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Abstract: Fabric defects cause both labor and raw material losses and energy costs. These 

undesirable situations negatively affect the competitiveness of companies in the textile 

sector. Traditionally, human-oriented quality control also has important limitations such as 

lack of attention and fatigue. Robust and efficient defect detection systems can be developed 

with image processing and artificial intelligence methods. This study proposes a deep 

learning-based method to detect and classify common fabric defects in circular knitting 

fabrics. The proposed method adds a fine-tuned mechanism to the MobileNetV2 deep 

learning model. The added fine-tuned mechanism is optimized to classify fabric defects. The 

proposed model has been tested on a fabric dataset containing circular knitting fabric defects. 

Obtained results proven that the proposed method produced desired results in fabric defect 

detection. 

 

 

MobileNetV2 Modeli Kullanılarak Yuvarlak Örgü Kumaş Hatalarının Sınıflandırması 
 

 

Anahtar Kelimeler 

Kumaş hatası 

tespiti, 

Derin öğrenme, 

Görüntü işleme, 

Yuvarlak örgü 

Öz: Kumaş hataları hem işçilik ve hammadde kayıplarına hem de enerji maliyetlerine neden 

olur. Bu istenmeyen durumlar tekstil sektöründeki firmaların rekabet gücünü olumsuz 

etkilemektedir. Geleneksel olarak, insan odaklı kalite kontrolü dikkat eksikliği ve yorgunluk 

gibi önemli sınırlamalara sahiptir. Görüntü işleme ve yapay zeka yöntemleri ile sağlam ve 

verimli hata tespit sistemleri geliştirilebilir. Bu çalışma, yuvarlak örgü kumaşlarda yaygın 

kumaş hatalarını tespit etmek ve sınıflandırmak için derin öğrenme tabanlı bir yöntem 

önermektedir. Önerilen yöntem, MobileNetV2 derin öğrenme modeline ince ayarlı bir 

mekanizma eklemektedir. Eklenen ince ayarlı mekanizma, kumaş hatalarını sınıflandırmak 

için optimize edilmiştir. Önerilen model, yuvarlak örgü kumaş hataları içeren bir kumaş veri 

seti üzerinde test edilmiştir. Elde edilen sonuçlar, önerilen yöntemin kumaş hatası tespitinde 

istenilen sonuçları verdiğini kanıtlamıştır. 

 

1. INTRODUCTION 

 

Fabric defect detection is the process of identifying and 

localizing defects or flaws in textile fabrics using 

automated or computerized methods. This can be done 

using image processing and machine learning techniques 

that analyze images of the fabric and identify any areas 

that differ from the normal fabric pattern, such as holes, 

stains, or discolorations. Fabric defect detection is 

important in ensuring the quality of textile products and 

reducing waste in manufacturing processes. The goal of 

fabric defect detection is to improve quality control in 

textile industry and ensure that only high-quality products 

are released to the market. 

Traditional human-oriented fabric defect detection 

methods include various difficulties such as labor cost and 

eye strain. Therefore, artificial intelligence-based defect 

detection methods have been developed. Fabric defect 

detection studies made with machine learning and image 

processing methods can be examined in two groups in 

general: Motif-based methods and non-motif-based 

methods. The motif-based methods use a defect-free 

ground truth fabric image for comparison of the all fabric 

motifs. But in practice it is difficult to work with these 

methods as there are so many fabric and defect types. 

Therefore, there has been more interest in non-motif-

based studies. The five primary categories of non-motif-

based investigations are structural [1], statistical [2], 

model-based [3], learning-based [4] and spectral [5].  

www.dergipark.gov.tr/tdfd 

https://orcid.org/0000-0003-1374-1417
http://www.dergipark.gov.tr/tdfd


 

Tr. J. Nature Sci. Volume 12, Issue 4, Page 63-68, 2023 
 

 

64 

This study focuses on the ability of deep learning methods 

to detect circular knitting fabric defects. To classify 

different fabric patterns, robust and efficient methods 

have been developed by using deep learning architectures 

separately or together. Fabric images have regular shape 

and patterns. When defects occur, these regular shape and 

patterns are broken. At this point, these deteriorations are 

detected with strong pattern analysis and deep learning 

methods. In this paper, powerful deep learning model 

(i.e., MobileNet) is used to obtain better performance for 

specific fabric defects. To keep the model's initial learned 

parameters, alternative architecture is designed in a 

parallel configuration. Thus the proposed model achieves 

high defect detection results for circular knitting fabric 

defects.  

