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Abstract

The global population has suffered extensively as an effect of the coronavirus infection, with the loss
of many lives, adverse financial consequences, and increased impoverishment. In this paper, we
propose an example of the non-linear mathematical modeling of the COVID-19 phenomenon. Using
the fixed point theorem, we established the solution’s existence and unicity. We demonstrate how,
under the framework, the basic reproduction number can be redefined. The different equilibria of the
model are identified, and their stability analyses are carefully examined. According to our argument,
it is illustrated that there is a single optimal control that can be used to reduce the expense of the
illness load and applied processes. The determination of optimal strategies is examined with the aid
of Pontryagin’s maximum principle. To support the analytical results, we perform comprehensive
digital simulations using the Runge-Kutta 4th-order. The data simulated suggest that the effects of
the recommended controls significantly impact the incidence of the disease, in contrast to the absence
of control cases. Further, we calculate the incremental cost-effectiveness ratio to assess the cost and
benefits of each potential combination of the two control measures. The findings indicate that public
attention, personal hygiene practices, and isolating oneself will all contribute to slowing the spread of
COVID-19. Furthermore, those who are infected can readily decrease their virus to become virtually
non-detectable with treatment consent.
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1 Introduction

The world is facing an unprecedented threat. The pandemic of COVID-19 has spread rapidly
throughout the worldwide community. As a result of this epidemic, suffering has spread, the lives
of billions of people have turned upside down, and the global economy is under threat. Even
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wealthy countries with robust healthcare systems are under pressure as the wave of this pandemic
begins to reach countries already suffering humanitarian crises from conflicts, natural disasters,
and climate change.
The first instance of a virus whose etiology is completely unexplained was identified in the Chi-
nese, on December 31, 2019 [1]. Moreover, this pandemic demands immediate and sustained
international action. While reducing the scale of the terrible human and economic toll across the
globe is our primary concern, we are also very concerned about the underlying problems that this
emergency reveals, particularly for those most at risk of disastrous consequences. This group of
viruses called coronaviruses is responsible for gastrointestinal and respiratory illnesses in many
different world locations. Both the common cold and more severe illnesses can be respiratory
disorders. Since they resemble coronas under the microscope, coronaviruses received their name.
An infused envelope surrounds the genetic material center of the virus. It resembles a crown as
a result of this. In Latin, the corona is a word that signifies "crown". Most people infected with
the virus have minor or moderate lung disease and recover without seeking treatment. Some,
however, get severe illnesses and need to see a doctor. Seniors and patients with prior illnesses
such as cancer, glucose intolerance, permanent lung illness, or heart disease are more prone to
have a severe variation. The most effective strategy to avoid and limit transmission of COVID-19
is to be knowledgeable about the illness and how it is spread. Anyone, at any age, can contract the
illness and become extremely ill or die from it.
The World Health Organization (WHO) has designated the 2019 coronavirus disease (COVID-19)
as a global epidemic. To stop the virus from spreading further, a concerted international effort
is required. "Occurring over a huge geographic area and impacting an extraordinarily high pro-
portion of the population" is how a pandemic is described. The H1N1 flu pandemic in 2009 was
the most recent pandemic to be reported globally. Mathematical models hold significance as they
elucidate the fundamental mathematical structure of a specific phenomenon without delving
into extraneous details. The purpose is to concentrate on certain facets of the issue, abstracting
away other dimensions. Consequently, mathematical models remain pertinent by showcasing the
essential mathematical core within a given context devoid of excess information [2] (see also [3],
[4], [5] and reference therein).
To reduce the COVID-19 disease’s transmission dynamics, the authors of [6] studied and discussed
an optimal control model. The limitations of the illness and the associated expenses are also
minimized by suggesting the most appropriate control measures. They established its existence
and specificity. Further data simulations are performed to observe the importance of control efforts
to stop the propagation of the illness in society according to a study that was done on the spread
of disease between countries based on an estimated COVID-19 mathematical model. The study in
[7] explores a mathematical model that involves the effects of resource constraints on COVID-19
transmission patterns in the population through the use of the Caputo derivative. The basic repro-
duction rate R0 was determined, and the suggested model’s asymptotic stability was investigated.
According to their findings, the number of people with the virus increases, while cure rates by
hospitalization increase. The authors of [8] analyze the dynamics of a fractional-order COVID-19
model and suggest an efficient computational technique based on the domain discretization and
memory concept to numerically solve this fractional-order corona model The coronavirus is an
enclosed virus with a single-stranded, positive-sense RNA that is a component of the Nidovirales
demand and the relative Coronaviridae. It is widely transmitted among mammals and humans
[9]. To understand COVID-19’s effects on the environment, the authors suggest mathematical
modeling and data analysis in [10]. Such a pandemic is mathematically modeled as a deterministic
infectious illness. They use the fixed-point theorem to confirm the originality of the solution, and
it is inferred that the sample displays both endemic and disease-free equilibrium points. Further,
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they propose an optimal control to find the best strategy to eliminate the virus.
With the Atangana-Baleanu derivative, [11] provides a rigorous mathematical analysis of the
intricacies of smoking behavior and its public health implications. The authors in [12] propose
and analyze a compartmental deterministic framework to explain the behavior of the student
population’s illicit drug usage. The bifurcation phenomenon is identified using the Center Mani-
fold Theorem. Efficiency analysis is applied to understand how the dynamics of illicit drug use
by the student group are influenced by the settings of the system. Assessing the epidemiology
of the patients, the clinical course of the condition, and the available treatment options, Tang
et al. created a model [13]. A sensitivity analysis suggests that actions regarding isolation and
quarantine can lower it. Numerous mathematical model types use statistical techniques to research
the COVID-19 virus (see, for example, [14]).
The authors of [15] Create a compartmental model to evaluate the effects of mask use on the
population as a whole among the general, asymptomatic public, some of whom may be asymp-
tomatically infected. They imply that the public’s adoption of face masks has a strong potential for
reducing the spread of the pandemic and its burden. The study in [16] examines the affordability
and effectiveness of three malaria-prevention measures. They found that one of the conclusions
was that treating infected people and spraying insecticides was the most cost-effective way of
eliminating malaria. The authors of [17] treat three disease compartments: infectious, quarantined,
and exposed-asymptomatic, and they indicate that the rate of treatment is a saturated type to
account for the impact of scarce medical facilities. By taking into account the implications on
infection transmission rates caused by the adoption of lockdown policies by numerous countries,
they also developed an optimal control issue. In [18], a decision analytical model of different cases
of ratios of people without symptoms of COVID-19 and dangerous intervals predicts propagation
from untreated persons for more than half of all transmissions. Thus, the virus mitigation mea-
sures that can halt the disease’s circulation must receive resources and health information.
The literature contains several mathematical models that explain how COVID-19 propagates
and recommend measures to optimize virus transmission. The authors in [19] observed that, in
the absence of immunization, using either physical distancing or social separation procedures
is the most economical and successful management approach in Saudi Arabia. In [20], a study
introduces a mathematical framework for monitoring and predicting the spread of COVID-19
in India, using data up to April 30, 2020. The authors calculate the ratio R0 and perform local
and global stability analyses. The template expects a significant spread with a peak after almost
60 days, implying the persistence of the illness even after reaching a certain level. The study in
[21] presents a new mathematical model to analyze the omicron variant of COVID-19, exploring
stability conditions and extensions. Using realistic data from South Africa, numerical simulations
highlight the effectiveness of WHO recommendations in reducing infection. Investigations on the
transmission of COVID-19 and epidemic patterns concentrate on sample selection and adequate
control measures. The essay [22] reviews mathematical models, highlighting the importance of
reasonable parameter control and combined multi-model modeling for future interventions. The
previously mentioned literature serves as an inspiration for our work’s motivation and originality.
In our case, we have adopted this model as the most realistic example as it deals with the pre-
dominant classes in society for this virus by presenting declared and undeclared infections, as
well as contributing to a more thorough comprehension of the course of the disease and enabling
Morocco to modify its disorder treatment tactics.
The structure of this essay is as detailed below: In Section 2, we present some theorems used in
this essay. The mathematical model is developed in Section 3. In Section 4, the well-established
nature of the system is examined. The ratio R0 is given, as are the local and global stability of
the equilibrium points. Section 5 illustrates the importance of every model factor concerning
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R0. In Section 6, an analysis of an optimal control model is provided. Data of simulation and
verification are given in Section 7, while, Section 8 is dedicated to the model’s cost-effectiveness
analysis. Eventually, Section 9 summarizes the current work.

