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Abstract
In this paper, we consider inference upon unknown parameters of the family of inverted
exponentiated distributions when it is known that data are doubly censored. Maximum
likelihood and Bayes estimates under different loss functions are derived for estimating the
parameters. We use Metropolis-Hastings algorithm to draw Markov chain Monte Carlo
samples, which are used to compute the Bayes estimates and construct the Bayesian
credible intervals. Further, we present point and interval predictions of the censored data
using the Bayesian approach. The performance of proposed methods of estimation and
prediction are investigated using simulation studies, and two illustrative examples are
discussed in support of the suggested methods. Finally, we propose the optimal plans
under double censoring scheme.
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1. Introduction
In life testing studies like mortality analysis and bio-assay experiments subjects either

leave the study before its completion or there is no follow-up after certain time period.
In such situations, complete failure times data of all subjects may not be recorded. This
leads to the concept of censoring. In survival and reliability analyses, data are always
subject to censoring. Left and right censoring schemes are two important methods which
are commonly utilized in practice. In right censoring, the recorded failure times of subjects
are smaller than the observed censoring time. In case of left censoring, an experimenter
have only partial information on failure time that it is more than considered left censored
time. One of the important censoring schemes is observed in the context when failure
times are left and right censored as well. This is the case of a double censoring. Such
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schemes have attracted attention of several researchers, Balakrishnan [2], Kotb and Ragab
[18], and Fernández [10, 11] present many useful applications of double censoring in life
test studies. As such studies are conducted under several constraints in the form of time
and budget limitations so inference on unknown parameters are mostly derived based on
censored data only. In fact, truncation of some initial and final data in a study may happen
due to various reasons. It is of practical importance to obtain inference for quantity of
interest under these limited observations. Here, we present analysis under type-II double
censoring where certain observations may not be recorded in the beginning and towards
end of a test. Double censoring has wide practical applications. Peer et al. [30] reported
that such censoring is quite useful in the study of age-dependent growth rate of primary
breast cancer and useful estimates under different age groups can be derived based on this
method of censoring. Extensive studies have been discussed for double censoring under
various approaches, see, for example, [6], [12], [36].

Several probability distributions with different shape characteristics and probabilistic
properties have been introduced and studied in the literature. Among others, two im-
portant families are referred as exponentiated distributions and inverted exponentiated
distributions. Initially, Ghitany et al. [13] reported several properties of inverted family
of exponentiated distributions. In this model, shape parameter takes care of geometric
shape of density function. However, associated scale parameter takes care of height of the
distribution curve. This family possesses flexible probability models which are useful in
fitting many positively skewed real data arising from various studies. Below we observe
that inverted exponentiated exponential, inverted exponentiated Rayleigh, and inverted
exponentiated Pareto distributions belong to this family. Many authors have analyzed
this family under different context. Abouammoh and Alshingiti [1], Rastogi and Tripathi
[32], and Maurya et al. [25] presented many applications of this family in lifetime analy-
sis. One may further refer to [7], [19], [38] for important results on considered family of
distributions.

The cumulative distribution function (CDF) is given as

FY (y) =
(
1 − e−λQ(y))α; y > 0, λ, α > 0,

where α and λ denote shape and scale parameters. Also Q(y) is increasing function and
with limy→0Q(y) = 0 and limy→∞ Q(y) = ∞ . Let X = 1/Y , and then the corresponding
CDF of a transformed random variable is given by

FX(x) = 1 − (1 − e−λQ(1/x))α; x > 0, λ, α > 0
which is as given in [13].

The probability density function (PDF) is

fX(x) = αλ
Q

′(1/x)
x2 e−λQ(1/x)(1 − e−λQ(1/x))α−1; x > 0, α, λ > 0, (1.1)

from which we observe that the following probability models belong to this family:
• Q(1/x) = 1/x: inverted exponentiated exponential distribution
• Q(1/x) = 1/x2: inverted Burr X distribution
• Q(1/x) = ln(1 + 1/x): inverted exponentiated Pareto distribution

