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Abstract
In this paper, we redefine the concepts of join spaces and product spaces of M -fuzzifying
convex spaces. Then we further investigate the Si (i = 0, 1, 2) separated degrees of an
M -fuzzifying convex space in a logical viewpoint. Finally, we study the Si (i = 0, 1, 2) sep-
arated degrees of an M -fuzzifying convex space from the aspect of convergence structures.
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1. Introduction
Convexity plays an important role in many mathematical environments, such as vector

spaces, metric spaces, lattices, graphs, matroids and so on. Combining with the axiomatic
approach, the concept of convex structures [20] is introduced by abstracting the common
properties of convex sets in different mathematical structures. In an axiomatic viewpoint,
convex structures provide a more general framework of studying convexity.

Since Zadeh [32] introduced fuzzy sets, many mathematical structures have been com-
bined with fuzzy set theory, such as fuzzy topology [1,6,19,31], fuzzy order [29,30], fuzzy
convergence [3, 4, 33–36] and so on. Convex structures have also been generalized to the
fuzzy case. Rosa [14] first introduced the concept of fuzzy convexities with the real unit
interval [0, 1] as the lattice background. Later, Maruyama [9] extended [0, 1] to a com-
pletely distributive lattice L and proposed the notion of L-fuzzy convexities. Adopting the
terminology of fuzzy topology, these two fuzzy convexities are both called L-convex struc-
tures now. From a logical aspect, Shi and Xiu [16] introduced the concept of M -fuzzifying
convex structures, where M also denotes a completely distributive lattice. Recently, Shi
and Xiu [17] proposed the notion of (L, M)-fuzzy convex structures, which can include L-
convex structures and M -fuzzifying convex structures as special cases. Up to now, fuzzy
convex structures have deserved more and more attention and have been studied from
different aspects, including closure operators [11, 12, 15, 37], interval operators [13, 18, 27],
geometrical properties [22–24] and topological properties [26,28].
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Shi and Xiu [16] defined product spaces of M -fuzzifying convex spaces via subbases.
Adopting the axiomatic approach, Xiu and Pang [26] introduced axiomatic convexity bases
in the framework of M -fuzzifying convex spaces, which provided a foundation of defining
product spaces. Following this trend, our first aim of this paper is to redefine join spaces
and product spaces of M -fuzzifying convex spaces from the aspect of axiomatic convexity
subbases.

Zhou and Shi [38] first defined separation axioms in L-convex spaces and investigated
their hereditary and productivity. Later, Zhou and Shi [39] introduced the sum space of
L-convex spaces and studied additivity of Si (i = 1, 2, 3, 4) separation aixoms. Liang and
Li [7] first defined Si (i = 0, 1, 2) separated degrees of an M -fuzzifying convex space, which
describes the degree to which an M -fuzzifying convex space is Si (i = 0, 1, 2) separated.
Further, Liang and Li [8] defined Si (i = 3, 4) separated degrees of an M -fuzzifying convex
space and studied their productivity. Dong and Shi [2] proposed the concept of disjoint
sums of M -fuzzifying convex spaces and discussed the additivity of Si (i = 1, 2, 3, 4) sep-
arated degrees. Considering the productivity of Si (i = 0, 1, 2) separated degrees, Pang
[10] introduced M -fuzzifying convergence structures and defined Si (i = 0, 1, 2) separated
degrees of an M -fuzzifying convex space via its induced M -fuzzifying convergence struc-
ture. Notice that the Si (i = 0, 1, 2) separated degrees in the sense of Pang has some
advantages compared with that in the the sense of Liang and Li, especially on the pro-
ductivity of separated degrees. In a degree viewpoint, Xiu and Pang [25] also defined
M -fuzzifying convexity-preserving (M -CP in short) and M -fuzzifying convex-to-convex
(M -CC in short) degrees of a mapping between M -fuzzifying convex spaces, which can be
used to characterize the degrees to which a mapping between M -fuzzifying convex spaces
is M -CP and M -CC, respectively.

In the classical case, there are close relationships between separation properties and CP
and CC mappings. Up to now, these concepts have all been defined with some degrees.
By this motivation, our second aim of this paper is to investigate their relationships in a
degree approach.

2. Preliminaries
We consider in this paper a completely distributive lattice M , i.e., a complete lattice

M satisfies
⋁
i∈I
⋀

j∈Ji

aij = ⋀
f∈∏i∈I Ji

⋁
i∈I

aif(i)

or
⋀
i∈I
⋁

j∈Ji

aij = ⋁
f∈∏i∈I Ji

⋀
i∈I

aif(i)

for all Xi = {aij ∣ j ∈ Ji} ⊆ 2M (i ∈ I). The bottom (resp. top) element of M is denoted
by � (resp. ⊺). For a, b ∈ M , we say that a is wedge below b in M (in symbols, a ≺ b) if
for every subset D ⊆ M , ⋁D ⩾ b implies d ⩾ a for some d ∈ M . A complete lattice M is
completely distributive if and only if b = ⋁{a ∈M ∣ a ≺ b} for each b ∈M [21]. We can then
define a residual implication on M by

a→ b =⋁{c ∈M ∣ a ∧ c ≤ b}.

In particular, we denote a→ � by ¬a for each a ∈M .
We will often use, without explicitly mentioning, the following properties of residual

implication on M .

Lemma 2.1 ([5]). Let M be a completely distributive lattice. Then the following state-
ments hold:

(1) ⊺→ a = a.
(2) a ≤ b if and only if a→ b = ⊺.
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(3) (a→ b)→ (c→ b) ≥ c→ a.
(4) (a ∨ b)→ (c ∨ d) ≥ (a→ c) ∧ (b→ d).
(5) (a ∧ b)→ (c ∧ d) ≥ (a→ c) ∧ (b→ d).
(6) (¬a ∨ ¬b)→ (¬c ∨ ¬d) ≥ (c→ a) ∧ (d→ b).
(7) ⋁j∈J aj → ⋁j∈J bj ≥ ⋀j∈J(aj → bj).
(8) ⋀j∈J aj → ⋀j∈J bj ≥ ⋀j∈J(aj → bj).
(9) a→ ⋀j∈J aj = ⋀j∈J(a→ aj), hence a→ b ≤ a→ c whenever b ≤ c.
(10) ⋁j∈J aj → b = ⋀j∈J(aj → b), hence a→ c ≥ b→ c whenever a ≤ b.