2 Fundamental prerequisites

The upcoming sections of the paper will utilize the following theorems:

The following theorems (see [23, 24]), whose proofs will be given in the later sections, will be used
to discuss the constancy of the template’s steadiness point:

Theorem 3
If R0 < 1, the point of disease-free equilibrium DFE is locally asymptotically stable; nevertheless,
if R0 > 1, it is unstable.

Theorem 4
If R0 < 1, the DFE, E0 of model (2), is globally equilibrium-stable.

Theorem 6
Where R0 > 1, the persistent steadiness point Ẽ is locally asymptotically stable.

Theorem 7
The only persistent steadiness state of (2) is globally asymptotically stable when R0 > 1.

3 Description of the model

To establish a new deterministic model, we begin by analyzing crucial characteristics of the
COVID-19 pandemic, such as the presence of individuals who evaluated positively for the virus
but did not exhibit any indications of illness and the splitting of pathogenic categories into two
crucial categories: Contaminated people and ill individuals who have not yet received an official
diagnosis. The general community N(t) is partitioned into six sub-populations: sensitive SI(t),
unprotected EI(t), contaminated or exhibiting indications I(t), those who are ill but are not yet
officially diagnosed Ind recuperated individuals R(t) and healthy H(t), Π is the recruitment
number, µ is the natural mortality rate, µ1 is the patient mortality due to human coronavirus
infection. ν represents the rate of infection diffusion from EI to SI , and σ is the saturation
constant, β stands for incidence rate, α indicates the percentage of people from the exposed
compartment who join the diseased subpopulation, δ is the rate at which those who are exposed
to an infection contract it, γ is the interaction between Ind and R, while θ is the rate at which
susceptible people become uninfected, η is the rate of recovered individuals from COVID-19, when
the entire population grows to a level equivalent to N = SI + EI + I + Ind + R + H. Without
estimating the number of pathogens present within each individual, models built on this type of
construction merely represent the infected individuals’ community attitude. Our model, based
on an illustration depicting the biological mechanism of coronavirus in humans, is depicted in
Figure 1.
To consistently explore a mathematical framework of a real-world phenomenon, it is vital to
specify these criteria by indicating a set of conditions. We enumerate these conditions in the above
section, as outlined in [25]:
(a) Depending on the prototype, an estimated intake of susceptible individuals costs Π per unit of
time.
(b) It simply considers how the pandemic progresses among individuals.
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(c) The framework provides for the natural death of each sub-population in proportion to its size.
Although most studies indicate that all people are contaminated with the virus, it is not possible to
exclude the minority who are not (the individuals H), which is due to immunity and lifestyle. The
dynamics of infection in the human populace are represented by the following set of six distinct
equations and can be formulated in the following manner:

dSI
dt

= Π − νSI I − (µ + θ)SI ,

dEI
dt

= νSI I − δEI − µEI ,

dI
dt

= αδEI − η I − (µ + µ1)I,

dInd
dt

= (1 − α)δEI − γInd − (µ + µ1)Ind,

dR
dt

= η I + γInd − µR,

dH
dt

= θSI − µH,

(1)

with the initial condition: SI(0 ≥ 0, EI(0) ≥ 0, I(0) ≥ 0, Ind(0) ≥ 0, R(0) ≥ 0, H(0) ≥ 0.

• Characteristics of susceptible individuals:

The population recruits susceptible members SI at a constant rate, Π, and the natural mortality
rate µ reduces their numbers, the population SI will join the subpopulation I passing through EI
at the rate ν, although some of these individuals will have contact with H at a steady rate θ.

• Characteristics of exposed people:

The rate at which the exposed person EI declines is δ for asymptomatic people and µ for natural
death. Individuals EI and sensitive individuals SI shall immediately interact at a steady rate of ν,
EI gets sicker by a fixed percentage α at a rate δ, where part of this population is not declared as
diseased ((1 − α)δ).

• Characteristics of undeclared people:

Without a diagnosis, the classes Ind are transferred to the recovery classes at the rate γ.

• Characteristics of healthy individual:

Sensitive individuals SI interact with individuals in the population that is immune and has never
contracted the disease (H) at a θ rate.

• Characteristics of individuals with disease signs:

The unaffected people give birth to the affected people when the coronavirus clinical symptoms
progress. A constant share α of the exposed people transitions to the affected classes at a rate of δ.
the class I transferred at a rate of η to the recover classes.

• Characteristics of recuperated individuals:

It can be presumed that the population that has recovered has long-lasting protection against
coronavirus. Individual Ind and population I recover from the coronavirus at γ and η rates,
respectively. The rate of recovery deaths is µ.
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• Characteristics of healthy individuals:

According to a study by Imperial College London, people with a high quantity of T cells (white
blood corpuscle that contributes to the organism’s defense against infection) from the coron-
aviruses responsible for the common cold are less likely to contract SARS-CoV-2, the virus respon-
sible for COVID-19. So we named these individuals ’healthy’ H. Thus, the sensible population SI
moved to the category H at a rate of θ. Table 1 lists the parameters and variables in detail.

Table 1. Model parameters and their meanings

Parameters Description
SI(t) The portion of sensitive individuals who are in direct interaction with an infected individual.
EI(t) The portion of those revealed to I that does not maintain them out.
I(t) The portion of those who are impacted.
Ind(t) The portion of non-reported infected person.
R(t) The portion of rescued people.
H(t) The portion of strictly asymptomatic individuals who have never caught the infection.
Π Recruitment number
µ The rate of natural mortality
µ1 Natural death rate of human coronavirus illness patients
ν Rate of diffusion of infection from EI to SI
σ The constant of saturation
β Incidence rate
α Percentage of people from the exposed compartment who eventually migrate

to the sick subpopulation
δ The rate of illness in exposed individuals
η Rate of COVID-19 patients that have recovered
γ The rate at which Ind interacts with R
θ The rate at which sensitive persons become uninfected

4 Qualitative analysis of the model

This section will investigate a few key aspects of the suggested model, including its boundary, the
presence of a steady state, and the fundamental reproduction number.