In this article, estimation for the family of inverted exponentiated distributions is con-
sidered under classical and Bayesian approaches. We assume gamma priors for unknown
parameters. Then, different estimates are obtained using squared error, linear-exponential
(LINEX), and general entropy loss functions. Deriving estimates for censored observations
under some prior information is of high significant importance in many inference prob-
lems. Such issues have received considerable attention among practitioners. Our objective
is to find estimates for missing samples based on observed data. Prediction for censored
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data under different censoring schemes is studied by many researchers. Kotb and Raqab
[18] obtained prediction estimates for missing observations under double censored data by
considering modified Weibull distribution. Kayal et al. [17] presented prediction results
for inverted exponentiated Rayleigh distribution under hybrid censoring. Wang et al. [39]
investigated inference and prediction problems under progressively Type-II censored data
when the lifetime follows the unit-generalized Rayleigh distribution. We further mention
that, in life test studies, finding optimum censoring schemes is an important practical
issue to assess reliability of a product. It has received wide attention at recent past. See,
for example, [5, 20, 23, 28, 31, 37]. It is mentioned that finding adequate optimal criteria
often helps in determination of better censoring schemes. Mostly variations of information
measures are taken into consideration to define such criteria. Idea is to select the scheme
that offers reasonable information about unknown quantities. We refer to [20] for useful
discussion in this aspect.

In Section 2, data description is discussed. Further maximum likelihood estimators
(MLEs) of parameters are obtained. Section 3 discusses observed Fisher information
matrix. Subsequently approximate confidence intervals are constructed based on doubly
censored samples. Bayes estimates, along with Bayesian credible intervals, are derived in
Section 4. The prediction of censored data is considered in Section 5 from Bayes view-
point. In Section 6, we conduct simulation study and evaluate performance of proposed
estimation and prediction methods. Two numerical data sets are used to illustrate applica-
tion viewpoint. In Section 7, we present Bayesian optimal design under double censoring.
Finally, some concluding remarks are given in Section 8.

2. Model description and maximum likelihood estimates
A random sample of size n is taken from fX(x; θ) model. Suppose that xr, xr+1 . . . xs

are ordered observations, and also r − 1 smallest data and n − s largest data are censored.
Here 1 ≤ r < s ≤ n. The likelihood of θ = (α, λ) based on observed data is then

L(θ, x) = n!
∏s

i=r fX(xi; θ)
(r − 1)!(n − s)!

(
(FX(xr))r−1(1 − FX(xr))n−s

)
,

where x = (xr, xr+1, . . . , xs)′. Thus, the likelihood of the considered distribution is

L(α, λ; x) = n!(αλ)s−r+1

(r − 1)!(n − s)!
∏s

i=r x2
i

( s∏
i=r

Q′(1/xi)e−λQ(1/xi)(1 − e−λQ(1/xi))α−1
)

[1 − (1 − e−λQ(1/xr))α]r−1(1 − e−λQ(1/xs))α(n−s).

The log-likelihood is given as follows:

ln L(α, λ; x) ∝ (s − r + 1) ln α + (s − r + 1) ln λ − λ
s∑

i=r

Q(1/xi) + (α − 1)·

s∑
i=r

ln(ϕ(λ, xi) + (r − 1) ln[1 − (ϕ(λ, xr))α] + α(n − s) ln(ϕ(λ, xs)),

where
ϕ(λ, xi) = 1 − e−λQ(1/xi), r ≤ i ≤ s.

Likelihood equations are obtained as

∂ ln L

∂α
= (s − r + 1)

α
+

s∑
i=r

ln(ϕ(λ, xi))−
(r − 1)(ϕ(λ, xr))α ln(ϕ(λ, xr))

1 − (ϕ(λ, xr))α
+(n−s) ln(ϕ(λ, xs)),

(2.1)
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and

∂ ln L

∂λ
=(s − r + 1)

λ
−

s∑
i=r

Q(1/xi) + (α − 1)
s∑

i=r

Q(1/xi)(1 − ϕ(λ, xi))
ϕ(λ, xi)

− α(r − 1)Q(1/xr)(1 − ϕ(λ, xr))(ϕ(λ, xr))α−1)
1 − (ϕ(λ, xr))α

+ α(n − s)Q(1/xs)(1 − ϕ(λ, xs))
ϕ(λ, xs)

.

(2.2)
The required MLEs of α and λ are computed by solving (2.1) and (2.2) simultaneously.