For a nonempty set X, 2X denotes the powerset of X and MX denotes the set of
all M -subsets on X. For each A ∈ 2X , let χA denote the characteristic function of A.
For {Aj}j∈J ⊆ 2X , we say {Aj}j∈J is a directed subset of 2X provided that for each
B, C ∈ {Aj}j∈J , there exists D ∈ {Aj}j∈J such that B ⊆D and C ⊆D, which is denoted by

{Aj}j∈J
dir
⊆ 2X . Dually, let {Aj}j∈J

cdir
⊆ 2X denote that {Aj}j∈J is a codirected subset of

2X , which means that for each B, C ∈ {Aj}j∈J , there exists D ∈ {Aj}j∈J such that D ⊆ B
and D ⊆ C.

Let f ∶ X Ð→ Y be a mapping. Define f→ ∶ 2X Ð→ 2Y by f→(A) = {f(x) ∣ x ∈ A} for
each A ∈ 2X and f← ∶ 2Y Ð→ 2X by f←(B) = {x ∣ f(x) ∈ B} for each B ∈ 2Y .

Definition 2.2 ([3]). A fuzzy inclusion order on MX is a mapping S ∶ MX ×MX Ð→M
which is defined by

∀U, V ∈MX , S(U, V ) = ⋀
x∈X

(U(x)→ V (x)).

Definition 2.3 ([16]). A mapping C ∶ 2X Ð→M is called an M -fuzzifying convex structure
on X if it satisfies the following conditions:

(MYC1) C (∅) = C (X) = ⊺;
(MYC2) C (⋂k∈K Ak) ≥ ⋀k∈K C (Ak);
(MYC3) C (⋃j∈J Aj) ≥ ⋀j∈J C (Aj) for each {Aj}j∈J

dir
⊆ 2X .

For an M -fuzzifying convex structure C on X, the pair (X,C ) is called an M -fuzzifying
convex space.

In [10], Pang introduced the concept of M -fuzzifying convergence structures via M -
fuzzifying convex filters in the framework of M -fuzzifying convex spaces.

Definition 2.4 ([10]). A mapping F ∶ 2X Ð→ M is called an M -fuzzifying convex filter
on X if it satisfies:

(MF1) F(∅) = �, F(X) = ⊺;
(MF2) F(⋂j∈J Aj) = ⋀j∈J F(Aj) for each {Aj}j∈J

cdir
⊆ 2X .

The family of all M -fuzzifying convex filters on X is denoted by FM(X).

Example 2.5 ([10]). For each x ∈X, define [x] ∶ 2X Ð→M by
∀A ∈ 2X , [x](A) = χA(x).

Then [x] ∈ FM(X), which is called point M -fuzzifying convex filter of x.

Since each M -fuzzifying convex filter is an M -subset on 2X , there exits a natural fuzzy
inclusion order on FM(X), which is denoted by SF(⋅, ⋅) ∶ FM(X) × FM(X) Ð→ M . Ex-
plicitly,

∀F ,G ∈ FM(X), SF(F ,G) = ⋀
A∈2X

(F(A)→ G(A)).

Definition 2.6 ([10]). An M -fuzzifying convergence structure on X is a mapping lim ∶
FM(X)Ð→MX which satisfies:

(MC1) lim([x])(x) = ⊺;
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(MC2) SF(F ,G) ≤ S(lim(F), lim(G)).
For an M -fuzzifying convergence structure lim on X, the pair (X, lim) is called an M -
fuzzifying convergence space.

Pang [10] showed every M -fuzzifying convex space can induce an M -fuzzifying conver-
gence space.
Proposition 2.7 ([10]). Let (X,C ) be an M -fuzzifying convex space and define limC ∶
FM(X)Ð→MX as follows:

∀F ∈ FM(X),∀x ∈X, limC (F)(x) = ⋀
x∈A

(C (X −A)→ F(A)).

Then limC is an M -fuzzifying convergence structure on X.

3. Join space and product space of M-fuzzifying convex spaces
In [16], Shi and Xiu introduced the concepts of join spaces and product spaces of M -

fuzzifying convex spaces. Here we will redefine these two concepts by using axiomatic
subbases in M -fuzzifying convex spaces and make some further research on their proper-
ties.
Definition 3.1 ([26]). A mapping ϕ ∶ 2X Ð→ M is called an M -fuzzifying convexity
subbase of some M -fuzzifying convex space provided that ϕ satisfies

(MYSB1) ⋁⋂i∈Ω Ai=∅⋀i∈Ω ϕ(Ai) = ⊺,
(MYSB2) ⋁

⋃
dir
j∈J Aj=X ⋀j∈J ⋁⋂i∈Ij

Aji=Aj ⋀i∈Ij
ϕ(Aji) = ⊺.

In [26], Xiu and Pang gave the formula of generating an M -fuzzifying convex structure
C by means of an M -fuzzifying convexity subbase ϕ as follows:

C (A) = ⋁
⋃

dir
j∈J Aj=A

⋀
j∈J

⋁
⋂k∈Kj

Ajk=Aj

⋀
k∈Kj

ϕ(Ajk).

Lemma 3.2. Suppose that {Ci}i∈I is a family of M -fuzzifying convex structures on X.
Then the mapping ⋁i∈I Ci ∶ 2X Ð→M defined by

∀A ∈ 2X , (⋁
i∈I

Ci)(A) =⋁
i∈I

Ci(A)

is an M -fuzzifying convexity subbase.
Proof. It is easy to check that Ci satisfies (MYSB1) and (MYSB2) for each i ∈ I. Then
it follows immediately that ⋁i∈I Ci satisfies (MYSB1) and (MYSB2), as desired. �

By Lemma 3.2, we can obtain an M -fuzzifying convex structure which is generated by
the M -fuzzifying convexity subbase ⋁i∈I Ci. From this aspect, we propose the definition
of join spaces.
Definition 3.3. Suppose that {Ci}i∈I is a family of M -fuzzifying convex structures on
X. The M -fuzzifying convex structure generated by the M -fuzzifying convexity subbase
⋁i∈I Ci is called the join structure of {Ci}i∈I , which is denoted by ⊔i∈I Ci. The pair
(X,⊔i∈I Ci) is called the join space of {(X,Ci)}i∈I .

By means of join spaces, we will give the definition of product space of M -fuzzifying
convex spaces. To this end, we first present the following lemma.
Lemma 3.4. Suppose that {(Xi,Ci)}i∈I is a family of M -fuzzifying convex spaces, X =
∏i∈I Xi, and {pi ∶ X Ð→ Xi}i∈I is the family of projection mappings. Then the mapping
p−1

i (Ci) ∶ 2X Ð→M defined by
∀A ∈ 2X , p−1

i (Ci)(A) = ⋁
p←i (Ai)=A

Ci(Ai)
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is an M -fuzzifying convex structure on X for each i ∈ I.