 

From this point of view, this paper uses the MobileNetV2 

deep learning model to detect common defects in circular 

knitting fabrics. The most important innovation point is 

that the proposed transfer learning-based model has been 

designed for circular knitting fabric defects. In addition, 

there are several advantages of the employed deep 

learning method: 

 

Improved accuracy: The proposed approach, which 

makes use of the MobileNetV2 model, outperforms more 

established techniques like the shearlet transform and 

GLCM models in terms of accuracy. 

 

Increased robustness: The proposed deep learning model 

can be more robust to noise and low contrast in the fabric 

images. By incorporating different convolution layers, the 

overall model can be more resistant to overfitting and 

generalization errors. 

 

Faster training: Our deep learning model can often be 

trained more quickly than other deep models.  

 

The rest of the paper is organized as follows. Section 2 

introduces the prior works about the fabric defect 

detection. Section 3 presents the proposed hybrid deep 

learning model. Section 4 provides the experimental 

results and Section 5 concludes the paper. 

 

2. LITERATURE REVIEW 

 

Fabric defect detection is traditionally performed in a 

human inspection way. However, artificial intelligence 

and image processing methods are used in modern defect 

detection systems. There are many related literature 

papers about fabric defect detection.  Also, there are 

different comprehensive reviews of fabric defect 

detection techniques using computer vision, including 

both traditional and deep learning-based approaches [6,7]. 

Mak et al. [8] presents a method for fabric defect detection 

that uses Gabor filters and morphological operations to 

enhance the texture and identify the defect regions. Huang 

and Xiang [4] developed a defect detection model based 

on CNN model and repeated pattern analysis. Their model 

uses both DeeplabV3+ and GhostNet to perform 

lightweight fabric defect detection. Zhou and Wang [9] 

proposed a unsupervised defect detection model by using 

local patch approximation. They used 2D maximum 

entropy model to distinguish defective pixel regions from 

the abnormal map. High detection rates were taken on 54 

defective fabrics.  

 

An another paper proposes a texture analysis-based 

approach for fabric defect detection using support vector 

machines (SVMs) [10]. The method extracts texture 

features from the fabric image and uses SVMs to detect 

the defective regions. Zhao et al. [11] performed a defect 

detection system based on deep learning using a Faster R-

CNN network. They used a normalization step to reduce 

some undesired situations such as brightness changes and 

noise. They performed detailed experimental works to 

compare the proposed model. The proposed model 

achieved more high detection results than Yolo, Yolov3 

and SSD models. In a recent study, deep learning and 

contrast enhancement method were used together [12]. 

Inception v3 model was used to extract fabric feature 

extraction. The three types of defective fabric that this 

model can identify are holes, vertical defects, and 

horizontal defects. In a study using the MobileNetV2 

model, fabric defect detection was made quickly on the 

NVIDIA Jetson Nano card [13]. Deep neural network 

model consists of a channel attention mechanism. This 

mechanism emphasizes defect features and suppress 

background noise components. Comprehensive analyzes 

were performed in a study comparing the discrete curvelet 

transform, wavelet transform and GLCM methods [14]. 

The best results have been achieved by using the discrete 

curvelet transform and GLCM features together. CNN-

based architecture with adaptive threshold-based have 

been developed to determine fabric defect classes [15]. 

Adaptive threshold mechanism is used for class 

determination. Two different real fabric datasets are used. 

The proposed model achieved an average of 90% success 

in defect detection. Pourkaramdel et al. [16] proposed a 

local quartet patterns based method to obtain 

discriminative texture features of fabric images. This 

model is robust to noise and it can be use in industrial 

defect detection problems.  