The presence and singular nature of the solutions to the framework

With applying the fixed point theorem and the premises that H = (C(J))6, and C(J) remains a
Banach domain for continuous functions along the interval J during the norm

∥gi(t)∥i=1,...,6 =
6∑

i=1

∥gi∥∞,

where, (g1, g2, g3, g4, g5, g6) = (SI , EI , I, Ind, R, H).
It can be demonstrated that the configuration outlined (1) has a valid outcome. Here, ∥.∥∞
represents the maximum norm in C(J).
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For the sake of simplicity, let us examine:

Θ1(t,SI) = Π − νSI I − (µ + θ)SI ,

Θ2(t, EI) = νSI I − δEI − µEI ,

Θ3(t, I) = αδEI − η I − (µ + µ1)I,

Θ4(t, Ind) = (1 − α)δEI − γInd − (µ + µ1)Ind,

Θ5(t, R) = η I + γInd − µR,

Θ6(t, H) = θSI − µH.

To prove this theorem, we suppose that
∥SI∥ ≤ w1, ∥EI∥ ≤ w2, ∥I∥ ≤ w3, ∥Ind∥ ≤ w4, ∥R∥ ≤ w5, ∥H∥ ≤ w6 where wi, i = 1, ..., 6 are
constant positives. Hence, we denote

k1 = νw3 + θ + µ,

k2 = αδ + δ + µ,

k3 = η + µ + µ1,

k4 = γ + µ + µ1,

k5 = k6 = µ.

Theorem 1 If the proposed inequality is true, the Θi=1,...6 are adapted to the Lipschitz state and compaction.

0 ≤ ki=1,...,6 < 1.

Proof Consider the functions SI1 and SI2 , so

∥Θ1(t,SI1)− Θ1(t,SI2)∥ =∥− (νI + µ + θ)(SI1 −SI2)∥ ≤ (νw3 + θ + µ)∥SN1(t)−SN2(t)∥.

Thus

∥Θ1(t,SI1)− Θ1(t,SI2)∥ ≤ k1∥SI1(t)−SI2(t)∥.

The Lipschitz criterion is achieved for Θ1. Similarly, the Lipschitz condition for Θ2, Θ3, Θ4, Θ5,
and Θ6 may be easily proven and is the same as stated previously:

∥Θ2(t, EI1)− Θ2(t, EI2)∥ ≤ k2∥EI1(t)− EI2(t)∥,

∥Θ3(t, I1)− Θ3(t, I2)∥ ≤ k3∥I1(t)− I2(t)∥,

∥Θ4(t, Ud1)− Θ4(t, Ud2)∥ ≤ k4∥Ud1(t)− Ud2(t)∥,

∥Θ5(t, R1)− Θ5(t, R2)∥ ≤ k5∥R1(t)− R2(t)∥,
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∥Θ6(t, H1)− Θ6(t, H2)∥ ≤ k6∥H1(t)− H2(t)∥.

The solution’s positivity

State variables of model (1) and relative factors must be positive for the foreseeable future, as this
model predicts the population of individuals, which will be established by the following theorem:

Theorem 2 For model (1), the feasible area is specified by:

C =
{
(SI , EI , I, Ind, R, H) ∈ R6

+; SI , EI , I, Ind, R, H ≥ 0, N ≤ Π
µ

}
.

Proof Count on the value of factors to be continuous. Predicting the following from system (1) is
straightforward (see [26]):

dSI
dt

≥ −(νI + θ + µ)SI .

After that, applying the constant variation formula:

dSI
dt

≥ SI(0) exp(−(νI + θ + µ)t) ≥ 0.

In the same way, we prove that: dEI
dt ≥ 0, dI

dt ≥ 0, dInd
dt ≥ 0, dR

dt ≥ 0, dH
dt ≥ 0. As a result, when

t ≥ 0, all solutions are positive.
Or,

N = SI + EI + I + Ind + R + H.

Then we have

dN
dt

= Π − µN(t)− µ1(I + Ind).

When the illness is absent

dN
dt

= Π − µN(t),

then ∫
dN
dt

=

∫
(Π − µN(t))dt.

So

N(t) = N(0) exp(−
∫ t

0
µds) +

∫ t

0
Π exp(−

∫ t

s
µdϑ),

if

N(0) ≤ Π
µ

,
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thus,

N(t) ≤ Π
µ

exp(−
∫ t

0
µds) +

∫ t

0
Π exp(−µ(t − s)ds) ≤ Π

µ
exp(−

∫ t

0
µds) +

Π
µ

,

when

t → +∞, N(t) ≤ Π
µ

.

It indicates that the region C is a positively invariant set for system (1).

Local stability of DFE

Because H(t) has not been presented in the first five equations, system (1) can be expressed below

dSI
dt

= Π − νSI I − (µ + θ)SI ,

dEI
dt

= νSI I − δEI − µEI ,

dI
dt

= αδEI − η I − (µ + µ1)I,

dInd
dt

= (1 − α)δEI − γInd − (µ + µ1)Ind,

dR
dt

= η I + γInd − µR.

(2)

The model’s disease-free equilibrium point is reached by setting all of the model (2)’s formulas to
zero and disabling them:

E0 = (S0
I , E0

I , I0, I0
nd, R0),

where EI = I = Ind = R = 0, and S0
I =

Π
θ+µ .

The effective reproduction number R0

The threshold provided by the dimensionless basic reproduction number is vital in determining
whether the disease survives or disappears in the individual. R0 can be defined more broadly
as the number of new infections produced by a typical infective population at an infection spot
zero-point equilibrium analysis of the stability of the equilibrium points depends on the model’s
effective reproduction number. Moreover, the projected number of indirect connections caused by
the implementation of a newly discovered member among a sensitive group is estimated using
R0. Using the notion of a next-generation matrix (see [27]), it is possible to calculate the basic
reproduction number R0. Starting with the categories that were most recently infected, we recast
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the model’s equations: 

dEI
dt

= νSI I − (δ + µ)EI ,

dI
dt

= αδEI − (η + µ)I,

dInd
dt

= (1 − α)δEI − (γ + µ)Ind,

dR
dt

= η I + γInd − µR.

(3)

Deriving the fundamental reproduction number R0 involves utilizing the spectrum’s diameter ρ

in the generation matrix FV−1. In this process, we consider the non-negative matrix F and the
non-singular matrix V, representing the creation of new infections and the transition component
in the system (2), respectively.

F =


νISI

0
0
0

 , and V =


(δ + µ)EI

−αδEI + (η + µ + µ1)I
−(1 − α)δEI + (γ + µ + µ1)Ind

−η I − γInd + µR

 ,

as F = [ ∂F
∂Xj

], and V = [ ∂V
∂Xj

], we have (Xj = (EI , I, Ind, R))

F =
∂F

∂Xj
(E0) =


0 νS0

I 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and

V =
∂V

∂Xj
(E0) =


(δ + µ) 0 0 0
−αδ (η + µ + µ1) 0 0

−(1 − α)δ 0 (γ + µ + µ1) 0
0 −η −γ µ

 .

We have

|V| = µ(γ + η)(η + µ)(δ + µ).