Proof. It suffices to show that p−1
i (Ci) satisfies (MYC1)–(MYC3).

(MYC1) It is straightforward.
(MYC2) Take any α ∈M such that

α ≺ ⋀
k∈K

p−1
i (Ci)(Ak) = ⋀

k∈K
⋁

p←i (Aki)=Ak

Ci(Aki).

Then for each k ∈ K, there exists Bki such that p←i (Bki) = Ak and α ≤ Ci(Bki). Let
Bi = ⋂k∈K Bki. Then it follows that

p←i (Bi) = ⋂
k∈K

p←i (Bki) = ⋂
k∈K

Ak

and

α ≤ ⋀
k∈K

Ci(Bki) ≤ Ci(⋂
k∈K

Bki) = Ci(Bi) ≤ ⋁
p←i (Ci)=⋂k∈K Ak

Ci(Ci) = p−1
i (Ci)(⋂

k∈K

Ak).

By the arbitrariness of α, we obtain

⋀
k∈K

p−1
i (Ci)(Ak) ≤ p−1

i (Ci)(⋂
k∈K

Ak).

(MYC3) For each {Aj}j∈J
dir
⊆ 2X , take any α ∈M such that

α ≺ ⋀
j∈J

p−1
i (Ci)(Aj) = ⋀

j∈J
⋁

p←i (Aji)=Aj

Ci(Aji).

Then for each j ∈ J , there exists Bji such that p←i (Bji) = Aj and α ≤ Ci(Bji). Let
Bi = ⋃j∈J Bji. Then it follows that

p←i (Bi) = ⋃
j∈J

p←i (Bji) = ⋃
j∈J

Aj .

Since pi is surjective, it follows that Bji = p→i (p←i (Bji)) = p→i (Aj). This implies that
{Bji ∣ j ∈ J} is directed. Then we have

α ≤ ⋀
j∈J

Ci(Bji) ≤ Ci(⋃
j∈J

Bji) = Ci(Bi) ≤ ⋁
p←i (Ci)=⋃j∈J Aj

Ci(Ci) = p−1
i (Ci)(⋃

j∈J

Aj).

By the arbitrariness of α, we obtain

⋀
j∈J

p−1
i (Ci)(Aj) ≤ p−1

i (Ci)(⋃
j∈J

Aj).

�

By Lemma 3.4, for a family of M -fuzzifying convex spaces {(Xi,Ci)}i∈I , we can obtain
a family of M -fuzzifying convex structures {p−1

i (Ci)}i∈I on the product set ∏i∈I Xi. Then
we can propose the definition of product spaces of {(Xi,Ci)}i∈I by means of the join space
of {(∏i∈I Xi, p−1

i (Ci))}i∈I .

Definition 3.5. Suppose that {(Xi,Ci)}i∈I is a family of M -fuzzifying convex spaces,
X = ∏i∈I Xi, and {pi ∶ X Ð→ Xi}i∈I is the family of projection mappings. Then the join
space of {(X, p−1

i (Ci))}i∈I is called the product space of {(Xi,Ci)}i∈I .

Usually, we denote the product space of {(Xi,Ci)}i∈I by {(∏i∈I Xi,∏i∈I Ci)}. For a
finite family of M -fuzzifying convex spaces {(Xi,Ci) ∣ i = 1, 2,⋯, n}, we use C1 ×C2⋯×Cn

to denote their product.
In the classical case, each projection mapping is a CP and CC mapping. Next we present

its fuzzy counterpart in the framework of M -fuzzifying convex spaces.
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Proposition 3.6. Suppose that {(Xi,Ci)}i∈I is a family of M -fuzzifying convex spaces
and {pi ∶ ∏j∈I Xj Ð→ Xi}i∈I is the family of projection mappings. Then for each i ∈ I,
pi ∶ (∏j∈I Xj ,∏j∈I Cj)Ð→ (Xi,Ci) is an M -CP mapping.

Proof. For convenience, let X = ∏i∈I Xi and C = ∏i∈I Ci. By Definition 3.5, we have for
each A ∈ 2X ,

C (A) = ⋁
⋃

dir
j∈J Aj=A

⋀
j∈J

⋁
⋂k∈Kj

Ajk=Aj

⋀
k∈Kj

⋁
i∈I

⋁
p←i (Bi)=Ajk

Ci(Bi).

Then it suffices to show that C (p←i0
(Ai0)) ≥ Ci0(Ai0) for each i0 ∈ I and Ai0 ∈ 2Xi0 . By the

definition of C , we have
C (p←i0(Ai0)) = ⋁

⋃
dir
j∈J Aj=p←i0

(Ai0)

⋀
j∈J

⋁
⋂k∈Kj

Ajk=Aj

⋀
k∈Kj

⋁
i∈I

⋁
p←i (Bi)=Ajk

Ci(Bi)

≥ ⋁
⋂k∈Kj

Ajk=p
←

i0
(Ai0)

⋀
k∈Kj

⋁
i∈I

⋁
p←i (Bi)=Ajk

Ci(Bi)

≥ ⋁
i∈I

⋁
p←i (Bi)=p←i0

(Ai0)

Ci(Bi)

≥ Ci0(Ai0).

By the arbitrariness of i0, we obtain pi ∶ (∏j∈I Xj ,∏j∈I Cj) Ð→ (Xi,Ci) is an M -CP
mapping for each i ∈ I. �

Proposition 3.7. Suppose that {(Xi,Ci)}i∈I is a family of M -fuzzifying convex spaces
and {pi ∶ ∏j∈I Xj Ð→ Xi}i∈I is the family of projection mappings. Then for each i ∈ I,
pi ∶ (∏j∈I Xj ,∏j∈I Cj)Ð→ (Xi,Ci) is an M -CC mapping.

Proof. For convenience, let X = ∏i∈I Xi and C = ∏i∈I Ci. By Definition 3.5, we have for
each A ∈ 2X ,

C (A) = ⋁
⋃

dir
j∈J Aj=A

⋀
j∈J

⋁
⋂k∈Kj

Ajk=Aj

⋀
k∈Kj

⋁
i∈I

⋁
p−1

i (Bi)=Ajk

Ci(Bi).

Then it suffices to show that for each i0 ∈ I, C (A) ≤ Ci0(p→i0
(A)).