 

Recently, deep learning-based defect detection models 

have been developed. Vgg16 deep learning model was 

used to detect circular knitting fabric defects [17]. The 

proposed method produced better results than shearlet 

transform and GLCM methods. In a recent study, a 

specific deep learning architecture has been developed to 

detect circular knitting fabric defects [18]. This 

architecture has obtained more high defect detection rates 

than InceptionV3, MobileNetV2, Xception and ResNet50 

models. A model was developed based on the YOLOX-

Nano model to develop an optimized deep model for 

defect classification [19]. To classify the woven fabrics 

which distributed along the warp and weft directions, 

proper convolution kernels have been developed. The 

proposed deep model has a balance in terms of fabric size, 

accuracy and speed for defect detection. In a recent study, 

circular knitting fabric defects were detected using 3 

different deep learning architectures [20]. Detection of 

fabric defects with the machine vision mechanism 

installed on the circular knitting machine is an important 

and valuable task. Fabric defects were detected with 98% 

success with ResNet architecture. An intelligent 
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automation system was developed for fabric inception 

machines [21]. The developed intelligent and PLC-

controlled system examines and reports the fabric rolls in 

terms of quality control. 

 

The results of the literature review revealed that the 

studies on fabric defect detection may be divided into two 

primary categories. The first group is studies using 

traditional image analysis and machine learning 

approaches such as GLCM, wavelet transform and 

support vector machines. The second group uses deep 

learning methods. It is pointed that defect detection 

methods made with deep learning methods stand out as 

very powerful and highly distinctive studies. However, 

deep learning based works have some disadvantages such 

as computational cost and numerous parameters. 

Especially the number of methods developed to detect 

circular knitting fabric defects is very limited. However, 

knitted fabrics are widely used in daily life including t-

shirts, sweaters, socks, leggings and tights, hats and 

scarves. Overall, knitting fabrics are versatile and widely 

used in the production of various types of clothing due to 

their stretch ability, comfort, and ability to provide texture 

and warmth. 

 

3. MOBILENETV2-BASED FABRIC DEFECT 

DETECTION 

 

There exist different deep learning models like VGG19, 

MobileNet, ResNet and InceptionV3. These models have 

been shown to work well in a variety of computer vision 

applications, including pattern recognition and texture 

classification. In this paper, MobileNetV2 model is used 

to defect circular knitting fabric defects. However, it is 

aimed that the model produces the best results by 

performing different ablation studies. 

 

MobileNetV2 a deep learning architecture that was 

specifically developed for efficient computation on 

mobile and embedded devices [22]. This architecture was 

developed by researchers at Google and is based on a 

combination of depth wise separable convolutions and 

pointwise convolutions. Depth wise separable 

convolutions are a form of convolution that factorizes a 

standard convolution into a depth wise convolution and a 

pointwise convolution. This approach reduces the 

computational cost of the deep model.  

 

The pre-trained MobileNet presents a module that 

contains inverting residual structure. The initial of 

MobileNetV2 begins with fully convolutional layers. This 

first layers include 32 filters and 19 residual bottlenecks. 

The obvious structure of this block can be examine in 

Table 1 [22]. 

 
 

 

 

 

 

 

 

 

 

Table 1. Bottleneck residual block (Here k  , s and t  show the channel, 

stride and expansion factor, respectively). 

Input Operator Output 

kwh   11  conv2d, ReLU ( )tkwh   

kwh   33  dwise s= s  ReLU 
( )tk

s

w

s

h


 

tk
s

w

s

h


 

Linear 11  conv2d 'k
s

w

s

h


 

 

As shown in Table 1, MobileNetV2 layer blocks include 

commonly composed of 11  convolution and 33   

depth wise separable convolutions (DW Conv). Therefore 

MobileNetV2 deep network model consists of a series of 

a convolution and DW Conv blocks [13]. In this model, 

linear bottlenecks and depth wise separable convolutions 

has been integrated into inverting residual structure with 

linear bottlenecks. Two types of convolution layers in 

MobileNetV2 architecture can be seen Figure 1. 

