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1Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University, Adiyaman, Türkiye
2Department of Mathematics, Sacred Heart College, Tirupattur, Tamil Nadu, India

3Department of Mathematics, Science Institute, Adıyaman University, Adiyaman, Türkiye
4Department of Mathematics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India

*Corresponding author

Article Info

Keywords: Flip bifurcation, Immigra-
tion, SIR model, Stability
2010 AMS: 39A13, 39A28, 39A30,
92D30
Received: 11 August 2023
Accepted: 12 December 2023
Available online: 5 February 2024

Abstract

This paper aims to examine the dynamics of a variation of a nonlinear SIR epidemic
model. We analyze the complex dynamic nature of the discrete-time SIR epidemic model
by discretizing a continuous SIR epidemic model subject to treatment and immigration
effects with the Euler method. First of all, we show the existence of equilibrium points in
the model by reducing the three-dimensional system to the two-dimensional system. Next,
we show the stability conditions of the obtained positive equilibrium point and the visibility
of flip bifurcation. A feedback control strategy is applied to control the chaos occurring in
the system after a certain period of time. We also perform numerical simulations to support
analytical results. We do all these analyses for models with and without immigration and
show the effect of immigration on dynamics.

1. Introduction

Mathematical models describing epidemics affecting population dynamics are often expressed with differential equations or difference
equations [1–3]. The models of differential equations are used to describe situations where change is continuous. Analysis of continuous-time
epidemic models has been studied by many researchers [4–9]. If the change is discrete, it would be more appropriate to use difference
equations for modelling. Moreover, these equations provide a more realistic approach to describe events with different characteristic
processes, while retaining the essential properties of the corresponding continuous time models, [10–29]. For this purpose, we provide more
recent articles as references [30–32]. When a parameter of the model is changed, the stability behavior of the model may change. New
stable points may emerge or existing points may disappear. Changes in the topological or qualitative structure of a dynamic system are
determined using bifurcation theory [33, 34]. Sometimes, the existence of bifurcation behavior may be detected without the need for deep
analysis [14, 22].
Wang [4] analyzed the following model, and showed that there is bifurcation depending on the size of the treatment capacity:

dS
dt

= A−dS−λSI

dI
dt

= λSI− (d + γ + ε)I−T (I)

dR
dt

= γI +T (I)−dR.

(1.1)

In this model (1.1), S− sensitive individuals who have not been infected with the disease but are susceptible to the disease; I− infected
individuals who have contracted the disease and infect others; and R− individuals who have the disease and but have recovered. A,d,γ,ε,λ
are positive parameters. A− individuals added to the population by birth, d− natural mortality rate in the population, γ− natural recovery
Email addresses and ORCID numbers: akgumus@adiyaman.edu.tr, 0000-0003-2610-8565 (Ö. Ak Gümüş), agmshc@gmail.com, 0000-0003-2004-
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rate of infected individuals, ε− disease-related mortality rate, λ− infection coefficient. In study [35], local stability and bifurcation analyses
were studied by transforming a continuous SIR epidemic model given in study [4] into a discrete-time system by using forward Euler method
as follows:

St+1 = St +δ (A−dSt −λSt It)

It+1 = It +δ (λSt It − zIt − kIt)
(1.2)

where z = d + γ + ε is the sum of natural death, recovery, and death from disease, respectively. T (I) = kI is the treatment function such that
0≤ I ≤ I0 and k is a positive parameter. In this study, we will consider the following discrete-time model that we developed under the given
immigration effect:

St+1 = St +δ (A−dSt −λSt It + pSt)

It+1 = It +δ (λSt It − zIt − kIt +qIt)
(1.3)

where pSt− immigration effect on susceptible individuals and qIt− immigration effect on infected individuals. In this article, our aim is to
examine the dynamics of model (1.3) subject to immigration by briefly recalling the analysis of the model (1.2) without immigration, and
then to compare dynamics of these models in order to see the effect of the immigration factor on the system (1.2). We can give references to
some studies that are necessary for the basic concepts used in the analyses made throughout the study [36–38].
This article is organized as follows: Section 2 briefly mentions from the analysis of the positive equilibrium point of the model (1.2), which
does not include the immigration factor. In Section 3, the equilibrium points of the model (1.3) created by including the immigration factor
were obtained; and stability analyses of the obtained equilibrium points are made. Then, the flip bifurcation conditions are obtained for the
positive equilibrium point. The resulting chaos was controlled in Section 4. Section 5 presents numerical simulations that validate the criteria
obtained. A brief summary of the results is presented in Section 6.