Take each α ∈M such that α ≺ C (A). Then there exists a directed set {Aj}j∈J ⊆ 2X such
that ⋃dir

j∈J Aj = A and for each j ∈ J , there exists {Ajk}k∈Kj
⊆ 2X such that ⋂k∈Kj

Ajk = Aj

and for each k ∈ Kj , there exists ijk ∈ I and Bijk
∈ 2Xijk such that p−1

i (Bijk
) = Ajk and

α ≤ Cijk
(Bijk

). Thus, we get
dir

⋃
j∈J
⋂

k∈Kj

p←i (Bijk
) =

dir

⋃
j∈J
⋂

k∈Kj

Ajk =
dir

⋃
j∈J

Aj = A

and p→i0
(A) = ⋃dir

j∈J p→i0
(⋂k∈Kj

p←i (Bijk
)). For each j ∈ J , it follows that

p→i0( ⋂
k∈Kj

p←i (Bijk
)) = { Bijk0

(i0 = ijk0), i0 ∈ {ijk∣k ∈Kj};
Xi0 , i0 ∉ {ijk∣k ∈Kj}.

Then

Ci0(p
→

i0( ⋂
k∈Kj

p←i (Bijk
))) = { Ci0(Bijk0

) = Cijk0
(Bijk0

), i0 ∈ {ijk∣k ∈Kj};
Ci0(Xi0) = ⊺, i0 ∉ {ijk∣k ∈Kj}.

This implies that
Ci0(p

→

i0(A)) ≥ ⋀
j∈J

Ci0(p
→

i0( ⋂
k∈Kj

p←i (Bijk
))) ≥ α.

By the arbitrariness of α, we obtain C (A) ≤ Ci0(p→i0
(A)), as desired. �
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4. Degrees of separation axioms in M-fuzzifying convex spaces
In [7], Liang and Li proposed S0, S1 and S2 separated degrees of M -fuzzifying convex

spaces and discussed their properties. In this section, we will give some further investi-
gations on their properties and discuss their connections with M -CP degrees and M -CC
degrees of a mapping between M -fuzzifying convex spaces.

Firstly, let us recall the S0, S1 and S2 separated degrees of M -fuzzifying convex spaces
in the sense of Liang and Li.

Definition 4.1 ([7]). For an M -fuzzifying convex space (X,C ), define the degree to which
(X,C ) is S0 separated as follows:

S0(X,C ) = ⋀
x≠y
( ⋁

x∉A∋y

C (A) ∨ ⋁
y∉B∋x

C (B)).

Definition 4.2 ([7]). For an M -fuzzifying convex space (X,C ), define the degree to which
(X,C ) is S1 separated as follows:

S1(X,C ) = ⋀
x≠y
⋁

y∉A∋x

C (A).

The degree to which (X,C ) is S1 separated can also be characterized as follows:

Proposition 4.3 ([7]). Let (X,C ) be an M -fuzzifying convex space. Then
S1(X,C ) = ⋀

x∈X

C ({x}).

Definition 4.4 ([7]). For an M -fuzzifying convex space (X,C ), define the degree to which
(X,C ) is S2 separated as follows:

S2(X,C ) = ⋀
x≠y

⋁
x∈A,y∉A

C (A) ∧C (X −A).

For the productivity of M -fuzzifying convex spaces, Liang and Li presented the following
proposition.

Proposition 4.5 ([7]). Suppose that {(Xi,Ci)}i∈I is a family of M -fuzzifying convex
spaces. Then

(1) ⋀i∈I S0(Xi,Ci) ≤ S0(∏i∈I Xi,∏i∈I Ci),
(2) ⋀i∈I S1(Xi,Ci) ≤ S1(∏i∈I Xi,∏i∈I Ci),
(3) ⋀i∈I S2(Xi,Ci) ≤ S2(∏i∈I Xi,∏i∈I Ci).

From a logic aspect, the above proposition gives the degree characterization of the
conclusion that if a family of convex spaces is Si (i = 0, 1, 2), then their product space is
Si (i = 0, 1, 2). Actually, in the classical case, a family of convex spaces is S1 if and only if
their product space is S1. So in a degree sense, the inverse of the inequality in Proposition
4.5 (2) also holds. To this end, we present the following proposition.

Proposition 4.6. Let {(Xi,Ci)}i∈I be a family of M -fuzzifying convex spaces and let
(∏i∈I Xi,∏i∈I Ci) be the product space. Then

S1(∏
i∈I

Xi,∏
i∈I

Ci) =⋀
i∈I

S1(Xi,Ci).

Proof. For convenience, let X = ∏i∈I Xi and C = ∏i∈I Ci. In Proposition 4.5, it was
proved that ⋀i∈I S1(Xi,Ci) ≤ S1(X,C ). Now it remains to verify that

S1(X,C ) ≤⋀
i∈I

S1(Xi,Ci).

Take any α ∈M such that
α ≤ S1(X,C ) = ⋀

x∈X

C ({x}).
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Then it follows that α ≤ C ({x}) for each x ∈ X. For each i0 ∈ I and xi0 ∈ Xi0 , take x ∈ X
such that pi0(x) = xi0 . Since pi0 ∶ (X,C )Ð→ (Xi0 ,Ci0) is a CC mapping, it follows that

Ci0({xi0}) = Ci0(p
→

i0({x})) ≥ C ({x}) ≥ α.

By the arbitrariness of i0 and xi0 , we have

α ≤ ⋀
i0∈I

⋀
xi0∈Xi0

Ci0({xi0}) =⋀
i∈I

S1(Xi,Ci).

By the arbitrariness of α, we obtain

S1(X,C ) ≤⋀
i∈I

S1(Xi,Ci),

as desired. �

In the classical convex spaces, there are close relationships between separation axioms
and CP and CC mappings. Now these concepts have been generalized with some degrees.
So we will consider their relationships in a degree sense. To this end, we first recall the
definitions of M -CP degrees and M -CC degrees between M -fuzzifying convex spaces.

Definition 4.7 ([25]). Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let
f ∶ X Ð→ Y be a mapping. Then Dcp(f) defined by

Dcp(f) = ⋀
B∈2Y

(CY (B)→ CX(f←(B)))

is called the M -CP degree of f .

Definition 4.8 ([25]). Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let
f ∶ X Ð→ Y be a mapping. Then Dcc(f) defined by

Dcc(f) = ⋀
A∈2X

(CX(A)→ CY (f→(A)))

is called the M -CC degree of f .