 

 
Figure 1. The block structure of MobileNetV2 [22] 

 

In this paper, ReLU6 activation function is used to ensure 

non-linearity and enhance sparsity. Thus MobileNetV2 

model is robust to conditions such as low-precision 

computation. During training, kernel size is used as 33
. Also dropout and batch normalization operations are 

used. Constant expansion strategy is used except for the 

first layer. As a result of the experimental studies, 

expansion factor is determined as 5. This means that if a 

bottleneck layer takes 64-channel input tensor, it 

generates a tensor with 128 channels. Therefore 

intermediate expansion layer has 64x5=320 channels 

[22]. 

 

Original MobileNetV2 architecture cannot give the 

desired results in circular fabric defect detection. In this 

paper, the images in the circular knitting fabric database 

contain some undesirable situations such as noise, light 

change and rotation. At this point, it is necessary to 

perform parameter optimization and fine-tuning of the 

MobileNetV2 model.  
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Fine-tuning is a well-known optimization strategy for 

enhancing model performance. To increase the accuracy 

of the MobileNetV2, fine-tuned block can be added 

following the 16 blocks of the MobileNetV2 architecture. 

Based on similar studies in the literature [23], this paper 

uses a fine-tuned block to enhance the classification 

performance of MobileNetV2. Thus, an efficient 

MobileNetV2 architecture is developed for detecting the 

defects in circular knitting fabrics. Fine-tuned block 

includes 3 main sub-layer: feature extraction, pooled 

feature map and last block. Especially feature extraction 

layers in fine-tuned block have critical role since 

MobileNetV2 model performs over-abstract 

representations fabric images. Over-abstraction leads to 

lose of distinctive defect features. The structure of the 

fined-tuned block used in the proposed model and the 

layers it contains are shown in the Figure 2. As shown in 

Fig. 2, fine-tuned block has the two convolution layer, 

batch normalization, a dropout layer, flatten layer and 

dense layer. Pool size of AveragePooling2D is 2x2. 

Dropout layer and ReLU activation function have 32 

channels. Finally, fine-tuned block consists of the flatten 

and dense layers. Learning rate is 0.001. 

 

 
Figure 2. The block structure map of fine-tuning approach 

 

4. EXPERIMENTAL RESULTS 

 

In this section, the results of the fine-tuned MobileNetV2 

architecture on a fabric database containing circular 

knitting fabric defects are presented. Firstly, some general 

explanations about the fabric database have been given. 

Then, the experimental results obtained are discussed.  

 

4.1. Fabric Dataset 

 

The dataset used in the study was created on a knitting 

machine in a textile factory [24]. Fabric production was 

monitored by installing a line scanning camera and a line 

light system on the circular knitting machine. Table 3 

present information about the fabric dataset. 

 
Table 2. Fabric defect classes and number of image in fabric dataset 

Defect types Defect-free 

Needle breakages Holes/tear Press-off Gout  

2493 219 243 45 10820 

 

There are the most common circular knitting fabric 

defects, including needle breakages, hole, press-off and 

gout.  There are 13820 images in the database. The size of 

images is 256x250. Figure 3 shows some representative 

defect samples.  

Images in this dataset contain a lack of contrast and noise. 

Therefore, a pre-processing step was applied. In this 

paper, gaussian smoothing is used to pre-processing step 

for denoising fabric images. Gaussian filtering is applied 

to improve visual quality at various scales. As a result of 

the preprocessing, the defective pixel regions were better 

highlighted. Also, the performance of deep learning 

algorithms is improved by minimizing the noise 

components. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. The representative defected samples of the fabric dataset: (a) 
needle breakages, (b) holes/tear, (c) press-off, (d) gout 

 

4.2. Defect Detection Results 

 

The proposed MobileNetV2 model is compared with 

InceptionV3 [25]  and Xception [26] architectures. 

Accuracy, precision, recall and F1-score are used as 

comparison metrics. Thus, comparisons could be 

performed within the framework of different parameters. 

The methods used in the comparison have been tested and 

trained with optimal values. Xception is version of a well-

known Inception module. There are some differences 

between Inception and Xception models. Readers can be 

read these differences from their original papers.  

 

Deep models were trained using circular knitting fabrics. 

In experimental works, the circular knitting dataset was 

split into 90% and 10% for training and testing, 

respectively. With the use of this method, training data 

that won't be used in testing can be provided. Validation 

set was 10% of the training image set. Hyperparameters 

of deep models were determined on the basis of the 

validation set. Experimental results were obtained 5 times 

and the average classification results were reported. 