2. Analysis of the SIR Epidemic Model (1.2)

Let us briefly recall the existence of equilibrium points of the system (1.2), stability of the positive equilibrium point, and flip bifurcation
condition (see [35]).

Remark 2.1. The model (1.2) has two equilibrium points such that (S∗, I∗) =
(

A
d
,0
)

and (S∗, I∗) =
(

k+ z
λ

,
A

k+ z
− d

λ

)
.

Remark 2.2. Assume that
Aλ

k+ z
> d. Regarding the dynamics of the positive equilibrium point (S∗, I∗) =

(
k+ z

λ
,

A
k+ z

− d
λ

)
, the

followings are true:

Proposition 2.3. If δ <
Aλ

(k+ z)(Aλ −d(k+ z))
−

√
4d(k+ z)3 +Aλ (−4(k+ z)2 +Aλ )

(k+ z)2(d(k+ z)−Aλ )2 is provided such that
Aλ (4(k+ z)2−Aλ )

4(k+ z)3 < d,

the (S∗, I∗) is locally asymptotically stable.

Proposition 2.4. For δ =
4(k+ z)

Aλ +
√

4d(k+ z)3 +Aλ (−4(k+ z)2 +Aλ )
, there can be flip bifurcation such that B =

δλA
k+ z

6= 2,4.

3. Analysis of the SIR Epidemic Model (1.3)

In this section, the aim is to discretize by adding immigration parameters to the model discussed in [4]; and then to examine the dynamics of
the obtained discrete-time model. Thus, the continuous SIR epidemic model, based on different rates of immigration of both susceptible and
diseased individuals, is as follows:

dS
dt

= A−dS−λSI + pS

dI
dt

= λSI− (d + γ + ε)I−T (I)+qI

dR
dt

= γI− kI−dR.

It is sufficient to consider the following model reduced to 2−dimensions, since the first two variables are independent of the variable R

dS
dt

= A−dS−λSI + pS

dI
dt

= λSI− (d + γ + ε)I−T (I)+qI.

Now, if we use the forward Euler method in the continuous SIR epidemic model such that, z = d + γ + ε and T (I) = kI; we get discretized
the system as follows:

St+1 = St +δ (A−dSt −λSt It + pSt)

It+1 = It +δ (λSt It − zIt − kIt +qIt)

with
dS
dt
≈ St+1−St

δ
and

dI
dt
≈ It+1− It

δ
. The following Lemma is useful for analysis of the positive equilibrium point.
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Lemma 3.1. [9, 25] Let F(λ ) = λ 2 +Bλ +C be a quadratic polynomial with real coefficients. Suppose that this polynomial has roots λ1,
λ2, and F(1)> 0. Then the following statements apply:

(i) |λ1|< 1 and |λ2|< 1⇔ F(−1)> 0, and C < 1. (In this case, the equilibrium point is stable.)
(ii) λ1 =−1 and λ2 6= 1⇔ F(−1) = 0 and B 6= 0,2. (In this case, flip bifurcation may occur.)

Then we can give the following analyses for this model.

3.1. Local stability

We see that the model (1.3) has two equilibrium points (S∗, I∗) =
(

A
d− p

,0
)

and (S∗, I∗) =
(

k+ z−q
λ

,
Aλ +(p−d)(k+ z−q)

(k+ z−q)λ

)
. Let us

now examine the local asymptotic stability conditions of the positive equilibrium point (S∗, I∗). For this, let us take

f (S) = S+δ (A−dS−λSI + pS)

g(I) = I +δ (λSI− zI− kI +qI) .

So we can write the following Jacobian matrix:

J(S, I) =
[

fS(S, I) fI(S, I)
gS(S, I) gI(S, I)

]
=

[
1+δ (−d−λ I + p) −δλS

δλ I 1+δ (λS− z− k+q)

]
.