For a bijective and CP mapping f ∶ (X,CX)Ð→ (Y,CY ) between classical convex spaces,
if (Y,CY ) is Si (i = 0, 1) separated, then so is (X,CX). Now, we will give the degree
characterization of this conclusion.

Proposition 4.9. Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be a bijective mapping. Then

(1) Dcp(f) ≤ S0(Y,CY )→ S0(X,CX).
(2) Dcp(f) ≤ S1(Y,CY )→ S1(X,CX).
(3) Dcp(f) ≤ S2(Y,CY )→ S2(X,CX).

Proof. (1) and (2) can be verified in a similar way. We only verify (1).
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(1) By the definitions of S0 and Dcp, we have

S0(Y,CY )→ S0(X,CX)

= ⋀
y1≠y2

( ⋁
y1∉B1∋y2

CY (B1) ∨ ⋁
y2∉B2∋y1

CY (B2))→ ⋀
x1≠x2

( ⋁
x1∉A1∋x2

CX(A1) ∨ ⋁
x2∉A2∋x1

CX(A2))

= ⋀
y1≠y2

( ⋁
y1∉B1∋y2

CY (B1) ∨ ⋁
y2∉B2∋y1

CY (B2))

→ ⋀
f(x1)≠f(x2)

( ⋁
f(x1)∉f(A1)∋f(x2)

CX(A1) ∨ ⋁
f(x2)∉f(A2)∋f(x1)

CX(A2))

≥ ⋀
y1≠y2

(( ⋁
y1∉B1∋y2

CY (B1) ∨ ⋁
y2∉B2∋y1

CY (B2))

→ ⋀
y1≠y2

( ⋁
y1∉f(A1)∋y2

CX(A1) ∨ ⋁
y2∉f(A2)∋y1

CX(A2)))

≥ ⋀
y1≠y2

(( ⋁
y1∉B1∋y2

CY (B1) ∨ ⋁
y2∉B2∋y1

CY (B2))

→ ( ⋁
y1∉B1∋y2

CX(f←(B1)) ∨ ⋁
y2∉B2∋y1

CX(f←(B2))))

≥ ⋀
y1≠y2

(( ⋁
y1∉B1∋y2

CY (B1)→ ⋁
y1∉B1∋y2

CX(f←(B1)))

∧( ⋁
y2∉B2∋y1

CY (B2)→ ⋁
y2∉B2∋y1

CX(f←(B2))))

≥ ⋀
y1≠y2

(( ⋀
y1∉B1∋y2

(CY (B1)→ CX(f←(B1)))) ∧ ( ⋀
y2∉B2∋y1

(CY (B2)→ CX(f←(B2)))))

≥ ⋀
B∈2X

(CY (B)→ CX(f←(B)))

= Dcp(f).

(3) By the definitions of S2 and Dcp, we have

S2(Y,CY )→ S2(X,CX)
= ⋀

y1≠y2
⋁

y1∈B,y2∉B

(CY (B) ∧CY (Y −B))→ ⋀
x1≠x2

⋁
x1∈A,x2∉A

(CX(A) ∧CX(X −A))

≥ ⋀
y1≠y2

⋁
y1∈B,y2∉B

(CY (B) ∧CY (Y −B))

→ ⋀
f(x1)≠f(x2)

⋁
f(x1)∈f→(A),f(x2)∉f→(A)

(CX(A) ∧CX(X −A))

≥ ⋀
y1≠y2

⋁
y1∈B,y2∉B

(CY (B) ∧CY (Y −B))→ ⋀
y1≠y2

⋁
y1∈f→(A),y2∉f→(A)

(CX(A) ∧CX(X −A))

≥ ⋀
y1≠y2

( ⋁
y1∈B,y2∉B

(CY (B) ∧CY (Y −B)))→ ⋁
y1∈f→(A),y2∉f→(A)

(CX(A) ∧CX(X −A))))

≥ ⋀
y1≠y2

( ⋁
y1∈B,y2∉B

(CY (B) ∧CY (Y −B))→ ⋁
y1∈B,y2∉B

(CX(f←(B)) ∧CX(X − f←(B))))

≥ ⋀
y1≠y2

⋀
y1∈B,y2∉B

((CY (B) ∧CY (Y −B))→ (CX(f←(B)) ∧CX(X − f←(B))))

≥ ⋀
y1≠y2

⋀
y1∈B,y2∉B

(CY (B)→ CX(f←(B))) ∧ (CY (Y −B)→ CX(f←(Y −B)))

≥ ⋀
B∈2Y

(CY (B)→ CX(f←(B))) ∧ (CY (Y −B)→ CX(f←(Y −B)))
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= ⋀
C∈2X

(CY (C)→ CX(f←(C)))

= Dcp(f).
�

Corollary 4.10. Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be a bijective mapping. Then

(1) Dcp(f) ∧ S0(Y,CY ) ≤ S0(X,CX).
(2) Dcp(f) ∧ S1(Y,CY ) ≤ S1(X,CX).
(3) Dcp(f) ∧ S2(Y,CY ) ≤ S2(X,CX).

Corollary 4.10 exactly demonstrates the degree characterization of the conclusion that
for a bijective and CP mapping f ∶ (X,CX) Ð→ (Y,CY ), if (Y,CY ) is Si (i = 0, 1, 2)
separated, then so is (X,CX).

For a bijective and CC mapping f ∶ (X,CX) Ð→ (Y,CY ) between convex spaces, if
(X,CX) is Si (i = 0, 1, 2) separated, then so is (Y,CY ). Now, we will give the degree
characterization of this conclusion.

Proposition 4.11. Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be a bijective mapping. Then

(1) Dcc(f) ≤ S0(X,CX)→ S0(Y,CY ).
(2) Dcc(f) ≤ S1(X,CX)→ S1(Y,CY ).
(3) Dcc(f) ≤ S2(X,CX)→ S2(Y,CY ).