Then

com(V) =


w11 w12 w13 w14
w21 w22 w23 w24
w31 w32 w33 w34
w41 w42 w43 w44

 ,
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with

w11 = µ(η + µ + µ1)(γ + µ + µ1),

w12 = µ(γ + µ + µ1)αδ,

w13 = µ(1 − α)δ(η + µ + µ1),

w14 = η(γ + η)αδ + γ(1 − α)δ(η + µ),

w22 = µ(δ + µ)(γ + µ + µ1),

w23 = −µ,

w24 = η(γ + µ + µ1)(δ + µ),

w32 = −µ,

w33 = µ(δ + µ)(η + µ + µ1),

w34 = γ(δ + µ)(η + µ + µ1),

w44 = (γ + µ + µ1)(δ + µ)(η + µ + µ1),

w21 = w31 = w41 = w42 = w43 = 0,

then

V−1 =
1
|V|


w11 w21 w31 w41
w12 w22 w32 w42
w13 w23 w33 w43
w14 w24 w34 w44



=
1
|V|


µ(η + µ + µ1)(γ + µ + µ1) 0 0 0

µ(γ + µ + µ1)αδ µ(δ + µ)(γ + µ + µ1) −µ 0
µ(1 − α)δ(η + µ + µ1) −µ w33 0

ς1 ς2 ς3 ς4

 ,

ς1 = η(γ + µ)αδ + γ(1 − α)δ(η + µ + µ1),

ς2 = η(γ + µ + µ1)(δ + µ),

ς3 = γ(δ + µ)(η + µ + µ1),

ς4 = (γ + µ + µ1)(δ + µ)(η + µ + µ1),

thus

FV−1 =
1
|V|


νS0

Iw12 νS0
Iw22 νS0

Iw32 νS0
Iw42

0 0 0 0
0 0 0 0
0 0 0 0

 .

Therefore, the reproduction number (R0) is given below:

R0 = ρ(FV−1) =
νS0

Iw12

|V|
=

νΠαδ

(θ + µ)(η + µ + µ1)(δ + µ)
.

Theorem 3 If R0 < 1, the DFE point is locally asymptotically stable; if R0 > 1, it is unstable.
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Proof To prove this theorem, we start the Jacobian matrix for the given set of equations in the
model (2):

J =


−(νI + θ + µ) 0 −νSI 0 0

νI −(δ + µ) νSI 0 0
0 αδ −(η + µ + µ1) 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0
0 0 η γ −µ

 . (4)

Calculating the Jacobean matrix (4) at the point E0 yields the next results:

J(E0) =


−(θ + µ) 0 − νΠ

θ+µ 0 0
0 −(δ + µ) νΠ

θ+µ 0 0
0 αδ −(η + µ + µ1) 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0
0 0 η γ −µ

 .

The next form of an eigenvalue polynomial has been computed by using the Jacobian matrix:

P(λ) = −(µ + λ)(θ + µ)(γ + µ + µ1 + λ)P̄(λ), (5)

where

P̄(λ) = (δ + µ + λ)(η + µ + µ1 + λ)−
αδνΠ
θ + µ

,

= λ2 + λ(η + µ + µ1 + δ + µ) + (δ + µ)(η + µ + µ1)−
αδνΠ

µ
.

From equation (5), we have

λ1 = −µ < 0,

λ2 = −(γ + µ + µ1) < 0,

λ3 = −(θ + µ) < 0.

From the expression of P̄(λ), we have

∆ = (η + µ + µ1 + δ + µ)2 + 4(
αδνΠ
θ + µ

− (δ + µ)(η + µ + µ1) > 0.

As

αδνΠ
θ + µ

≥ (δ + µ)(η + µ + µ1), then ∆ > 0.

Furthermore

λ3 = −
(η + µ + µ1 + δ + µ) +

√
∆

2
< 0, λ4 =

−(η + µ + µ1 + δ + µ) +
√

∆
2

,
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λ4 < 0 for ∆ < (η + µ + µ1 + δ + µ)2,

means

νΠαδ

R0(θ + µ)
>

αδνΠ
(θ + µ)

−
(δ + µ + η + µ + µ1)

2

4
,

then,

1
R0

> 1 −
(δ + µ + η + µ + µ1)

2(θ + µ)

4νΠαδ
,

this implies, R0 < 1. Therefore, after using the Jacobian stability approach, E0 is locally asymptoti-
cally steadfast. If the initial population size of the affected individuals falls inside the lower set of
the point E0, then the virus can be partially eradicated.

Global stability of DFEs

Theorem 4 If R0 < 1, the DFE, E0 of model (2), is globally equilibrium-stable.

Proof In this case, we shall use the system (1) since we need the vector X to be 2-dimensional at
least. We have written equation system (1) based on [28, 29] in the following structure.

dX
dt

= M(X − XE0,n) +M1,

dY
dt

= M2Y,
(6)

where Y = (EI , I, Ind, R) is the proportion of people who are ill, XE0,n is a vector at the unaffected
stability spot with the equal vector magnitude as X, and X = (SI , H) reflects the number of healthy
people. By the above [28], For the free-of-illness equilibrium point E0 = (Π

µ , 0, 0, 0, 0, Πθ
µ(µ+θ)

) of
system (1) to be globally asymptotically steady, several requirements must be satisfied:

1) The matrix M must have real negative eigenvalues.

2) M2 ought to be a Metzler matrix.

We have XE0,n = (Π
µ , Πθ

µ(µ+θ)
)T.

The combination of Eq. (6) and Eq. (1) makes up the following system of equations:

(
Π − νSI I − (µ + θ)SI

θSI − µH

)
= M

(
SI −

Π
θ+µ

H − Πθ
µ(θ+µ)

)
+M1


EI
I

Ind
R

 ,

and 
νSI I − (δ + µ)EI

αδEI − (η + µ + µ1)I
(1 − α)δEI − (γ + µ + µ1)Ind

η I + γInd − µR

 = M2


EI
I

Ind
R

 .
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The Jacobian matrix of the ensemble of Eq. (1) is the one below:

J(E0) =



−(µ + θ) 0 − νΠ
θ+µ 0 0 0

0 −(δ + µ) νΠ
θ+µ 0 0 0

0 αδ −(η + µ + µ1) 0 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0 0
0 0 η γ −µ 0
θ 0 0 0 0 −µ


.

The matrix M, M1 and M2 are:

M =

(
−(µ + θ) 0

θ −µ

)
, M1 =

(
0 − νΠ

θ+µ 0 0
0 0 0 0

)
,

and

M2 =


−(δ + µ) νΠ

θ+µ 0 0
αδ −(η + µ + µ1) 0 0

(1 − α)δ 0 −(γ + µ + µ1) 0
0 η γ −µ

 .

Thus, all the roots of M have strictly negative real roots, and the matrix M2 is a Metzler matrix.
Therefore the point, E0 is globally stable if R0 < 1.
Instead, we can use the Lyapunov function K to prove the equilibrium global of the point, E0,
where

K = κ1EI + κ2 I. (7)

We chose this function meticulously because of its efficacy in examining the equilibrium of
evolving structures with more intricate behavior. In which there are a pair of positive coefficients,
κ1 and κ2.
If we differentiate Eq. (7) with respect to t, we find

dK
dt

= κ1
dEI
dt

+ κ2
dI
dt

.

By replacing dEI
dt , and dI

dt of template (2), we have:

dK
dt

= (κ1νSI − (η + µ + µ1)κ2)I + (αδκ2 − (δ + µ)κ1)EI .

In this case, we take κ1 = δα
(δ+µ)

κ2, then since SI < S0
I , we have:

dK
dt

= (
αδν

δ + µ
SI − (η + µ + µ1))κ2 I

< (
αδν

δ + µ
S0

I − (η + µ + µ1))κ2 I.
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Taking κ2 = 1, and substituting R0, we get

dK
dt

< (R0 − 1)I.

So then, if and only if I = 0, I < I0, and dK
dt ≤ 0, for R0 < 1, and dK

dt = 0. As a consequence, in
field C, E0 evolves globally asymptotically steady by the LaSalle principle of invariance.

The persistent steadiness Ẽ

There is a unique persistent stable Ẽ form of model (2) Ẽ = (S̃I , ẼI , Ĩ, Ĩnd, R̃), from where Ẽ is the
solution to the persistent steadiness of the ongoing virus in the community. We can achieve this
by zeroing each equation in (2):

dSI
dt

=
dEI
dt

=
dI
dt

=
dInd

dt
=

dR
dt

= 0.