We use R program with the nleqslv library for the numerical computations. We men-
tion that nleqslv function solves a system of nonlinear equations with either Broyden or
Newton-Raphson methods. The Broyden method often yields super linear convergence
while the Newton-Raphson method usually shows quadratic convergence. As errors in
the approximation is squared at each iteration, so this leads to a rapid convergence for
Newton-Raphson method. In the Newton-Raphson method, selecting an initial guess near
the true value is crucial for convergence, and some priori knowledge may be used if avail-
able. However, there is no strict rule for choosing the initial guess. In our case, we generate
random samples by assigning different parameter values to (α, λ). Accordingly we select
initial guess to be near true parameter values. We refer to [15] for a discussion on this
topic.

Remark 2.1. It should be emphasized that it is difficult to prove the existence and
uniqueness of the MLEs due to the intricate forms of the likelihood equations. Two
equations in two variables, however, ought to be solved with modern computing capability,
see also [40].

3. Fisher information matrix
In this section, we obtain observed and expected Fisher information matrices. We

mention that to construct approximate confidence intervals we have used observed Fisher
information matrix. We further note that the expected Fisher information matrix is used
in finding optimal designs of life tests, see [23].

Here we derive the Fisher information matrix of model parameters. The second deriva-
tives of log-likelihood are

I11 = ∂2 ln L

∂α2 = −(s − r + 1)
α2 − (r − 1)(ϕ(λ, xr))α(ln(ϕ(λ, xr)))2(1 − (ϕ(λ, xr))α)−2,

I12 = ∂2 ln L

∂α∂λ
=

s∑
i=r

Q(1/xi)(1 − ϕ(λ, xi))
ϕ(λ, xi)

− (r − 1)Q(1/xr)(1 − ϕ(λ, xr))(ϕ(λ, xr))α−1

(
1 − (ϕ(λ, xr))α + α ln ϕ(λ, xr)

)
(1 − (ϕ(λ, xr))α)2 + (n − s)Q(1/xs)(1 − ϕ(λ, xs))

ϕ(λ, xs)

=∂2 ln L

∂λ∂α
= I21,
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and

I22 =−(s − r + 1)
λ2 − (α − 1)

s∑
i=r

((Q(1/xi))2(1 − ϕ(λ, xi))
(ϕ(λ, xi))2

)
− α(r − 1)(Q(1/xr))2(ϕ(λ, xr))α−2(1 − ϕ(λ, xr))[(

(α − 1)(1 − ϕ(λ, xr))(1 − (ϕ(λ, xr))α)
)

−
(

ϕ(λ, xr)(1 − (ϕ(λ, xr))α)
)

+ α(ϕ(λ, xr))α(1 − ϕ(λ, xr))
]
(1 − (ϕ(λ, xr))α)−2

− α(n − s)(Q(1/xs))2(1 − ϕ(λ, xs))(ϕ(λ, xs))−2.

In order to obtain the expected value of Iij , i, j = 1, 2, we need the PDF of the k-th,
k = 1, 2, . . . , n, order statistic from the inverted exponentiated family, which is given as

fXk
(xk) = n!

(n − k)!(k − 1)!
αλQ′(1/xk)

x2
k

(ϕ(λ, xk))α(n−k)+α−1

(1 − ϕ(λ, xk))(1 − (ϕ(λ, xk))α)k−1, xk > 0, α, λ > 0.

Therefore, the Fisher information matrix is

I(θ) =
[
−E(I11) −E(I12)
−E(I21) −E(I22)

]
,

where

−E[I11] = s − r + 1
α2 + n!α

(n − r)!(r − 2)!

∫ 1

0
tα(n−r)+2α−1(1 − tα)r−3(ln t)2dt,

− E[I12]

=
s∑

i=r

n!α
(n − i)!(i − 1)!λ

∫ 1

0
tα(n−i)+α−2(1 − t)(1 − tα)i−1(ln(1 − t))dt

− n!α
(n − r)!(r − 2)!λ

∫ 1

0
tα(n−r)+2α−2(1 − t)(1 − tα)r−3 ln(1 − t)(1 − tα + α ln t)dt

+ n!α
(n − s − 1)!(s − 1)!λ

∫ 1

0
tα(n−s)+α−2(1 − t)(1 − tα)s−1 ln(1 − t)dt

= − E[I21],
and

−E[I22] =(s − r + 1)
λ2

+ α(α − 1)
λ2

s∑
i=r

n!
(n − i)!(i − 1)!