The Jacobian matrix evaluated around the positive equilibrium point (S∗, I∗) is given by

J(S∗, I∗) = J
(

k+ z−q
λ

,
Aλ +(p−d)(k+ z−q)

(k+ z−q)λ

)

=

 1− δλA
k+ z−q

−δ (k+ z−q)

δ

(
Aλ +(k+ z−q)(p−d)

k+ z−q

)
1

 ,
where det(J)= 1− δλA

k+ z−q
+δ 2λA+δ 2(p−d)(k+z−q) and Trace(J)= 2− δλA

k+ z−q
. Then the characteristic polynomial corresponding

to the Jacobian matrix has the form:

F(µ) = µ
2−
(

2− δλA
k+ z−q

)
µ +1− δλA

k+ z−q
+δ

2(λA+(p−d)(k+ z−q))

and the roots of this polynomial are found:

µ1,2 = 1− δλA
2(k+ z−q)

± δ

2(k+ z−q)

√
4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2.

For the stability of the equilibrium point, the magnitudes of these two eigenvalues must remain less than 1. To determine the conditions on
the parameters, we first make use of the following conditions:

|λ1|< 1 and |λ2|< 1⇔ F(−1)> 0,F(1)> 0 and C < 1.

Proposition 3.2. F(1)> 0⇒ F(1) = δ 2 (Aλ +(p−d)(k+ z−q))> 0. Thus
Aλ

k+ z−q
> d− p > 0 must be provided such that 0 < q≤ z.

Proposition 3.3.

F(−1)> 0⇒ F(−1) =
4(k+ z−q)−2δλA+δ 2(λA(k+ z−q)+(k+ z−q)2(p−d))

k+ z−q
> 0.

If this inequality is solved, we have

δ1 <
λA

(k+ z−q)(λA+(p−d)(k−q+ z))
−

√
4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2

(k+ z−q)2((d− p)(k−q+ z)−Aλ )2 .

or

δ2 >
λA

(k+ z−q)(λA+(p−d)(k−q+ z))
+

√
4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2

(k+ z−q)2((d− p)(k−q+ z)−Aλ )2 .

such that
Aλ (4(k+ z−q)2−Aλ )

4(k+ z−q)3 + p < d.

Proposition 3.4.

C < 1⇒C =
(k+ z−q)−δλA+δ 2(λA(k+ z−q)+(k+ z−q)2(p−d))

k+ z−q
< 1.

If this inequality is solved, we have

δ <
Aλ

(k+ z−q)(Aλ +(p−d)(k+ z−q))
.
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Theorem 3.5. Assume that
Aλ

k+ z−q
> d− p > 0. If

Aλ (4(k+ z−q)2−Aλ )

4(k+ z−q)3 + p < d and

δ <
λA

(k+ z−q)(λA+(p−d)(k−q+ z))
−

√
4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2

(k+ z−q)2((d− p)(k−q+ z)−Aλ )2

are provided, the positive equilibrium point of the model (1.3) is locally asymptotic stable.

3.2. Flip bifurcation

Let’s
Aλ

k+ z−q
> d− p > 0. We know that when B 6= 0,2 and F(−1) = 0, flip bifurcation can occur. Therefore, we will consider these

conditions such that B =−trace(J), C = det(J).

Proposition 3.6. From the condition F(−1) = 0, we get the roots

δ1,2 =
4(k−q+ z)

λA±
√

4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2
.

Proposition 3.7. From the condition B 6= 0, we reach

B =−trace(J) =−
(

2− δλA
k+ z−q

)
and − trace(J) 6= 0⇔ δ 6= 2(k+ z−q)

λA
.

Proposition 3.8. From the condition B 6= 2, we obtain

B =−trace(J) =−
(

2− δλA
k+ z−q

)
and − trace(J) 6= 2⇔ δ 6= 4(k+ z−q)

λA
.

Theorem 3.9. If the condition

δ =
4(k−q+ z)

λA+
√

4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2

are met, the model (1.3) has flip bifurcation such that δ 6= 2(k+ z−q)
λA

and δ 6= 4(k+ z−q)
λA

.

If

δ = δFB =
4(k−q+ z)

λA+
√

4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2

then λ1 =−1 with

|λ2| 6= 1. (3.1)

These conditions can be presented by the following set

FB(S∗,I∗) =

{
A,d,k,z,λ , p,q,δ ∈ R+ : δ = δFB =

4(k−q+ z)

λA+
√

4(d− p)(k−q+ z)3−4(k−q+ z)2Aλ +A2λ 2
, |λ2| 6= 1

}
.