Then, we obtain

S̃I =
Π

θ + µ + ν Ĩ
, ẼI =

νΠ Ĩ
(δ + µ)(ν Ĩ + θ + µ)

,

Ĩ =
αδΠ

(η + µ + µ1)(δ + µ)
−

θ + µ

ν
= (R0 − 1)(θ + µ), (8)

Ĩnd =
(1 − α)δνΠ Ĩ

(γ + µ + µ1)(δ + µ)(ν Ĩ + θ + µ)
, R̃ =

γ(1 − α)δνΠ Ĩ
µ(γ + µ)(δ + µ)(ν Ĩ + θ + µ)

+
η

µ
Ĩnd.

All the expressions are in terms of the Ĩ, due to the non-negative assumption for all model
parameters. Consequently, we arrived at the following result:

Lemma 1 When R0 > 1, system (2) has a unique persistent steadiness (positive) but not otherwise.

Theorem 5 A singular persistent steadiness for the model (2) whenever R0 > 1, as signified by
Ẽ = (S̃I , ẼI , Ĩ, Ĩnd, R̃), where the expressions of S̃I , ẼI , Ĩ, Ĩnd and R̃ are given in (8).

Local stability of Ẽ

Theorem 6 If R0 > 1, the endemic equilibrium point Ẽ is locally asymptotically stable.

Proof To validate the above theorem, let us derive the Jacobian matrix for model (2):

J =


−(νI + θ + µ) 0 −νSI 0 0

νI −(δ + µ) νSI 0 0
0 αδ −(η + µ) 0 0
0 (1 − α)δ 0 −(γ + µ + µ1) 0
0 0 η γ −µ

 . (9)
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The characteristic polynomial for Eq. (9) at the specified point Ẽ is:

A(λ) = (µ + λ)(γ + µ + µ1 + λ)Q̄(λ), (10)

Q̄(λ) = −λ3 − λ2(ν Ĩ + θ + δ + η + 3µ)

−λ[(ν Ĩ + θ + µ)(δ + µ) + (ν Ĩ + θ + δ + 2µ)(η + µ + µ1)− αδνS̃I ]

+αδνS̃I(ν Ĩ + θ + µ)− [(ν Ĩ + θ + µ)(δ + µ)(η + µ + µ1) + ν2αδS̃I
2
]

= a3λ3 + a2λ2 + a1λ + a0,

where

a1 = −[(ν Ĩ + θ + µ)(δ + µ) + (ν Ĩ + θ + δ + 2µ)(η + µ + µ1)− αδνS̃I ],

a2 = −(ν Ĩ + θ + δ + η + 3µ + µ1),

a0 = αδνS̃I(ν Ĩ + θ + µ)− [(ν Ĩ + θ + µ)(δ + µ)(η + µ + µ1) + ν2αδS̃I
2
].

From Eq. (10), we have

λ1 = −µ < 0,

λ2 = −(γ + µ + µ1) < 0.

From the expression of Q̄, we have

a0 + λa1 + λ2a2 + a3λ3 = 0.

λ3 a3 a1 0
λ2 a2 a0 0
λ b1 0 0

b1 = − 1
a2

∣∣∣∣ a3 a1
a2 a0

∣∣∣∣ = a1a2+a0
a2

= −
αδν(ν Ĩ+θ+µ)−[ν Ĩ+θ+µ)(δ+µ)(η+µ+µ1)+ν2αδS̃I

2
]

(ν Ĩ+θ+δ+η+3µ+µ1)
− ζ,

where

ζ = [ν Ĩ + θ + µ)(δ + µ) + (ν Ĩ + θ + δ + 2µ)(η + µ + µ1)− αδS̃I ].

Applying the Routh-Hurwitz criteria, it is determined that the real root of Eq. (5) is strictly non-
negative iff a2 < 0 and b1 < 0. Clearly, we see that a2 < 0 because it is the sum of positive
parameters and we have b1 < 0 if R0 > νΠ( ν Ĩ

θ+µ + 1) > 1.
Hence, the persistent steadiness Ẽ is locally indicating asymptotic steadiness.

Global stability of the point Ẽ

Theorem 7 The only endemic steady state of (2) exhibits global asymptotic steady when R0 > 1.
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Proof Consider the following Lyapunov function, which is commonly used and discussed in [30]:

ð(℘) = ℘− 1 − ln(℘).

ð(℘) is non-negative in ∈ R5
+ except at ℘ = 1, where it become zero. Then,

T(SI , I) = κ1S̃Ið(
SI

S̃I
) + κ2 Ĩð(

I
Ĩ
). (11)

Let κ1 > 0 and κ2 > 0 be positive constants to be determined subsequently. Clearly, T is C1,
T(Ẽ) = 0, and T is positively nonzero at other locations.
Differentiating the equation with respect to t, we get

dT(SI , I)
dt

= κ1(1 −
S̃I
SI

)
dSI
dt

+ κ2(1 −
Ĩ
I
)

dI
dt

. (12)

By substituting dSI
dt and dI

dt in model (2), we obtain,

dT
dt

=
κ1

SI
(SI − S̃I)(Π − (νI + µ)SI) +

κ2

I
(I − Ĩ)(αδEI − (η + µ + µ1)I)

<κ1
(SI − S̃I)

SI
Π −κ1(νI + µ)(SI − S̃I) +

κ2(I − Ĩ)αδEI)

I
.

For κ1 = SI(I− Ĩ)
(SI−S̃I)

and κ2 = 1, we find,

dT
dt

< (Π −
R0(η + µ + µ1)(δ + µ)(θ + µ)SI

αδΠ
− (θ + µ)SI +

αδEI
I

)(I − Ĩ)

< (Π −
R0(η + µ + µ1)(δ + µ)(θ + µ)SI

αδΠ
+

αδEI
I

)(I − Ĩ).

Thus, dT
dt < 0 only if, R0 > Π2αδ

(η+µ+µ1)(δ+µ)(θ+µ)
, and dT

dt ≤ 0 if I = Ĩ, then the point, Ẽ is globally
asymptotically stable.

5 Exploring the responsiveness of the model variables to R0

The examination of structure sensitivity is applied to calculate the difference in implementation
speed due to changes in strategy variables. Implementation effort is assumed to be a differentiable
function of structure, at most undersized in the proximity of the current strategy point. Moreover,
To suggest the most appropriate methods to decrease human permanence and illness, it is essential
to understand the relative importance of the numerous factors that influence the new coronavirus’s
spread. Further, it permits us to determine how a condition variable varies correspondingly
whenever a system factor adapts. Since the first spread of illness is restricted to the rate R0, we
calculate the sensitivity indicators about these factors of system (2). Thus, we construct the next
sensitivity factor [31, 32]:

F
R0
x =

∂R0

∂x
x
R0

.
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Table 2. Sensitivity indicators

Setting symbol Index of sensitivity
µ -0.8463
δ +0.1176
Π +1
ν +1
η -0.8366
α +1
µ -0.6423
θ -0.8789

F
R0
µ = −

(3µ2 + 2µ(θ + η + δ + µ1) + θη + (θ + η)δ)µ

(θ + µ)(η + µ + µ1)(δ + µ)
,

F
R0
η = −

η

η + µ + µ1
,

F
R0
δ =

µ

(δ + µ)
,

F
R0
θ = −

θ

θ + µ
,

F
R0
µ1 = −

µ1

η + µ + µ1
,

F
R0
ν = 1,

F
R0
Π = 1,

F
R0
α = 1.