∫ 1

0
tα(n−i)+α−3(1 − t)(1 − tα)i−1(ln(1 − t))2dt

+ n!α2

(n − r)!(r − 2)!λ2

∫ 1

0
tα(n−r)+2α−3(1 − t)(1 − tα)r−3(ln(1 − t))2A(t)dt

− n!α2

(n − s − 1)!(s − 1)!λ2

∫ 1

0
tα(n−s)+α−3(1 − t)(1 − tα)s−1(ln(1 − t))2dt.

Here, we define
A(t) = α(1 − t) − (1 − tα).

Under some mild regularity conditions, the MLE θ̂ is asymptotically normally distributed
with mean θ and variance-covariance matrix I−1(θ). We will use the Fisher information
matrix to obtain the optimal design of life tests in Section 7.
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Efron and Hinkley [9] pointed out that there are two approximations of I(θ). One is
called expected Fisher information matrix which is I(θ) evaluated at the MLE θ̂, that is,
I(θ̂) = I(θ)|θ=θ̂. Another approximation is called the observed Fisher information matrix,
that is,

Î(θ) = −
[
I11 I12
I21 I22

] ∣∣∣∣
θ=θ̂

.

The observed Fisher information matrix can be used to construct the approximate confi-
dence intervals for α and λ. Thus, the 100(1 − ν)%, 0 < ν < 1, approximate confidence
intervals for α and λ are α̂ ± zν/2

√
I11 and λ̂ ± zν/2

√
I22, respectively, where zν/2 is the

ν/2 upper quantile of standard normal distribution and Iij is the (i, j)-th element of the
inverse of the observed Fisher information matrix.

4. Bayesian estimate
Now, we discuss Bayes estimates of parameters α and λ under doubly censored data.

Note that the parameters of considered family take positive values. So, the priors of α
and λ can be taken as gamma distribution with the density as

π0(a, b; α) = ba

Γ(a)
e−bαα(a−1), α > 0, a, b > 0,

and
π1(c, d; λ) = dc

Γ(c)
e−dλλ(c−1), λ > 0, c, d > 0,

where a, b, c, and d are hyper-parameters. In practice, these quantities are chosen to
gain some information on parameters α and λ, respectively. Selection of gamma priors in
such case is quite natural and common. This is because such class of priors is flexible and
specify improper prior also for specific values of a, b, c, and d. Assume that α and λ are
independent. The joint prior is written as

π(a, b, c, d; α, λ) = ba

Γ(a)
dc

Γ(c)
e−(bα+dλ)α(a−1)λ(c−1), α, λ > 0.

Then, the posterior distribution of α and λ is given by

π(α, λ|data) ∝
s∏

i=r

Q′(1/xi)
x2

i

α(a+s−r)λ(c+s−r)e−bαe−λ(
∑s

i=r
Q(1/xi)+d)

s∏
i=r

ϕ(λ, xi)(α−1)[1 − ϕ(λ, xr)α](r−1)ϕ(λ, xs)α(n−s).

4.1. Loss functions
Bayes estimation of θ depends on loss function which is chosen. We apply squared error,

linear-exponential (LINEX), and general entropy loss functions in this regard.

4.1.1. Squared error loss function. This is one of the popular loss functions. It is a
symmetric function and defined as

L1(θ, δ) = (θ − δ)2.

Bayes estimate of T (α, λ) is the posterior mean given by

T̂BS(α, λ) = E(T (α, λ) | data) =
∫ ∞

0

∫ ∞

0
T (α, λ)π(α, λ|data)dαdλ.

As this loss function is symmetric in this sense that it provides equal penalty to both over
and under estimation.
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4.1.2. LINEX loss function. This loss function is also highly popular in Bayes com-
putations. It was initially discussed in [41]. This function is asymmetric in nature. It is
given by

L2(θ, δ) = ek(δ−θ) − k(δ − θ) − 1,

where k controls the degree of asymmetry. The Bayes estimate is now given as

T̂BL(α, λ) = −1
k

ln[E(e−kT (α,λ))|data] = −1
k

ln
[ ∫ ∞

0

∫ ∞

0
e−kT (α,λ)π(α, λ|data)dαdλ

]
.