Using the transformation u = x− k−q+z
λ

, v = y− A
k−q+z −

p−d
λ

, the fixed point (S∗, I∗) is shifted to the origin. Therefore, we obtain(
u
v

)
→ J(S∗,I∗)

(
u
v

)
+

(
F1(u,v)
F2(u,v)

)
where

F1(u,v) = −δλuv

F2(u,v) = δλuv

such that U = (u,v)T . From there, the system (1.3) can be written as

(Un+1)→ J(S∗,I∗) (Un)+
1
2

B(un,un)+
1
6

C(un,un,un)+O(‖un‖4),

with the multilinear vector functions of u,v,w ∈ R2 :

B(u,v) =
(

B1(u,v)
B2(u,v)

)
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and

C(u,v,w) =
(

C1(u,v,w)
C2(u,v,w)

)
.

These vectors are expressed by

B1(u,v) =
2

∑
j,k=1

∂ 2F1

∂ξ j∂ξk
|ξ=0 u jvk =−δλ (u2v1 +u1v2)

B2(u,v) =
2

∑
j,k=1

∂ 2F2

∂ξ j∂ξk
|ξ=0 u jvk = δλ (u2v1 +u1v2)

C1(u,v,w) =
2

∑
j,k=1

∂ 3F1

∂ξ j∂ξkξl
|ξ=0 u jvkwl = 0

C2(u,v,w) =
2

∑
j,k=1

∂ 3F2

∂ξ j∂ξkξl
|ξ=0 u jvkwl = 0

and δ = δFB. Let q, p ∈ R2 be eigenvectors of J(S∗,I∗)(δFB) and transposed matrix JT
(S∗,I∗)

(δFB) respectively for λ1(δFB) =−1. Then, we

have J(S∗,I∗)(δFB)q =−q and JT
(S∗,I∗)

(δFB)p =−p. We use standard scalar product < p, q >= p1q1 + p2q2 in R2 in order to normalize p
with respect to q, such that < p, q >= 1. To determine the direction of the flip bifurcation, we need to get the sign of the coefficient c(δFB)
as follows:

c(δFB) =
1
6
< p,C(q,q,q)>−1

2
< p,B(q,(J− I)−1B(q,q)> .

The following theorem gives the result on flip bifurcation regarding the coefficient of the critical normal form.

Theorem 3.10. If (3.1) becomes valid, c(δFB) 6= 0, and the parameter a changes its value around δFB, then the system (1.3) undergoes a
flip bifurcation at positive coexistence fixed point (S∗, I∗). Furthermore, if c(δFB)> 0 (c(δFB)< 0), then the period 2 orbits that bifurcate
from (S∗, I∗) are stable (unstable).

4. Chaos Control

In this section, we will use the chaos control method to control the chaos that occurs in systems (1.2) and (1.3). Chaos theory, a method
of qualitative and quantitative analysis for investigating the behavior of dynamic systems, explains how a small change in one state of a
nonlinear system can lead to large differences in a later state. In some cases, long-term prediction of the behavior of a chaotic system may
become impossible, especially due to sensitive dependence on initial conditions, and even the deterministic nature of the system does not
make them predictable. Due to the infinite number of unstable periodic orbits, system behavior becomes unpredictable. Control of chaos is
the stabilization of one of the selected unstable periodic orbits through small system perturbations. The aim is to make the chaotic behavior
more stable and predictable by directing the trajectories towards the desired position by adding an appropriate control parameter to the
system. A state feedback control method [16, 18, 36] is used to stabilize chaotic orbit at an unstable fixed point of the system (1.2) and (1.3).

4.1. Chaos control analysis for the (1.2) model

The controlled form of the system (1.2) is obtained by incorporating a feedback control parameter as the control force into system (1.2). So
we define the controller of the system (1.2) as follows:

St+1 = St +δ (A−dSt −λSt It)+Ut

It+1 = It +δ (λSt It − zIt − kIt)

where Ut is a control force such that Ut =−p1 (St −S∗)− p2 (It − I∗). The Jacobian matrix at the positive equilibrium point of this system is

J (S∗, I∗) = J
(

k+ z
λ

,
Aλ − (k+ z)d

(k+ z)λ

)
=

 1− δAλ

k+ z
− p1 −δ (k+ z)− p2

δ

(
Aλ − (k+ z)d

k+ z

)
1


and the characteristic equation obtained through the Jacobian matrix is written as;

F(µ) = µ
2−
(

2− δAλ

k+ z
− p1

)
µ +1− δAλ

k+ z
− p1 +δ

2(Aλ −d(k+ z))+δ p2

(
Aλ −d(k+ z)

k+ z

)
and µ1,2 be the eigenvalues of this characteristic equation. Then we have

µ1 +µ2 = 2− δAλ

k+ z
− p1
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and

µ1µ2 = 1− δAλ

k+ z
− p1 +δ

2(Aλ −d(k+ z))+δ p2

(
Aλ −d(k+ z)

k+ z

)
.