We have, FR0
δ ,FR0

Π ,FR0
ν ,FR0

α > 0 while, FR0
µ ,FR0

η ,FR0
µ1 ,FR0

θ < 0. It implies that R0 is reduced in µ

and η but raised in δ, Π, ν and α, while F
R0
γ = 0 since R0 does not rely on γ.

6 Expansion to an optimal control problem

In this section, we provide an effective control technique that will aid governments in developing
nations in regaining control of the circumstances at the lowest possible price. Researchers are
constantly seeking effective ways to prevent the spread of new viruses, including vaccination,
isolation, and quarantine. However, isolation and quarantine procedures can reduce and eradicate
the impact of the virus in the absence of effective vaccination. Thus, from [33] the controlled model
results in: 

dSI
dt

= Π − ν(1 − v1)SI I − (µ + θ)SI ,

dEI
dt

= ν(1 − v1)SI I − δ(1 − v2)EI − µEI ,

dI
dt

= αδ(1 − v2)EI − (η + µ + µ1)I − v2 I,

dInd
dt

= (1 − α)δ(1 − v2)EI − (γ + µ + µ1)Ind − v2Ind,

dR
dt

= η I + γInd + v2(I + Ind)− µR.

(13)
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To sample the methods of control and affect its influence in Morocco, we raise in the model a two
controls variable that represents a comprehensive approach to prevention, including personal
hygiene, social isolation, and creating sensitivity across all midpoints, to keep the virus away
from people vulnerable to infection, and treatment support for infectious diseases (as the best care
for sick people in isolation institutions), denoted by v1 and v2, respectively. The value v1(t) = 0
denotes that no isolation measure is performed, while the value 1 corresponds to full effort on
preventing the infectious disease. The value v2(t) = 0 signifies the absence of treatment support,
and v2(t) = 1 represents the effective application of the treatment to reduce the propagation of
COVID-19.
In the model, we pursue the v1 and v2 values that downplay the functionally objective subject to
the differential Eq. (14). The supplied objective functional is:

J(v1, v2) =

∫T

0
(I(t) + Ind(t) +

ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t))dt. (14)

Consider

Λ = (SI , EI , I, Ind, R), v = (v1, v2), v = (v1, v2),

and

℘(t, Λ, v) = I(t) + Ind(t) +
ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t),

if the relative cost factors ϖ1 > 0 and ϖ2 > 0 are available. They are selected to contrast the
respective strengths of v1(t) and v2(t) at instant t, where T is the final instance. Or, we want to
find the optimal controls v∗1 and v∗2, where,

J(v∗1, v∗2) = min
v1,v2 inU

J(v1, v2). (15)

With, 𭟋 defined as the subset of eligible controls

𭟋 =
{
v1, v2 ∈ 𭟋 0 ≤ v1(t) ≤ 1 and 0 ≤ v1(t) ≤ 1, t ∈ [0, T]

}
. (16)

Existence of the optimal controls

Here, we demonstrate the existence of such ideal control functions that lower prices in a limited
time. For this purpose, we stick to the results presented in [34].

Theorem 8 In set 𭟋, there is an optimal control couple, v∗1 and v∗2 with J(v∗1, v∗2) = min
v1,v2∈𭟋

J(v1, v2)

relating to the control system (13-14).

Proof The following conditions should be fulfilled as stated in (Theorem 4.1 pg. 68 in [35]):

a) In the case of the system (13) with control variables in 𭟋, the set of solutions is non-void.
b) The steadier approach can be defined as a linear function of the control coefficients with factors

set on the term and value of the parameters since the set 𭟋 is closed and convex.
c) The integral of the function ℘ is convex in the domain 𭟋, and the function ℘(t, Λ, v) ≥ ℘(v),
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where ℘ is a continuous function that realizes the following property:

|v|−1℘(v) −→
v→∞ ∞,

where |.| indicates the classical Euclid norm.

Since lim
t→∞ N(t) ≤ Π

µ
, then, all solutions of system (13) are bounded in 𭟋. For each of the bounded

control variables in 𭟋, the system (13)’s solutions are bound. The system’s (13) right-hand side
functions meet the Lipschitz criterion about state variables. As a result, condition (a) is satisfied
according to the Picard-Lindelöf theorem (see [36]). 𭟋 satisfies the requirement of being closed
and convex by definition. With coefficients that rely on state variables, the system (13) is linear in
the control variable v. So, we accomplish condition (b).
According to the biquadratic and quadratic nature of the control variable v,

∫T
0 ℘(t, Λ, v)dt is

convex and ℘(t, Λ, v) = I(t) + Ind(t) +
ϖ1
2 v2

1(t) +
ϖ2
2 v2

2(t) ≥
ϖ1
2 v2

1(t) +
ϖ2
2 v2

2(t). After selecting
℘(u) = w1(v

2
1 + v2

2), where w1 = min(ϖ1, ϖ2) > 0, we get then ℘(t, X, v) ≥ ℘(v). It is evident
that ℘(v) is a continuous function and satisfies the condition |v|−1℘(v) → ∞ when v → ∞, which
gives us condition (c). As a result, utilizing the findings from [34], the existence of the optimal
control is confirmed.

Characterization of the optimal control

We use Pontryagin’s maximum principle and the Hamiltonian at the time t defined to derive the
requirements for optimal control:

H̃ = I(t) + Ind(t) +
ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t) +
5∑

i=1

λi(t) fi(Λ).

Λ = (SI , EI , I, Ind, R) and the function fi is the start of the (13) differences equations for the ith
variable value.

Theorem 9 In light of the state system solutions that reduce the impact of J on 𭟋 and the optimal controls
v∗1, v∗2 and SI , EI , I, Ind and R, respectively, adjacent variables, such as λ1, . . . , λ5, are used.

dλ1

dt
= λ1ν(1 − v1)I + λ1(µ + θ)− λ2ν(1 − v1)I,

dλ2

dt
= λ2δ(1 − v2) + λ2µ − λ3αδ(1 − v2)− λ4(1 − α)δ(1 − v2),

dλ3

dt
= −1 + λ1ν(1 − v1)SI − λ2ν(1 − v1)SI + λ3(η + µ + µ1 + v2)− λ5(η + v2),

dλ4

dt
= −1 + λ4(γ + µ + µ1) + λ4v2 − λ5(γ + v2),

dλ5

dt
= λ5µ,

(17)

such as the requirements of transversality: λi=1,2,5(t f ) = 0 and λi=3,4(t f ) = −1.
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Proof As well as

H̃ = I(t) + Ind(t) +
ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t) +
5∑

i=1

λi(t) fi(Λ),

where f1 = Π − ν(1 − v1)SI I − (µ + θ)SI , f2 = ν(1 − v1)SI I − δ(1 − v2)EI − µEI ,
f3 = αδ(1 − v2)EI − (η + µ + µ1)I − v2 I, f4 = (1 − α)δ(1 − v2)EI − (γ + µ + µ1)Ind − v2Ind
and f5 = η I + γInd + v2(I + Ind)− µR.
The maximum principle of Pontryagin [37] is then applied, and we obtain,

dλ1

dt
= −

∂H̃
∂SI

= λ1ν(1 − v1)I + λ1(µ + θ)− λ2ν(1 − v1)I,

dλ2

dt
= −

∂H̃
∂EI

= λ2δ(1 − v2) + λ2µ − λ3αδ(1 − v2)− λ4(1 − α)δ(1 − v2), (18)

dλ3

dt
= −

∂H̃
∂I

= −1 + λ1ν(1 − v1)SI − λ2ν(1 − v1)SI + λ3(η + µ + µ1 + v2)− λ5(η + v2),

dλ4

dt
= −

∂H̃
∂Ind

= −1 + λ4(γ + µ + µ1) + λ4v2 − λ5(γ + v2),

dλ5

dt
= −

∂H̃
∂R

= λ5µ.