 

The first experiment has been performed in the form of 

binary classification of fabric images defected and defect-

free. Therefore, it does not include classification results 

among four different defect types. The classification 

results of the deep architectures are given in Table 3. As 

can be seen from these results, the proposed fine-tuned 

MobileNetV3 model produced the highest results. The 
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original MobileNetV2 model produced poor results in 

fabric defect detection [18]. However, the feature 

extraction capacity of this deep model has been improved 

with the fine-tuned MobileNetV2 version. In addition, the 

images in the fabric database were pre-processed before 

the classification process. Thus, noise and brightness 

changes in the images are reduced. This has positively 

affected the performance of the fine-tuned MobileNetV2 

model. The obtained results encouraged the use of deep 

learning-based methods to detect circular knit fabric 

defects. 

 

The feature extraction and pooling layer structure in fine-

tuned blocks are arranged for fabric defect detection. This 

had a positive effect on the performance of the 

MobileNetV2. The performances of the Inception and 

Xception models can be improved with some adjustments 

to these models. Especially in the inception connection 

model, the number of convolution operations and kernel 

sizes can be rearranged. The Xception model, which was 

developed on the basis of the Inception model, can be re-

designed in a similar way. In addition, all models can be 

trained with a larger number of fabric images to improve 

their performance. 

 
Table 3. Overall classification results InceptionV3, Xception and fine-
tuned MobileNetV2 models on fabric dataset 

 Accuracy precision recall F1-score 

InceptionV3 78.30 78.32 78.29 78.14 

Xception 80.45 80.38 80.47 80.24 

Fine-tuned 
MobileNetV2 

92.13 92.15 92.19 91.96 

 

The second experiment has been carried out to distinguish 

between 4 different fabric defect in the dataset. 

Classification result are given in Table 4. The proposed 

fine-tuned MobileNetV2 architecture achieves effective 

results. In particular, needle breakages and hole fabric 

defects, which have similar visual characteristics, are 

effectively distinguished. It has been understood that 

existing architectures should be configured according to 

error types. With fine-tuned block, it is clear that 

MobileNetV2 has a strong ability to find the four most 

prevalent fabric defects. Of the four defect kinds, the 

needle breakages defect has the lowest detection 

accuracy. The most important reason for this is that the 

defected region resembles a defect-free image pattern.  

InceptionV3 and Xception models obtain lower 

classification results. When the results between Table 3 

and Table 4 are compared, it is seen that the success of the 

methods in distinguishing 4 different classes is partially 

lower. The main reason for this is both the high number 

of classes and the low number of faulty examples in the 

database. 

 
Table 4. Classification accuracies of InceptionV3, Xception and fine-

tuned MobileNetV2 models on 4 fabric defects 

 
Needle 

breakages 
Holes/tear Press-off Gout 

InceptionV3 74.23 76.27 76.72 75.53 

Xception 73.49 77.13 76.41 76.81 

Fine-tuned 
MobileNetV2 

89.28 91.24 90.43 90.17 

 

 

 

5. CONCLUSION 

 

In this paper, fine-tuned MobileNetV2 architecture is 

proposed to detect the most common fabric defects in 

circular knitting fabrics. Considering the fabric database 

used, MobileNetV2 architecture is used for the first time 

to detect circular knitting fabric defects. Pre-processing 

steps have been performed to the images in the fabric 

database. Thus, improvements have been made against 

undesired situations such as lack of contrast, noise and 

blurring. Fine-tuned blocks have been added to the 

MobileNetV3 architecture to detect types of circular 

knitting fabric defects. Thus, the feature extraction 

capacity of the model is improved. Convolution and 

pooling kernels in blocks are determined by experimental 

testing. 

 

The proposed model produced better results than 

Inception and Xception models. The proposed model 

contains fewer hyperparameters than the other two 

models. Therefore, the model requires less time to train 

and test. Future research will lead to the development of 

hybrid deep learning models. Thus, more powerful 

methods will be developed in detecting circular knitting 

fabric defects. 
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