4.1.3. General entropy loss function. In Bayesian set up, LINEX loss function is very
useful for estimating location parameters (see [4], [29]). Basu and Ebrahimi [4] studied a
new loss function referred as general entropy loss function, which is defined as

L3(θ, δ) =
(

δ

θ

)m

− m ln
(

δ

θ

)
− 1.

This is also an asymmetric loss function. The Bayes estimate of T (α, λ) is

T̂BE(α, λ) =
(

E((T (α, λ))−m|data)
)−1/m

=
[ ∫ ∞

0

∫ ∞

0
(T (α, λ))−mπ(α, λ|data)dαdλ

]−1/m

.

It can be noted that the integral of the above equation is not in nice form. Therefore, we
use Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimate.

4.2. MCMC approach
This technique is useful in simulating samples from posterior densities. These samples

are further used to obtain required estimates under different loss functions. We can also
construct credible intervals based on such samples. Robert and Casella [33] discussed many
applications of this method. It is illustrated that such sampling is useful in cases posterior
distributions are not in known forms. Therefore, we use Metropolis-Hastings algorithm
to obtain required estimates of parameters. Random numbers from these distributions
can be generated by using bivariate normal distribution BVN(µ, Σ) as a proposal density.
Algorithm 1 shows the required steps for the sample generation from π(α, λ|data) under
the MCMC technique.

Algorithm 1. Algorithm to generate posterior sample
1: Assume an initial guess of (α, λ) = (α(0), λ(0)).
2: Set l = 1.
3: Generate a proposal α∗ and λ∗ from the BVN(µ, Σ) where µ = (α(l), λ(l)) and

Σ = Σ̂ which is the variance-covariance matrix of the MLEs.
4: Evaluate the acceptance probability

ρ = min
{

1,
π(α∗, λ∗|data)

π(α(l−1), λ(l−1)|data)

}
5: Generate u from U(0, 1) distribution.
6: If u ≤ ρ, accept the proposal and set α(l) = α∗ and λ(l) = λ∗, else set α(l) = α(l−1)

and λ(l) = λ(l−1).
7: Set l = l + 1 and repeat Steps 3 to 6, D times and obtain the posterior samples

of (α1, λ1), (α2, λ2), . . . , (αD, λD).

Therefore, the Bayes estimates of any arbitrary function of θ = (α, λ) are as follows:
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• under squared error loss function, θ̂ = 1
D−D0

∑D
l=D0+1 θl,

• under LINEX loss function, θ̂ = − 1
k ln

(
1

D−D0

∑D
l=D0+1 e−kθl

)
,

• under general entropy loss function, θ̂ =
(

1
D−D0

∑D
l=D0+1 θ−m

l

)−1/m

,

where the initial D0 is a burn-in sample to be discarded due to the convergence of posterior
samples.

It is important to compute 100(1−ν)% credible intervals of parameters to summarize the
inferences. We obtain these estimates again by using MCMC samples. Bayesian credible
intervals are constructed also. To obtain the required intervals of α and λ, first order
αj and λj as α(1), α(2), . . . , α(D−D0) and λ(1), λ(2), . . . , λ(D−D0). Then, the 100(1 − ν)%
credible intervals are given by(

α([(D−D0)(ν/2)]), α([(D−D0)(1−ν/2)])), and
(
λ([(D−D0)(ν/2)]), λ([(D−D0)(1−ν/2)])).

5. Bayesian prediction
Prediction of the censored observations under some given information is an important

practical problem in many studies. Several examples arise in agricultural, clinical, finan-
cial, and industrial experiments where prediction of unobserved data is required. It has
attracted attention of several researchers. Dey et al. [8] obtained such inferences for gen-
eralized inverted exponential distribution under progressive censoring. Shafay et al. [35]
obtained similar results under jointly type-II censored samples by considering two expo-
nential populations. Kotb and Raqab [18] discussed prediction inference under doubly
censored data by considering a modified version of Weibull distribution. Sometimes we
may have prior information on parameters of interest. In such a situation, Bayesian pre-
diction is a natural choice. Long [24], Maurya et al. [26], and Kayal et al. [16] discussed
many applications of prediction inferences in lifetime analysis. Here our objective is to
obtain predictive estimate and interval of l-th order statistic, Xl, l = 1, 2, . . . , r − 1 for
left side prediction and l = s + 1, s + 2, . . . , n for right side prediction. Next, we discuss
the procedure to evaluate the predictive estimates for both the cases and subsequently
prediction intervals obtained as well.