The accompanying optimal controls v∗1 and v∗2 are thus established from ∂H̃
∂v1

= 0, and ∂H̃
∂v2

= 0. In
light of this, we developed the characteristic equation involving the control boundary limits in the
type of proposed control argument as follows:

v∗1 = min
{

1, max(0,
νS∗

I I∗(λ2 − λ1)

ϖ1
)

}
,

v∗2 = min
{

1, max(0,
λ3αδE∗

I + λ3 I∗ + λ4(1 − α)δE∗
I − λ2δE∗

I
ϖ2

)

}
.

(19)

7 Discussions and numerical simulation

Without numerical validation of the statistics, the analytical study cannot be considered complete.
To trace the behavior of the framework (2), we have shown some numerical simulations in this
part for a variety of initial circumstances and parameters found in Table 3 and Table 4. Thus, we
employed the fourth order RK technique in Matlab program to solve this issue. We considered the
variables stated in Table 3 as well as the various beginning condition values provided in Table 4.
Applying the fourth-order Runge-Kutta technique and the system’s present solution round, the
adjoint Eq. (17) is solved backward in time. These factors were used to estimate the reproduction
number, and the results show that R0 = 0.2132654. Figure 2 makes it abundantly evident that
the system’s solution profiles converge to the disease-free state, with E0 = (0.059 × 107, 0, 0, 0, 0).
The endemic equilibrium is asymptotically stable as determined by Theorem 7 when the value
of α is changed to 0.0002, as seen in Figure 3. Or, the system’s solution of (2) converges to
Ẽ = (1.1234 × 107, 0.7000 × 107, 1.3476 × 107, 1.5632 × 107, 2.1000 × 107, 3.1000 × 107). Figure 4
demonstrates how the class H maintains stability and advances to the virus-free equilibrium point
when R0 < 1 for each of the three various starting values of H. Figure 5 clearly shows that our
solution for the classes I and EI converges to E0 for R0 < 1 and is asymptotically stable. Figure 6
illustrates how the two classes I and EI for the three distinct initial circumstances become stable at



22 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 1–36

the point, Ẽ , when R0 > 1. Figure 7 shows how the population Ind is asymptotically stable and
converges to E0 when R0 < 1 (case 1), while the same class remains stable and converges to Ẽ in
case R0 > 1 (case 2). Figure 8 shows the same category, but this time for the class R. We can see
that system (2)’s solution is stable and converges to E0 in all three starting values of the recovered
class when R0 < 1, but with the same beginning values of R and α = 0.210, so that R0 > 1 the
solution converges to Ẽ . The theoretical findings of the local and global asymptotic stability of the
endemic and disease-free equilibrium described in the preceding parts are, in sum, supported by
all of the results of this section.
Furthermore, we use a fourth-order Runge-Kutta technique for the numeric estimation of the
extremum provided by Theorem 8. With a forward fourth-order Runge-Kutta scheme and the
transversality requirements λi=1,2,5(t f ) = 0 and λi=3,4(t f ) = −1, while, SI =

SI
N , EI =

EI
N , I = I

N ,

Ind = Ind
N and R = R

N . This iterative approach solves the system in Eq. (13) with an estimate for
the controls across the period interval [0, T]. A convex pair of the preceding controls and the
results from (19), together with the current controls, for upgrading the controls. If the coefficients
of the unresolved from the prior iteration are substantially similar to the ones from the present
execution, the iteration is over. Concerning the digital simulations, we use vmax = 0.5, with the
end time value of T = 1 (months) plus the predetermined variables from Table 3, and with the
following starting conditions:

SI(0) = 0.4, EI(0) = 0.2, I(0) = 0.17, Ind(0) = 0.11 and R(0) = 0.5. (20)

In Figure 9, when we use the technique v2, we notice a reduction in the infected population. Only
the control v1, is employed (Strategy1). The goal of this plan is to safeguard more people from
COVID-19. Figure 10 shows a reduction in the number of people exposed, causing a decline in
the count of individuals affected, which underlines the need to raise public awareness of the
seriousness of the COVID-19 virus through preventive measures such as frequent manual hygiene,
especially after snatching, and the use of safety covers to restrict the spread of the virus. The
results in Figure 11 indicate that Strategy2 reduces the number of people with the virus. The
main objective of this procedure is to prevent the disease from spreading, which confirms that
the essential purpose of therapy is to prevent the spread of the coronavirus. Furthermore, we
observe a substantial reduction in the quantity of those infected with the two types of I and
Ind when we incorporate the optimal control v1 and v2 (Strategy3). Such is because stringent
precautions, like isolation with therapy, occur, as depicted in Figure 12, and the approach also
depends on sensitization efforts. It is clear that the controls implemented in this numerical
simulation function well by reducing the population of diseased people and augmenting the
number of cured people. Thus, we notice that the number of retrieved persons rises when we
employ two distinct approaches. Additionally, we discovered, as shown in Figure 13, that there is
an appealing correlation between R0 and the illness transmission coefficient in all afflicted groups,
and this correlation is called α. This implies that α is the most important factor that needs to be
decreased in order to regulate infections and lessen coronavirus. Our model relies on available
epidemiological data, which may be subject to reporting bias or variations in screening capacity
from one region to another. Moreover, the dynamic nature of the COVID-19 pandemic introduces
uncertainties that may impact the accuracy of our forecasts. We have made assumptions about
the homogeneity of the population and the uniformity of intervention measures, which may
not fully reflect the complexity of real scenarios. In addition, the model considers simplified
transmission dynamics without taking into account potential variations in viral strains or the
influence of emerging variants. While we aim to provide valuable information, we recognize that
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these simplifications and assumptions are necessary trade-offs and may influence the accuracy
of our results. Future iterations of this model should incorporate more nuanced data and refine
assumptions to improve accuracy and applicability.

Table 3. The baseline factor’s value for the system (2)

factor Value Source
ν 0.9031 Presumption
α 0.4110 [25]
Π 20.000 Presumption
δ 1/7day−1 [38]
η 0.1130 Presumption
µ 0.0062day−1 [25]
θ 0.021 Presumption
ϖ1 30 Assumption
ϖ2 80 Assumption

Table 4. The beginning values for the system’(2)s factors

Starting values State 1 State 2 State 3
N 397405 401405 360530
SI(0) 163638 173638 118763
EI(0) 93507 94507 95507
I(0) 70130 71130 72130
Ind(0) 46753 47753 48753
R(0) 23377 24377 25377

Figure 1. Prototype (1)’s diagram, or ν = βSI I
1+σI

8 Cost-effectiveness
A mathematical technique called cost-effectiveness is used to establish if an intervention’s benefits
outweigh its costs. So, cost-effectiveness is a methodology to evaluate which intervention provides
the highest value for the associated price. The value of an intervention in a cost-effectiveness
analysis is measured using quantity-adjusted life years, also known as Qualis. Simply put, this is
a generic measure of the burden of disease that includes not only quantity but also quality of life
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Figure 2. This figure shows that the unaffected steady-state framework (2) is (2.180 × 107, 0, 0, 0, 0).

after the intervention. This technique compares the cost and the effect of two interventions, and
it is summarized using an incremental cost-effectiveness ratio, also known as an ISA. The total
expense incurred during the whole duration is:

ς(v) =

∫T

0
(ς(v1, v2))dt =

∫T

0

ϖ1

2
v2

1(t) +
ϖ2

2
v2

2(t))dt. (21)

The incremental cost-effectiveness ratio (ICER) is expressed as follows (see [39]):

ICER =
Difference in costs of interventions v1 and v2

Difference in effect of interventions v1 and v2
.