Proof. (1) and (2) can be verified in a similar way. We only verify (1).
(1) By the definitions of S0 and Dcc, we have

S0(X,CX)→ S0(Y,CY )

= ⋀
x1≠x2

( ⋁
x1∉A1∋x2

CX(A1) ∨ ⋁
x2∉A2∋x1

CX(A2))→ ⋀
y1≠y2

( ⋁
y1∉B1∋y2

CY (B1) ∨ ⋁
y2∉B2∋y1

CY (B2))

= ⋀
x1≠x2

( ⋁
x1∉A1∋x2

CX(A1) ∨ ⋁
x2∉A2∋x1

CX(A2))

→ ⋀
x1≠x2

( ⋁
x1∉f←(B1)∋x2

CY (B1) ∨ ⋁
x2∉f←(B2)∋x1

CY (B2))

≥ ⋀
x1≠x2

(( ⋁
x1∉A1∋x2

CX(A1) ∨ ⋁
x2∉A2∋x1

CX(A2))

→ ( ⋁
x1∉A1∋x2

CY (f→(A1)) ∨ ⋁
x2∉A2∋x1

CY (f→(A2))))

≥ ⋀
x1≠x2

(( ⋁
x1∉A1∋x2

CX(A1)→ ⋁
x1∉A1∋x2

CY (f→(A1)))

∧( ⋁
x2∉A2∋x1

CX(A2)→ ⋁
x2∉A2∋x1

CY (f→(A2))))

≥ ⋀
x1≠x2

( ⋀
x1∉A1∋x2

(CX(A1)→ CY (f→(A1))) ∧ ⋀
x2∉A2∋x1

(CX(A2)→ CY (f→(A2))))

≥ ⋀
A∈2X

(CX(A)→ CY (f→(A)))

= Dcc(f).
(3) By the definitions of S2 and Dcc, we have

S2(X,CX)→ S2(Y,CY )
= ⋀

x1≠x2
⋁

x1∈A,x2∉A

CX(A) ∧CX(X −A)→ ⋀
y1≠y2

⋁
y1∈B,y2∉B

CY (B) ∧CY (Y −B)
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≥ ⋀
x1≠x2

⋁
x1∈A,x2∉A

CX(A) ∧CX(X −A)→ ⋀
f(x1)≠f(x2)

⋁
f(x1)∈B,f(x2)∉B

CY (B) ∧CY (Y −B)

≥ ⋀
x1≠x2

⋁
x1∈A,x2∉A

CX(A) ∧CX(X −A)→ ⋀
x1≠x2

⋁
x1∈A,x2∉A

CY (f→(A)) ∧CY (Y − f→(A))

≥ ⋀
x1≠x2

( ⋁
x1∈A,x2∉A

CX(A) ∧CX(X −A)→ ⋁
x1∈A,x2∉A

CY (f→(A)) ∧CY (Y − f→(A)))

≥ ⋀
x1≠x2

⋀
x1∈A,x2∉A

(CX(A) ∧CX(X −A)→ CY (f→(A)) ∧CY (Y − f→(A)))

≥ ⋀
x1≠x2

⋀
x1∈A,x2∉A

(CX(A)→ CY (f→(A))) ∧ (CX(X −A)→ CY (Y − f→(A))))

≥ ⋀
x1≠x2

⋀
x1∈A,x2∉A

(CX(A)→ CY (f→(A))) ∧ (CX(X −A)→ CY (f→(X −A))))

≥ ⋀
A∈2X

(CX(A)→ CY (f→(A)))

= Dcc(f).

�

Corollary 4.12. Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be a bijective mapping. Then

(1) Dcc(f) ∧ S0(X,CX) ≤ S0(Y,CY ).
(2) Dcc(f) ∧ S1(X,CX) ≤ S1(Y,CY ).
(3) Dcc(f) ∧ S2(X,CX) ≤ S2(Y,CY ).

Corollary 4.12 exactly demonstrates the degree characterization of the conclusion that
for a bijective and CC mapping f ∶ (X,CX) Ð→ (Y,CY ), if (X,CX) is Si (i = 0, 1, 2)
separated, then so is (Y,CY ).

5. Separated degrees of M-fuzzifying convex spaces by means of M-
fuzzifying convergence structures

In [10], Pang introduced convergence structures in the framework of M -fuzzifying convex
spaces, which are called M -fuzzifying convergence structures. As an application of M -
fuzzifying convergence structures, Pang defined separated degrees of M -fuzzifying convex
spaces by means of M -fuzzifying convergence structures. Notice that the separated degrees
of M -fuzzifying convex spaces via M -fuzzifying convergence structures in [10] have some
advantages compared with that in [7], especially on the productive properties.

In this section, we will go on investigating the separated degrees of M -fuzzifying con-
vex spaces by means of M -fuzzifying convergence structures. In order to distinguish the
separated degrees of M -fuzzifying convex spaces via M -fuzzifying convergence structures
from that in M -fuzzifying convex spaces, we denote the separated degrees of M -fuzzifying
convex spaces via M -fuzzifying convergence structures by S∗i (i = 0, 1, 2).

Definition 5.1 ([10]). Let (X, lim) be an M -fuzzifying convergence space and define
Sc

0(X, lim) by
Sc

0(X, lim) = ⋀
x≠y
(¬ lim([x])(y) ∨ ¬ lim([y])(x)).

Then Sc
0(X, lim) is called the degree to which (X, lim) is S0-separated.

Definition 5.2 ([10]). Let (X, lim) be an M -fuzzifying convergence space and define
Sc

1(X, lim) by
Sc

1(X, lim) = ⋀
x≠y
(¬ lim([x])(y) ∧ ¬ lim([y])(x)).

Then Sc
1(X, lim) is called the degree to which (X, lim) is S1-separated.
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Definition 5.3 ([10]). Let (X, lim) be an M -fuzzifying convergence space and define
Sc

2(X, lim) by

Sc
2(X, lim) = ⋀

x≠y
⋀

F∈FM (X)

(¬ lim(F)(x) ∨ ¬ lim(F)(y)).

Then Sc
2(X, lim) is called the degree to which (X, lim) is S2-separated.

The separated degree Sc
i (X, lim) (i = 0, 1, 2) of an M -fuzzifying convergence space

(X, lim) describes the degree to which (X, lim) is Si (i = 0, 1, 2) separated. Then the
separated degrees of an M -fuzzifying convex space (X,C ) can be defined by means of its
induced M -fuzzifying convergence space (X, limC ).

Definition 5.4 ([10]). Suppose that (X,C ) is an M -fuzzifying convex space. Then

S∗i (X,C ) = Sc
i (X, limC ) (i = 0, 1)

is called the degree to which (X,C ) is weakly Si-separated.

Definition 5.5 ([10]). Suppose that (X,C ) is an M -fuzzifying convex space. Then

S∗2 (X,C ) = Sc
2(X, limC )

is called the degree to which (X,C ) is S∗2 -separated.

Note that for an M -fuzzifying convex space, there are two ways to define its Si-separated
degrees (i = 0, 1, 2). In the following, we will show the the relations between two kinds of
separated degrees.

