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Abstract 

A hardware implementation of a quadratic map through FPGA platform is proposed in this paper. Firstly, a 

chaotic quadratic map is modeled by using Matlab/Simulink programming and then implemented into the FPGA 

(Field Programmable Gate Array) to be used for key generation for cryptographic applications. When the 

quadratic map is in chaotic mode, its output is unpredictable and aperiodic. Besides this, the map has a uniform 

output distribution and sufficient randomness. These characteristics make the chaotic quadratic map a suitable 

key generator for cryptography. This paper also reveals the successful real-time implementation of the quadratic 

map using FPGA for practical applications. Experimental results confirm that the feasibility of the quadratic map 

is verified under a digital hardware environment. 
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Kriptografik Uygulamalar için Kaotik Kuadratik bir Haritanın FPGA 

Gerçekleştirilmesi  

Özet 

Bu çalışmada, kuadratik bir haritanın FPGA üzerinden donanımsal gerçekleştirilmesi sunulmuştur. İlk olarak, 

kaotik kuadratik haritası Matlab/Simulink yazılımı kullanılarak modellenmiş ve daha sonra kriptografik 

uygulamalar için FPGA (Sahada Programlanabilir Kapı Dizileri) ortamında anahtar üreteci olarak 

gerçekleştirilmiştir. Kuadratik harita kaotik durumda iken sistem çıkışı tahmin edilemez ve düzensizdir. Ayrıca 

harita, düzgün bir çıkış dağılımına ve yeterli seviyede rastgeleliğe sahiptir. Bu karakteristik özellikler kaotik 

kuadratik haritasını kriptografi için uygun bir anahtar üreteci yapmaktadır. Bu çalışma aynı zamanda pratik 

uygulamalara yönelik olarak kuadratik haritasının FPGA ortamındaki başarılı gerçek zamanlı uygulamasını 

ortaya koymaktadır. Deneysel sonuçlar kuadratik haritanın uygulanabilirliğini sayısal donanım ortamında 

göstermiştir.   

Anahtar Kelimeler: Kaos; Kuadratik Harita; Gerçekleştirme; FPGA 

1. Introduction 

 

Chaos theory in complex systems has been 

cited increasingly in several different scientific 

areas especially in engineering science such as 

secure communication and cryptography. For 

example, chaos is used for analog and digital 

communication systems in [1-6]; for image 

cryptosystems in [7-12] and is applied in 

electrical power systems in [13-16]. Chaotic 

systems have similar properties such as 

sensitivity to initial conditions and control 

parameters, pseudo-random behavior and mixing 

with modern cryptography. These fundamentals 

characteristics can make the chaotic systems a 

good candidate for the key generation in data 

encryption algorithms. Many cryptosystems 

based on the generation of pseudo-random 

sequences using chaos have been proposed 

recently for mixing clear messages in 

information security [17]. 

Chaos generation in discrete time systems is 

very easy and simple due to the low complexity, 

but having high efficiency comparing with 

analog chaos generators [18]. In fact, analogue 

chaotic systems typically exhibit some practical 

difficulties since the component conditions are 

varying with age, temperature, etc. Furthermore, 

analog circuit implementations generally require 

a large chip area for realization. Hence, hardware 
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implementations of the discrete chaotic systems 

can be a solution to overcome these problems. 

Many digital realizations of chaotic systems have 

been reported to be used as key generators in 

cryptographic applications. For instance, in [19], 

Henon map as a chaotic generator is 

implemented in real-time on a FPGA to obtain 

high frequency at output for chaotic 

communication. In other study [20], a chaotic 

map is used as a bit generator and its FPGA 

implementation is performed successfully for 

cryptographic applications. Generally, chaotic 

system is used to generate pseudo-random 

sequences as key streams to mask information. 

Key streams should be generated randomly and 

contain enough entropy in order to prevent the 

key from being guessed. Key sensitivity is also 

required by secure cryptosystems [21].  

In this paper, we consider a quadratic map 

and present direct real-time implementation into 

the FPGA as well as hardware co-simulation 

structure in Simulink. Xilinx ISE (Integrated 

Synthesis Environment) design software 

including system generator tool is one of the 

efficient software technologies, is used to design 

and implement the chaotic Quadratic map. 

Firstly, the map equation is modeled by 

using Xilinx blocks in MATLAB/Simulink and 

then Xilinx system generator (XSG) performs 

the compilation of the design.  

The rest of the paper is structured as follows: 

Section 2 briefly introduces the Quadratic map 

with its dynamical behaviors and some statistical 

analyses of the map are performed. In Section 3, 

we realize the digital implementation and 

hardware-co simulation of the Quadratic map on 

FPGA. Finally, Section 4 concludes the whole 

paper. 