We must solve the equations µ1µ2 = 1,µ1 = 1 and µ1 =−1. So, we get the marginal line I1, I2 and I3 as follows:

µ1µ2 = det(J) = 1⇒ I1 =−
δAλ

k+ z
− p1 +δ

2(Aλ −d(k+ z))+δ p2

(
Aλ −d(k+ z)

k+ z

)
µ1 = 1⇒ I2 = δ

2(Aλ −d(k+ z))+δ p2

(
Aλ −d(k+ z)

k+ z

)
µ1 =−1⇒ I3 = 4− 2δAλ

k+ z
−2p1 +δ

2(Aλ −d(k+ z))+δ p2

(
Aλ −d(k+ z)

k+ z

)
The region bounded by I1, I2 and I3 gives stable eigenvalues of magnitude less than 1.

4.2. Chaos control analysis for the (1.3) model

We define the controller of the system (1.3) as follows:

St+1 = St +δ (A−dSt −λSt It + pSt)+Ut

It+1 = It +δ (λSt It − zIt − kIt +qIt)

where Ut is a control force such that Ut =−p1 (St −S∗)− p2 (It − I∗). The Jacobian matrix at the positive equilibrium point of this system is

J (S∗, I∗) = J
(

k+ z−q
λ

,
Aλ − (p−d)(k+ z−q)

(k+ z−q)λ

)

=

 1− δAλ

k+ z−q
− p1 −δ (k+ z−q)− p2

δ

(
Aλ − (p−d)(k+ z−q)

k+ z−q

)
1

 .
The characteristic equation we get by means of the Jacobian matrix is

F(µ) = µ
2− trace(J)+det(J),

where,

trace(J) = 2− δAλ

k+ z−q
− p1

and

det(J) = 1− δAλ

k+ z−q
− p1 +δ

2(Aλ − (p−d)(k+ z−q))+δ p2

(
Aλ − (p−d)(k+ z−q)

k+ z−q

)
.

The eigenvalues of the characteristic equation F(µ) are µ1 and µ2. By providing the conditions µ1µ2 = 1, µ1 = 1 and µ1 =−1, we have the
marginal line I1, I2 and I3 as follows:

I1 =−
δAλ

k+ z−q
− p1 +δ

2(Aλ − (p−d)(k+ z−q))+δ p2

(
Aλ − (p−d)(k+ z−q)

k+ z−q

)
I2 = δ

2(Aλ − (p−d)(k+ z−q))+δ p2

(
Aλ − (p−d)(k+ z−q)

k+ z−q

)
I3 = 4− 2δAλ

k+ z−q
−2p1 +δ

2(Aλ − (p−d)(k+ z−q))+δ p2

(
Aλ − (p−d)(k+ z−q)

k+ z−q

)
.

The region bounded by I1, I2 and I3 gives stable eigenvalues of magnitude less than 1.

5. Numerical Simulations

We give the following examples to verify our theoretical results. Time series, phase and bifurcation graphs are presented by using Matlab
program (see also the Mathematical Software program [39, 40]).

Example 5.1. We can write system (1.2) as

St+1 = St +δ (3−0.1St −St It)

It+1 = It +δ It (St −0.3−0.2)
(5.1)

with parameter values A = 3,λ = 1,k = 0.2,z = 0.3,d = 0.1. The presented graphs show the dynamic behavior of the system (5.1) with the
initial condition (S0, I0) = (2.1,0.9).
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Figure 5.1: Time Series Graph of System (5.1) when (a) δ = 0.365 (b) δ = 0.4

Figure 5.2: Phase Graph of System (5.1)