Proposition 5.6. Suppose that (X,C ) is an M -fuzzifying convex space. Then
(1) S∗0 (X,C ) ≥ S0(X,C ).
(2) S∗1 (X,C ) ≥ S1(X,C ).

Proof. (1) By the definitions of S∗0 (X,C ) and S0(X,C ), we have

S∗0 (X,C ) = Sc
0(X, limC )

= ⋀
x≠y
(¬limC ([x])(y) ∨ ¬limC ([y])(x))

= ⋀
x≠y
((( ⋀

y∈A

(C (X −A)→ [x](A)))→ �) ∨

(( ⋀
x∈B

(C (X −B)→ [y](B)))→ �))

= ⋀
x≠y
((( ⋀

x/∈A∋y

(C (X −A)→ �))→ �) ∨

(( ⋀
y/∈B∋x

(C (X −B)→ �))→ �))

= ⋀
x≠y
((( ⋀

y/∈B∋x

(C (B)→ �))→ �) ∨

(( ⋀
x/∈A∋y

(C (A)→ �))→ �))

≥ ⋀
x≠y
( ⋁

x∉A∋y

C (A) ∨ ⋁
y∉B∋x

C (B))

= S0(X,C ).
(2) It can be proved in a similar way. �

By the above proposition, we know that if an M -fuzzifying convex space is Si (i = 0, 1)
separated in the sense of Definition 4.1, then it is Si (i = 0, 1) separated in the sense of
Definition 5.4. That’s why we call weakly Si (i = 0, 1) separated in Definition 5.4.
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When M = {0, 1}, S2-separated degrees and S∗2 -separated degrees will reduce to the
classical S2 and S∗2 separation axioms in convex spaces. It is easy to see that classical S2
and S∗2 axioms are independent. This means that the S2-separated degrees in Definition
4.4 and S∗2 separated degrees in Definition 5.5 are incomparable.

In the sequel, we will further investigate the properties of separated degrees of an M -
fuzzifying convex space in the sense of Definitions 5.4 and 5.5.

From the aspect of convergence structures, an M -CP mapping between M -fuzzifying
convergence spaces is defined, which can be used to characterize the M -CP mapping
between M -fuzzifying convex spaces. In order to equip the M -CP mapping between M -
fuzzifying convergence spaces with some degrees, we first recall the definition of an M -CP
mapping between M -fuzzifying convergence spaces.

Definition 5.7 ([10]). A mapping f ∶ (X, limX) Ð→ (Y, limY ) between M -fuzzifying
convergence spaces is called M -fuzzifying convexity-preserving (M -CP, in short) provided
that

limX(F)(x) ≤ limY (f⇒(F))(f(x))
for each F ∈ FM(X) and x ∈X.

Using the degree approach, we can define the degree to which a mapping between M -
fuzzifying convergence spaces is M -CP.

Definition 5.8. Let (X, limX) and (Y, limY ) be M -fuzzifying convergence spaces, and let
f ∶ X Ð→ Y be a mapping. Then Dc

cp(f) defined by

Dc
cp(f) = ⋀

x∈X
⋀

F∈FM (X)

(limX(F)(x)→ limY (f⇒(F))(f(x)))

is called the M -CP degree of f .

Actually, Definition 5.8 provides a degree approach to M -CP mappings from the aspect
of M -fuzzifying convergence structures. This can also be used to give a new definition of
M -CP degrees of a mapping between M -fuzzifying convex spaces.

Definition 5.9. Let (X,CX) and (Y,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be a mapping. Then D∗cp(f) defined by

D∗cp(f) =Dc
cp(f) = ⋀

x∈X
⋀

F∈FM (X)

(limCX (F)(x)→ limCY (f⇒(F))(f(x)))

is called the weak M -CP degree of f .

Proposition 5.10. Let (X,CX) and (Y,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be a mapping. Then

Dcp(f) ≤D∗cp(f).

Proof. By the definition of Dcp(f) and D∗cp(f), we have

D∗cp(f)

= ⋀
x∈X

⋀
F∈FM (X)

(limCX (F)(x)→ limCY (f⇒(F))(f(x)))

= ⋀
x∈X

⋀
F∈FM (X)

( ⋀
x∈A

(CX(X −A)→ F→(A))→ ⋀
f(x)∈B

(CY (Y −B)→ f⇒(F)(B)))

= ⋀
x∈X

⋀
F∈FM (X)

⋀
f(x)∈B

( ⋀
x∈A

(CX(X −A)→ F→(A))→ (CY (Y −B)→ f⇒(F)(B)))

= ⋀
x∈X

⋀
F∈FM (X)

⋀
x∈f←(B)

( ⋀
x∈A

(CX(X −A)→ F→(A))→ (CY (Y −B)→ F(f←(B))))
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≥ ⋀
x∈X

⋀
F∈FM (X)

⋀
x∈f←(B)

((CX(X − f←(B))→ F(f←(B)))→ (CY (Y −B)→ F(f←(B))))

≥ ⋀
x∈X

⋀
F∈FM (X)

⋀
x∈f←(B)

(CY (Y −B)→ CX(X − f←(B)))

= ⋀
x∈X

⋀
F∈FM (X)

⋀
x∈f←(B)

(CY (Y −B)→ CX(f←(Y −B)))

≥ ⋀
C∈2X

(CY (C)→ CX(f←(C)))

= Dcp(f),
as desired. �

In Definitions 4.7 and 5.9, we provided two different ways to define the M -CP degree of
a mapping between two M -fuzzifying convex spaces. By Proposition 5.10, we know that
if a mapping f ∶ (X,CX) Ð→ (Y,CY ) is M -CP in the sense of Definition 4.7, then it is
M -CP in the sense of Definition 5.9. That’s why we call D∗cp(f) in Definition 5.9 weak
M -CP degree.

In the following proposition, we present the relationships between separation axioms
and M -CP mappings with respect to M -fuzzifying convergence spaces in a degree sense.
Proposition 5.11. Let (X,CX) and (X,CY ) be M -fuzzifying convergence spaces, and let
f ∶ X Ð→ Y be an injective mapping. Then

(1) Dc
cp(f) ≤ Sc

0(Y, limY )→ Sc
0(X, limX).

(2) Dc
cp(f) ≤ Sc

1(Y, limY )→ Sc
1(X, limX).

(3) Dc
cp(f) ≤ Sc

2(Y, limY )→ Sc
2(X, limX).