 

2. Chaotic Quadratic System 

A. Quadratic Map 

 
Quadratic map is a simple discrete system 

exhibiting chaos and defined by [22], 

2

1  n nx r x  


where 0 2r 
 
is called control parameter and 

( 2,2)nx    is the state variable of the system. 

Quadratic map can show rich dynamic behaviors 
from a stationary system to a chaotic state. When 

(0,0.74)r , the map behaves in steady state and if 

0.74,1.5)r , then the map has periodic behavior. 

When  1.5,2r , the Quadratic map is capable of 

very complicated behavior which means that the 
output of the map is aperiodic, non-convergent 
and very sensitive to initial conditions. Hence, the 
value of the control parameter specifies the 
dynamical behavior of the system. 

B. Lyapunov and Bifurcation Analyses 

Lyapunov exponent checks a sensitivity 
criterion of the initial condition for a nonlinear 
dynamical system [23]. In discrete systems, 

Lyapunov values are given by the following 
equation.  
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A positive Lyapunov exponent indicates that 

the orbit of a dynamical system is unstable and 

chaotic. The dynamical behaviors of a system 

from a fixed point to a chaos as a function of its 

control parameter are shown by a bifurcation 

diagram. Fig. 1 shows the Lyapunov spectrum 

and the bifurcation diagram of the Quadratic 

map. 

 

 (a) 

 

  (b) 

Figure 1 (a) Lyapunov spectrum of the Quadratic 

map (b) Bifurcation diagram of the Quadratic map 
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As it is easily observed that when the control 
parameter is close to 2, then the Lyapunov values 
are positive and the bifurcation diagram displays 
complex behavior resulting chaos.  

C. Histogram Analysis 

 

Histogram is a graphical display for the 

frequency distribution of a set of data. A 

distribution having constant probability for each 

data is known as uniform distribution. Fig. 2 

shows the histogram distribution of the 
nx  series 

generated from the Quadratic map with different 

control parameters. From the graphical results, 

Fig. 2(a), Fig. 2(b) and Fig. 2(c) demonstrate 

steady, periodic and chaotic behavior of the 

Quadratic map, respectively. It is obvious that 

the histogram has an excellent symmetric 

property and better uniform distribution when 

the map behaves chaotically as in Fig. 2(c). 

 

 

      (a) 

 

       (b) 

 

     (c) 

Figure 2. Histogram of nx  series with different 

control parameter (a) 0.4r  (b) 1r (c) 2r  

 

D. Checking Chaotic Output 

When the Quadratic map is in chaos state, it 

exhibits complex behavior and generates chaotic 

sequences at output. Firstly, chaotic output will 

be checked for homogeneity through central 

tendency analysis and then the randomness of 

these sequences will be evaluated by using NIST 

test. Finally, the entropy of the Quadratic map as 

a number generator will be determined to 

measure its uncertainty. If a key generator is 

used in a cryptosystem, these properties need to 

be confirmed. In this paper, we chose as 2r   to 

make the system chaotic and perform the 

following statistical analyses by using Matlab 

programming. 

1) Homogeneity Analysis 

 In order to check the chaotic output of the 
Quadratic map, the following two propositions 
are considered. First of all, the mean value of the 
output sequences spreading between (-2,2) should 
be 

1

1
lim 0
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and second, the self-correlation of these 
sequences should be zero as given in the 
following equation.  

1
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According to the above equations, based on 

50 simulations with different initial conditions, 

we have performed 610  iterations to get 

sufficient number of chaotic sequences from the 

Quadratic map. Then, we got the average mean 

value 0.000174 and the self-correlation is 

calculated to be 0.001598. These results are quite 

good, because both are very close to zero. 

2) Randomness Analysis 

 Randomness means unpredictability and does 
not follow an intelligible pattern in a sequence of 
symbols [24]. NIST test is used to determine the 
degree of randomness of the Quadratic map 
outputs. NIST includes fifteen tests [25] and each 
test produces a real p-value in [0,1]. If the p-value 
is greater than a significance predefined level 
such as 0.01  , then the test is passed 
successfully. When the all statistical tests are 
passed, then the map is considered as random 
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generator with 99% confidence. NIST uses 
binary series to test the randomness, but the 
output of the chaotic Quadratic map is floating-
point value. Therefore, the following 
transformation is used for the output of the map 
in order to get sequential bit streams.  

