k-cycles (when written

as a product of k-cycles as described above) that do not ‘move’ the same k-elements

as any of the k-cycles in the product of a permutation that is disjoint to τ . This

finishes the proof, as with this we are able to write the inverse of any permutation

as a disjoint product of cycles, and these cycles can be dealt with separate from the

rest without running the risk of getting any k-cycles appearing more than once in

the final product. �

2.3. The case σ ∈ Sn\An, with even k > 2. Next we study the last case needed

to complete the proof of Theorem 2.2.

Theorem 2.7. Let n, j ∈ N be such that n > 2 and j > 1. If σ ∈ Sn \ An, then,

σ−1 can be written as a product of (2j)-cycles

σ−1 = τ1τ2 · · · τt,

where τi ∈ Sn+3(j−1) \ Sn, for all i = 1, 2, . . . , t, and τi /∈< τk >, for all i 6= k.

Proof. Let σ ∈ Sn \ An. We write σ−1 as a product of disjoint cycles and we let

σ1 = (a1 a2 · · · ar) be an even cycle in this decomposition. We next factor σ as

follows

σ1 = (a1 a2)(a2 · · · ar).

Hence, we can always write σ = (a1 a2)τ , where τ ∈ An and τ(a1) = a1.
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Theorem 2.6 helps us to write τ as a product of (2j)-cycles satisfying the condi-

tions in this lemma. For the transposition we proceed as how we did for Theorem

2.6, by first defining the following lists

[x] = x1 x2 . . . xj−1 [x]−1 = xj−1 . . . x2 x1

[y] = y1 y2 . . . yj−1 [y]−1 = yj−1 . . . y2 y1

[z] = z1 z2 . . . zj−1 [z]−1 = zj−1 . . . z2 z1

where xi, yi, zi � n, for all 1 ≤ i ≤ j − 1. We now notice that

(a1 a2) = (a1 [z]−1 [y]−1 a2)(a1 [x]−1 a2 [z])([x] a1 [y] a2) (4)

is a product of (2j)-cycles.

Finally, we need to check that the groups generated by the (2j)-cycles intersect

trivially. We already have that for the cycles in the factorization of τ , and the same

can be easily obtained for the cycles in Equation (4), as the three cycles in this

product ‘move’ different sets of elements. A similar argument can be used when

checking subgroups generated by the (2j)-cycles in the product describing τ and

those in the product in Equation (4). �
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