While we observe that the system (5.1) is locally asymptotic stable (δ = 0.365 < 0.366) with the appropriate parameter values in Figure 5.1-
(a), we see that the system (5.1) is unstable (δ = 0.4 > 0.366) when the value δ is increased in Figure 5.1-(b). Figure 5.2, corresponding to
Figure 5.1 with the same parameter values, is the phase portraits of the system (5.1).
Also, in Figure 5.3, we present the flip bifurcation graph of the system (5.1) for the parameter values A = 3,λ = 1,k = 0.2,z = 0.3,d = 0.1
and 0.3 < δ < 0.5. Here, we can see that flip bifurcation occurs at (S∗, I∗) when the parameter changes in a small neighborhood of

δFB = 0.366322. The computation yields (S∗, I∗) = (0.5,5.9). The Jacobian matrix is J =

[
−1.19793 −0.183161

2.1613 1

]
. The eigenvalues are

λ1 =−1, and λ2 = 0.802067 such that |λ2| 6= 1. This defines that the fixed point (S∗, I∗) is stable for δ < 0.366322, and there exists a period
doubling phenomena for δ > 0.366322. By direct calculations, we can write

F1(u,v) = −0.366322uv

F2(u,v) = 0.366322uv

B1(u,v) = −0.366322(u2v1 +u1v2)

B2(u,v) = 0.366322(u2v1 +u1v2)

C1(u,v,w) = 0

C2(u,v,w) = 0

B(q,q) =

(
0.365223
−0.365223

)
C(q,q,q) =

(
0
0

)
.

and p ∼ (−0.733965,−0.679187)T , q ∼ (−0.679187,0.733965)T . Here, p ∼ (−4.40731.1015,−4.07838.1015)T is obtained as normalized
vector according to q, such that < p,q >= 1. Upon the necessary calculations, we obtain c(δFB) = 0.000285917 > 0. The period-2 orbits
that bifurcate from (S∗, I∗) are stable.
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Figure 5.3: Flip Bifurcation Graph of System (5.1).

Example 5.2. We can write system (1.3) as

St+1 = St +δ (3−0.1St −St It +0.01St)

It+1 = It +δ It (St −0.3−0.2+0.1)
(5.2)

with parameter values A = 3,λ = 1,k = 0.2,z = 0.3,d = 0.1,q = 0.1, p = 0.01. The following graphs are obtained for the dynamic behavior
of the system (5.2) with (S0, I0) = (2.1,0.9). The time series and phase diagram graphs are displayed in Figures 5.4 & 5.5. In Figure 5.8,
we present the flip bifurcation graph of the system (5.2) for the parameter values A = 3,λ = 1,k = 0.2,z = 0.3,d = 0.1, p = 0.01,q = 0.1
and 0.25 < δ < 0.35. Here, it can seen that flip bifurcation occurs at (S∗, I∗) when the parameter changes in a small neighborhood of

δFB = 0.282428. The computation yields (S∗, I∗) = (0.4,7.41). The Jacobian matrix is J =

[
−1.1181 −0.112971
2.08279 1

]
. The eigenvalues are

λ1 =−1, and λ2 = 0.881788 such that |λ2| 6= 1. So, the fixed point (S∗, I∗) is stable for δ < 0.282428 and there exists a period doubling
phenomena for δ > 0.282428. By direct calculations, we obtain

F1(u,v) = −0.282428uv

F2(u,v) = 0.282428uv

B1(u,v) = −0.282428(u2v1 +u1v2)

B2(u,v) = 0.282428(u2v1 +u1v2)

C1(u,v,w) = 0

C2(u,v,w) = 0

B(q,q) =

(
0.0318047
−0.0318047

)
C(q,q,q) =

(
0
0

)

and p ∼ (−0.998408,−0.0563957)T , q ∼ (0.0563957,−0.998408)T . Here, p ∼ (−7.19429.1016,−4.06374.1015)T is obtained as normal-
ized vector according to q, such that < p,q >= 1. Upon the necessary calculations, we obtain c(δFB) =−0.00204406 < 0. The period-2
orbits that bifurcate from (S∗, I∗) are unstable.

Example 5.3. We can write system (1.3) as

St+1 = St +δ (3−0.1St −St It +0.2St)

It+1 = It +δ It (St −0.3−0.2+0.1)
(5.3)

with parameter values A = 3,λ = 1,k = 0.2,z = 0.3,d = 0.1,q = 0.1, p = 0.2. The following graphs are obtained for the dynamic behavior
of the system (5.2) with (S0, I0) = (2.1,0.9). The time series and phase diagram graphs are displayed in Figures 5.6 & 5.7.