1 , 0

0 , 0


 



n

n

n

x
b

x
 

Here, a threshold level of 0 is selected to 

produce a bit value “1” or “0” from 
nx . We 

preferred the initial value as 
0 0.123x

 
to obtain 

1,000,000 bits to proceed NIST suite. The results 

are listed in Table 1. 
 

Table 1 Results of the NIST test 

Test Name p-value Result 

Frequency 0.8524 Passed 

Block frequency 0.3093 Passed 

Runs 0.4939 Passed 

Long runs of ones 0.7852 Passed 

Rank 0.9912 Passed 

Spectral DFT 0.7204 Passed 

Non-overlapping 

templates  

(m=9; 

B=000000001) 

0.7659 Passed 

Overlapping 

templates (m=9) 
0.7819 Passed 

Universal  

(L=7; Q=1280) 
0.1201 Passed 

Liner complexity 0.9138 Passed 

Serial-1 (m=5) 0.5875 Passed 

Serial-2 (m=5) 0.6469 Passed 

Approximate 

entropy (m=5) 
0.4142 Passed 

Cumulative sums 

forward 
0.4086 Passed 

Cumulative sums 

reverse  
0.5553 Passed 

Random 

excursions (x=+1) 
0.3511 Passed 

Random 

excursions variant 

(x=-1) 

0.8741 Passed 

 

It is concluded that the chaotic Quadratic map is 
very stochastic that represents random process 
and generates output sequences having enough 
randomness according to the NIST results. 

3) Uncertainity Analysis 

 We use information entropy to determine the 
uncertainty or disorder of the Quadratic map. 

Entropy is a measure of uncertainty related to a 
random event [24, 26]. If H(X) is a random 
source with N length, then its entropy is 

2

1
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N

i i

i

H X p x p x 

where ( )ip x
 
represents the probability of 

ix . For 

instance, in a uniform bit stream having equal 

probability ‘0’ and ‘1’, the entropy will be 1 

which is a theoretical result. When the output is 

certain, then the entropy is zero. The entropy of 

an practical information source is smaller than the 

ideal one. Generally, the more uncertain or 

random the event is, the more entropy it will 

contain [11].  
 We have used different initial values and 
number of iterations in order to generate bit 
streams using the Eqn. (5) from the chaotic 
Quadratic map. The entropy results for different 
conditions of the map are listed in Table 2. 

 
Table 2 Entropy results 

Initial 

value 
n 

# of 

‘0’ 

# of 

‘1’ 
p(0) p(1) Entropy 

0.2 100 52 48 0.52 0.48 0.998845 

-0.315 1000 490 510 0.49 0.51 0.999711 

1.27 10,000 4,967 5,033 0.4967 0.5033 0.999968 

-0.88354 100,000 49,829 50,171 0.4982 0.5017 0.999991 

 

From the results, when the number of iteration is 
increased, then the entropy value closes to 1 
which means that the uncertainty of the map is 
becoming greater. Generated for all bit streams, 
number of zeros and ones are very close to each 
other resulting uniform distribution in the 
sequences. 

4) Sensitivity Analysis 

 Quadratic map is highly sensitive to initial 
value. Thus, arbitrarily small change in the initial 
value will cause significantly different future 
output. This property is also acceptable while the 
map is used as a bit generator. To perform the 
sensitivity analysis, firstly, we randomly choose 
an initial value 

0 0.123456788x   and iteration of 

50n   to generate a bit sequence (
1b ) from the 

map. Then, a very slight change of 910  is applied 

to the first initial value, such as 
0 0.123456789x   

to generate another bit sequence (
2b ). The last ten 

elements for both sequences are shown in Fig. 3. 
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Figure 3 Generated different bit sequences with a  

   slight change of initial value 

 

Fig. 3 states that when a tiny change occurs in the 
initial value of the chaotic Quadratic map, 
generated bit sequences are completely different. 

 

3. Digital Implementation 

 

This section describes an approach to the 

real-time implementation as well as hardware 

simulation of the chaotic Quadratic map on 

FPGA. FPGA is a type of programmable chip 

that can be completely reconfigured for various 

field applications. Using prebuilt logic blocks 

and programmable routing resources, FPGAs can 

be reprogrammed to the required functionality 

and customized by loading the related 

configuration data into its internal memory cells. 