Proof. (1) and (2) can be verified in a similar way. We only verify (1).
(1) By the definitions of Sc

0 and Dc
cp, we have

Sc
0(Y, limY )→ Sc

0(X, limX)
= ⋀

y1≠y2

(¬limY ([y1])(y2) ∨ ¬limY ([y2])(y1))

→ ⋀
x1≠x2

(¬limX([x1])(x2) ∨ ¬limX([x2])(x1))

≥ ⋀
f(x1)≠f(x2)

(¬limY ([f(x1)])(f(x2)) ∨ ¬limY ([f(x2)])(f(x1)))

→ ⋀
x1≠x2

(¬limX([x1])(x2) ∨ ¬limX([x2])(x1))

= ⋀
x1≠x2

(¬limY ([f(x1)])(f(x2)) ∨ ¬limY ([f(x2)])(f(x1)))

→ ⋀
x1≠x2

(¬limX([x1])(x2) ∨ ¬limX([x2])(x1))

≥ ⋀
x1≠x2

((¬limY ([f(x1)])(f(x2)) ∨ ¬limY ([f(x2)])(f(x1)))

→ (¬limX([x1])(x2) ∨ ¬limX([x2])(x1)))

≥ ⋀
x1≠x2

((limX([x1])(x2)→ limY ([f(x1)])(f(x2)))

∧(limX([x2])(x1)→ limY ([f(x2)])(f(x1))))

≥ ⋀
x∈X

⋀
F∈FM (X)

(limX(F)(x)→ limY (f⇒(F))(f(x)))

= Dc
cp(f).
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(3) By the definitions of Sc
2 and Dc

cp, we have

Sc
2(Y, limY )→ Sc

2(X, limX)
= ⋀

y1≠y2
⋀

F∈FM (Y )

(¬limY (F)(y2) ∨ ¬limY (F)(y1))

→ ⋀
x1≠x2

⋀
G∈FM (X)

(¬limX(G)(x2) ∨ ¬limX(G)(x1))

≥ ⋀
f(x1)≠f(x2)

⋀
F∈FM (Y )

(¬limY (F)(f(x2)) ∨ ¬limY (F)(f(x1)))

→ ⋀
x1≠x2

⋀
G∈FM (X)

(¬limX(G)(x2) ∨ ¬limX(G)(x1))

= ⋀
x1≠x2

⋀
F∈FM (Y )

(¬limY (F)(f(x2)) ∨ ¬limY (F)(f(x1)))

→ ⋀
x1≠x2

⋀
G∈FM (X)

(¬limX(G)(x2) ∨ ¬limX(G)(x1))

≥ ⋀
x1≠x2

⋀
G∈FM (X)

(¬limY (f⇒(G))(f(x2)) ∨ ¬limY (f⇒(G))(f(x1)))

→ ⋀
x1≠x2

⋀
G∈FM (X)

(¬limX(G)(x2) ∨ ¬limX(G)(x1))

≥ ⋀
x1≠x2

⋀
G∈FM (X)

((¬limY (f⇒(G))(f(x2)) ∨ ¬limY (f⇒(G))(f(x1)))

→ (¬limX(G)(x2) ∨ ¬limX(G)(x1)))

≥ ⋀
x1≠x2

⋀
G∈FM (X)

((limX(G)(x2)→ limY (f⇒(G))(f(x2)))

∧(limX(G)(x1)→ limY (f⇒(G))(f(x1))))

≥ ⋀
x∈X

⋀
G∈FM (X)

(limX(G)(x)→ (limY (f⇒(G))(f(x))))

= Dc
cp(f).

�

Corollary 5.12. Let (X,CX) and (X,CY ) be M -fuzzifying convergence spaces, and let
f ∶ X Ð→ Y be an injective mapping. Then

(1) Dc
cp(f) ∧ Sc

0(Y, limY ) ≤ Sc
0(X, limX).

(2) Dc
cp(f) ∧ Sc

1(Y, limY ) ≤ Sc
1(X, limX).

(3) Dc
cp(f) ∧ Sc

2(Y, limY ) ≤ Sc
2(X, limX).

Proposition 5.13. Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be an injective mapping. Then

(1) Dcp(f) ≤ S∗0 (Y,CY )→ S∗0 (X,CX).
(2) Dcp(f) ≤ S∗1 (Y,CY )→ S∗1 (X,CX).
(3) Dcp(f) ≤ S∗2 (Y,CY )→ S∗2 (X,CX).

Proof. By Propositions 5.10 and 5.11, for each i = 0, 1, 2, we have

Dcp(f) ≤ D∗cp(f) =Dc
cp(f)

≤ Sc
i (Y, limCY )→ Sc

i (X, limCX )
= S∗i (Y,CY )→ S∗i (X,CX),

as desired. �



72 H.-L. Huang, Z.-Y. Xiu

Corollary 5.14. Let (X,CX) and (X,CY ) be M -fuzzifying convex spaces, and let f ∶
X Ð→ Y be an injective mapping. Then

(1) Dcp(f) ∧ S∗0 (Y,CY ) ≤ S∗0 (X,CX).
(2) Dcp(f) ∧ S∗1 (Y,CY ) ≤ S∗1 (X,CX).
(3) Dcp(f) ∧ S∗2 (Y,CY ) ≤ S∗2 (X,CX).

In Sections 4 and 5, we discussed the relationships between separated degrees and M -
CP degrees of mappings between M -fuzzifying convex spaces. From Propositions 4.9 and
5.13, it is observed that using M -fuzzifying convergence structures to define separated
degrees has more advantages.

6. Conclusions
In this paper, we mainly made further research on Si (i = 0, 1, 2) separated degrees of

an M -fuzzifying convex space from two aspects. Section 4 focused on separated degrees
of an M -fuzzifying convex space in the sense of Liang and Li [7]. Section 5 focused on
separated degrees of an M -fuzzifying convex space in the sense of Pang [10]. Based on
the relationships between separated degrees and M -CP degrees, we can see that separated
degrees of an M -fuzzifying convex space via convergence structures have more advantages.
Following this paper, we will consider the following problems as the future work:

● Defining S3 and S4 separated degrees of an M -fuzzifying convex space by means
of its induced M -fuzzifying convergence structure and study their productivity.

● Defining M -CC degrees between M -fuzzifying convex spaces by means of M -
fuzzifying convergence structures and study their relationships with M -CC degrees
in Definition 4.8.

● Investigating the relationships between Si (i = 3, 4) separated degrees of an M -
fuzzifying convex space and M -CP degrees between M -fuzzifying convex spaces.
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