The flip bifurcation graph of the system (5.3) for the parameter values A = 3,λ = 1,k = 0.2,z = 0.3,d = 0.1, p = 0.2,q = 0.1 and
0.25 < δ < 0.32 exhibited in Figure 5.9. The flip bifurcation emerges at (S∗, I∗) when the parameter changes in a small neighborhood of

δFB = 0.282885. The computation yields (S∗, I∗) = (0.4,7.6). The Jacobian matrix is J =

[
−1.12164 −0.113154
2.14992 1

]
. The eigenvalues are

λ1 =−1, and λ2 = 0.878364 such that |λ2| 6= 1. This defines that the fixed point (S∗, I∗) is stable for δ < 0.282885, and there exists a period



Journal of Mathematical Sciences and Modelling 9

Figure 5.4: Time Series Graph of System (5.2) when (a) δ = 0.28 (b) δ = 0.32

Figure 5.5: Phase Graph of System (5.2)

doubling phenomena for δ > 0.282885. By direct calculations, we can write

F1(u,v) = −0.282885uv

F2(u,v) = 0.282885uv

B1(u,v) = −0.282885(u2v1 +u1v2)

B2(u,v) = 0.282885(u2v1 +u1v2)

C1(u,v,w) = 0

C2(u,v,w) = 0

B(q,q) =

(
0.0319074
−0.0319074

)
C(q,q,q) =

(
0
0

)
.

and p ∼ (−0.998403,−0.0564866)T , q ∼ (0.0564866,−0.998403)T . Here, p ∼ (1.43885.1017,8.14058.1015)T is obtained as normalized
vector according to q, such that < p,q >= 1. Upon the necessary calculations, we obtain c(δFB) =−0.00904053 < 0. The period-2 orbits
that bifurcate from (S∗, I∗) are unstable.

Example 5.4. For controlled system (5.1) with parameter values A = 3;λ = 1;z = 0.3;d = 0.1;k = 0.2 and δ = 0.44, we get the marginal
lines are

I1 =−2.06888− p1 +2.596p2

I2 = 0.57112+2.596p2

I3 =−0.70888−2p1 +2.596p2.
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Figure 5.6: Time Series Graph of System (5.3) when (a) δ = 0.287 (b) δ = 0.31

Figure 5.7: Phase Graph of System (5.3)

Example 5.5. For controlled system (5.2) with parameter values A = 3;λ = 1;k = 0.2;z = 0.3;d = 0.1; p = 0.01;q = 0.1 and δ = 0.34,
we get the marginal lines are

I1 =−2.71223− p1 +3.3396p2

I2 = 0.5877+3.3396p2

I3 =−2.01223+2p1 +3.3396p2.
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Figure 5.8: Flip Bifurcation Graph of System (5.2) for 0.25 < δ < 0.35.

Figure 5.9: Flip Bifurcation Graph of System (5.3) for 0.25 < δ < 0.32.

Figure 5.10: Chaos control lines of the system (5.1).

Figure 5.11: Chaos control lines of the system (5.2).
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6. Conclusion

In this study, first of all, the existence of the equilibrium points of the discrete-time system (1.2), the local stability of the equilibrium points,
the conditions of flip bifurcation are summarized analytically. The model (1.3) is created by adding the immigration effect to the model (1.2);
and the dynamics of model (1.3) are examined. A comparison is presented for the dynamic behavior of model (1.2) and model (1.3). Finally,
numerical simulations are included to support the theoretical results obtained.
Figure 5.4 and Figure 5.6 are time series graphs with immigration parameters added at different rates to susceptible individuals. Note that
and bifurcation values are calculated δ = 0.366322 and δ = 0.282428 for without immigration and with immigration, respectively (see
Figures 5.3 and 5.8). Considering Figures 5.3 and 5.8, we see that immigration parameters lead the system to faster flip bifurcation.
Finally, Figure 5.8 and Figure 5.9 show that flip bifurcation will be delayed as the number of immigration added to susceptible individuals
increases. Also, Example 5.4 and Example 5.5 give chaos control lines of the system (5.1) and (5.2), respectively. The stable triangular
region is determined by these marginal lines.
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