The stored data in these cells determine the logic 

blocks and reconfigurable interconnects in 

FPGA. We have used Spartan 3E-XC3S1600E 

family from Xilinx for the hardware simulation 

and implementation of the Quadratic map. 
Xilinx System Generator (XSG) is a high-

level design tool and fully integrated in 
MATLAB/Simulink that enables the use of the 
model-based Simulink environment for FPGA 
design. It allows compilation of the design that is 
captured using Xilinx blocks and generates 
synthesizable VHDL (Very High speed 
integrated circuit Hardware Description 
Language) codes for FPGA programming. All of 
the downstream implementation steps including 
synthesis, place and root processes are 
automatically performed to generate the 
programming file via XSG. The Quadratic map 
model has been designed by Matlab/Simulink 
with XSG which offers the library of fixed-point 
arithmetic blocks that can be directly 
implemented into the FPGA. Fig. 4 shows the 

Quadratic map model created by Xilinx blocks 
under the Simulink. 

 

 
Figure 4 Chaotic Quadratic map model using Xilinx 

blocks  
 

 XSG enables hardware into a simulation, 
called hardware co-simulation structure that 
allows incorporating a design running in an 
FPGA directly into a simulation. Hardware co-
simulation compilation targets automatically 
generate a bit streams and associate it to a block. 
When this block is simulated in Simulink, then 
the results for the compiled part are calculated in 
the hardware. Hence, hardware co-simulation is 
used to verify that the design actually works in 
FPGA platform. 
 

 
Figure 5 Hardware co-simulation of the Quadratic 

map  

 
 The bitstream download step is performed by 
using a JTAG cable. We performed the real-time 
implementation with a fixed-point data type and 
the real data are represented on 128 bits. Fig. 5 
shows the simulation results of the chaotic 
Quadratic map design with hardware and 
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software in Simulink. It is observed that the 
hardware-co simulation result is same to the 
Simulink simulation which means that the 
realization of the map is performed successfully 
and the map design actually works in FPGA. 
 The generated output depends on the initial 
value of the map that can be directly entered into 
the design model before the generator starts. We 
randomly chose the initial value as 

0 0.123x 
 
for 

the real-time FPGA implementation. 
XSG tool automatically generates a 

synthesizable VHDL codes associated with the 
design and the created file can be opened with the 
Xilinx ISE software. PlanAhead tool in ISE is 
used to assign input and output pin locations in 
the design. After assigning pins for input and 
output, then the design is ready to be synthesized 
in ISE. Successful synthesis creates the 
programming file of the design. IMPACT tool is 
used to load the programming file into the FPGA. 
For real-time implementation of our design, we 
use the chaotic Quadratic map as an 8-bit number 
generator to observe the numbers at LED output 
of the FPGA. First, the output of the map needs 
to be converted to 8-bit decimal number between 
0 and 255. Hence, the following equation is 
applied to the output of the map. 

9mod( ( 10 ),256) nnumber round x 

Here, round operation is used to get the nearest 
integer value and mod limits the output between 0 
and 255. We assigned 8-bit number for the 
implementation because our FPGA has eight 
LEDs at output. Transformation module is also 
added to the Quadratic map design. For example, 
if the initial value of the map is 0.123, then the 
second number generated from the Eqn. (7) will 
be 88 in decimal or 01011000 in binary. Fig. 6 
shows this value at LED output of the FPGA. 

 

 
Figure 6 Display of 88 in binary at LED output of the 

FPGA  

 

Table 3 shows the numbers generated from the 
chaotic Quadratic system by using MATLAB and 
FPGA with the same initial value of the map. 
 
Table 3 Generated 8-bit numbers from MATLAB and 

FPGA 
MATLAB 
(Software) 

FPGA 
(Hardware) 

192 192 

88 88 

137 137 

189 189 

57 57 

133 133 

12 12 

220 220 

 
 The amount of FPGA resources and the 
required by the Quadratic map can be determined 
by using Resource Estimator block. They are 
listed in Table 4.  
 
Table 4 Mapping report of the Quadratic map design 

Device Spartan3E-XC3S1600E 

Resource 

Type 
Slices 

Flip-

Flops 

RAMB 

16S 
LUTs IOBS 

Available 14,752 29,504 36 29,504 250 

Used 10,160 10,922 1 18,843 9 

 

4. Conclusion 

 
 This paper presents a chaotic Quadratic map 
and its implementation on a digital hardware. The 
results of the statistical analyses confirm that the 
output of Quadratic map can be used as 
cryptographic keys when the map behaves 
chaotically. In practice, chaotic Quadratic map 
can be used as a generator in all scientific fields 
where the pseudo-randomness and chaos are 
required. The design of the map as well as 
hardware co-simulation and real-time 
implementation are successfully applied to the 
FPGA platform that encourages its usage for 
practical applications. This paper can be used as a 
good guide for anyone who wants to implement 
digital designs on FPGA without knowing VHDL 
codes. 
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