This ratio shows the incremental costs over incremental quality-adjusted life years between the
two comparators.
To be more precise, considering two concurrent strategies, B1 and B2, where Strategy B2 is
more efficient than Strategy B1 (TA(B1) < TA(B2)), Implement ideas in [40–43]. ICER rates are
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Figure 3. This figure shows that the persistent steadiness of model (2) is
(2.5468 × 107, 0.9096 × 107, 3.65859 × 107, 1.7484 × 107, 1.0857 × 107, 3.6583 × 107).

computed via the following equations:

ICER(B1) =
TC(B1)

TA(B1)
, (22)

ICER(B2) =
TC(B2)− TC(B1)

TA(B2)− TA(B1)
. (23)

In our analysis, the total expenditures (TC) and the total incidents prevented (TA) for the approach
selected i for i = 1, 2, and 3 are defined as follows during a specific duration:

TC(B1) =
T−1∑
t=0

ϖ1v
∗
1(EI +S) + ϖ2v

∗
1(I + Ind), (24)
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Figure 4. The model’s digital solutions for the variables and various starting points of H, where R0 = 0.0143613.
The equilibrium of the point E0 is stable.
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Figure 5. The model (2) numerical solutions for the factors and various starting conditions of EI and I listed
in Table 3 and Table 4, with the rate R0 = 0.1352631.

TA(B1) =
T∑

t=0

I + Ind − (I∗ + I∗
nd). (25)

where I∗ and I∗
nd represent the optimal solution linked to the optimal controls v∗1 and v∗2, while

ϖ1 and ϖ2 represent the person-unit costs of the two potential interventions. We ordered our
control measures in Table 2 according to the higher number of cases avoided under the template’s
computations.
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Figure 6. The system (2) numerical solutions for the parameters and various starting conditions of EI and I listed
in Table 3 and Table 4, here R0 = 2.272166591341701, the point Ẽ remains steady as well.
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Figure 7. Digital solutions of the system (2) for factors and diverse starting state of Ind, here R0 = 0.1352631 in
Case 1 and R0 = 2.272166591341701 in Case 2.

Strategy1 (Processing v1): Encourage the population to adopt a comprehensive approach to
prevention, which includes self-care, social separation, and the sensitization of all levels, to keep
the virus away from people vulnerable to infection.
Strategy2 (Processing v2): Control of infectious disorders therapy support (as the finest care for ill
patients in isolation facilities).
Strategy3 (Processing v1 and v2): Integrating Strategy1 and Strategy2 and employing controls
v1 and v2. Based on the simulation results, we have ranked our control techniques in Table 3
according to the number of diseases avoided and given in Eq. (20). Table 2 compares Strategy B1
and Strategy B2 in terms of increased efficiency. In terms of improved efficiency, Strategy1 and
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Figure 8. For parameters and various beginning conditions of R, numerical solutions of the model (2) are
presented in Table 3 and Table 4, where R0 = 3.193363191340714 in Case 2, and R0 = 0.2132654 in Case 1
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Strategy2 are contrasted. The ICER values are calculated as follows:

ICER(1) =
TC(1)
TA(1)

=
1.73 × 102

3 × 102 = 0.57,

ICER(2) =
TC(2)− TC(1)
TA(2)− TA(1)

=
1.9 × 102 − 1.73 × 102

3.03 × 102 − 3 × 102 = 39.
(26)

ICER(2) is superior to ICER(1). This indicates that plan (1) is more dominant than plan (2).
Consequently, Strategy2 is not featured in the list of options.
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Figure 10. The progression of the number of individuals with control v1

Next, we examined how cost-effective Strategy1 and Strategy3 were:

ICER(3) =
TC(3)
TA(3)

=
1.52 × 102

2.5 × 102 = 0.608,

ICER(1) =
TC(1)− TC(3)
TA(1)− TA(3)

=
1.73 × 102 − 1.52 × 102

3 × 102 − 2.5 × 102 = 0.42.
(27)

According to the analysis, Strategy1 is more affordable than Strategy3. Consequently, method 1 is
the most advantageous of all the strategies evaluated, as it is simultaneously approachable and
healthy.

Table 5. Total expenses and total illnesses prevented across all techniques

Strategy TA TC
1 3 × 102 1.73 × 102

2 3.03 × 102 1.9 × 102

3 2.5 × 102 1.52 × 102
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Figure 11. The progression of the number of individuals with control v2

9 Conclusion

Multiple models have been proposed for the analysis of the COVID-19 pandemic. In this sample,
we have highlighted the distinctive properties of COVID-19 and suggested an approach that
explains how the virus transformed in Morocco while providing a reasonable representation of the
actual pandemic in that country. The model’s objective is to investigate the process of COVID-19
transmission while accounting for both reported and undeclared infections. These two categories
were necessary, as many people have not reported their infection with the COVID-19 virus or even
failed to take the necessary precautions to limit the spread of the virus and protect others, we also
included a class of individuals who never got infected by COVID-19 (compartment H).
We suggest a compartmental epidemic model for newly emerging coronavirus infections, which
considers COVID-19 infection to be a contagious disease. The dynamics of the interaction among
the groups can be expressed mathematically by a framework of ODEs. We prove the solution’s
existence and uniqueness and compute the rate R0, which assisted in illustrating the equilibrium’s
stability. One can distinguish between what is globally stable and what is asymptotically stable.
Similarly, the study uses the idea of normalized forward sensitivity to highlight the significance
of every factor for the spread of COVID-19. We investigate the optimal control problem numeri-
cally in further detail, and our results show that the control strategies implemented reduce the
prevalence of the virus in society during the period of the interaction. Moreover, we examined
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Figure 12. The admissible control set in Eq. (16), the starting factors in Eq. (20), and the optimal state values for
the control problem in Eqs. (13)−(15), in contrast to control-free trajectories

the cost-effectiveness of control measures to determine the best way to manage COVID-19 while
consuming as few resources as possible. We demonstrate, via the ICER cost-effectiveness approach,
that while approach 3 (which promotes applying the two control v1 and v2) is the most effective,
it does not minimize disease. In terms of cost, approach 2 (apply the control v2) is the most
expensive. Nevertheless, this tactic shows remarkable results in controlling disease transmission
and reducing infection rates. Despite the high cost of this method, the Moroccan government is
committed to adopting it. Likewise, it is essential to keep spreading the word about the value
of immunization and prevention while stepping up efforts to target those who follow the guide-
lines and motivate them to share their understanding of and adherence to them. Ultimately, the
4th-order Runge-Kutta forward-backwards method in Matlab is used for numerical simulations
to validate the analytical results. As a further work, we plan to use fractional calculus in our
subsequent work and add more aspects to our analysis in future research, as it can provide a more
precise description of natural occurrences than can be achieved using conventional differential.
It can entail cooperation with experts in epidemiology, sociology, economics, and other relevant
fields to create more comprehensive models.
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Figure 13. The outcome shows the normalized forward sensitivity indices for the fundamental ratio R0 with
respect to each of the typical variables of the model
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