5.1. Point prediction
The predictive conditional density function of xl given x = (xr, xr+1 . . . , xs) for consid-

ered family of distributions under the doubly censored sample is given by,

f(xl|x) =



(r−1)!αλQ′(1/xl)
(l−1)!(r−l−1)!x2

l

[1−(ϕ(λ,xl))α](l−1)

[1−(ϕ(λ,xr))α](r−1)

(ϕ(λ, xl))α−1(1 − ϕ(λ, xl))[(ϕ(λ, xl))α − (ϕ(λ, xr))α]r−l−1,

l = 1, 2, . . . , r − 1
(n−s)!αλQ′(1/xl)
(l−s−1)!(n−l)!x2

l

(ϕ(λ,xl))α(n−l)

(ϕ(λ,xs))α(n−s)

(ϕ(λ, xl))α−1(1 − ϕ(λ, xl))[(ϕ(λ, xs))α − (ϕ(λ, xl))α]l−s−1,

l = s + 1, s + 2, . . . , n.

(5.1)

Note that Equation (5.1) is based on the ordered joint density function and the conditional
density function. The posterior predictive density of xl under prior π(α, λ) is,

f∗(xl|x) =
∫ ∞

0

∫ ∞

0
f(xl|x)π(α, λ|x)dαdλ.

To obtain predictive estimate of xl, we consider the loss functions as defined in Section
4.1. Under squared error loss function, for left as well as right predictive estimates are
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given by

x̂l =
∫ ∞

0
xlf

∗(xl|x)dxl

=
∫ ∞

0

∫ ∞

0
I1l(α, λ)π(α, λ|x)dαdλ,

(5.2)

where

I1l(α, λ) =



(r−1)!αλ
(l−1)!(r−l−1)!

∫ xr
0

Q′(1/xl)
xl

[1−(ϕ(λ,xl))α](l−1)

[1−(ϕ(λ,xr))α](r−1) (ϕ(λ, xl))α−1(1 − ϕ(λ, xl))
[(ϕ(λ, xl))α − (ϕ(λ, xr))α]r−l−1dxl, l = 1, 2, . . . , r − 1

(n−s)!αλ
(l−s−1)!(n−l)!

∫ ∞
xs

Q′(1/xl)
xl

(ϕ(λ,xl))α(n−l)

(ϕ(λ,xs))α(n−s) (ϕ(λ, xl))α−1(1 − ϕ(λ, xl))
[(ϕ(λ, xs))α − (ϕ(λ, xl))α]l−s−1dxl, l = s + 1, s + 2, . . . , n.

Under LINEX loss function, for left as well as right predictive values is given by

x̂l = −1
k

ln
[∫ ∞

0
e−kxlf∗(xl|x)dxl

]
= −1

k
ln

[∫ ∞

0

∫ ∞

0
I2l(α, λ)π(α, λ|x)dαdλ

]
,

(5.3)

where

I2l(α, λ) =



(r−1)!αλ
(l−1)!(r−l−1)!

∫ xr
0 e−kxl Q′(1/xl)

x2
l

[1−(ϕ(λ,xl))α]l−1

[1−(ϕ(λ,xr))α]r−1 (ϕ(λ, xl))α−1(1 − ϕ(λ, xl))
[(ϕ(λ, xl))α − (ϕ(λ, xr))α]r−l−1dxl, l = 1, 2, . . . , r − 1

(n−s)!αλ
(l−s−1)!(n−l)!

∫ ∞
xs

e−kxl Q′(1/xl)
x2

l

(ϕ(λ,xl))α(n−l)

(ϕ(λ,xs))α(n−s) (ϕ(λ, xl))α−1(1 − ϕ(λ, xl))
[(ϕ(λ, xs))α − (ϕ(λ, xl))α]l−s−1dxl, l = s + 1, s + 2, . . . , n.

Under general entropy loss function, for left as well as right predictive values are given
by

x̂l =
[∫ ∞

0
x−m

l f∗(xl|x)dx
]−1/m

=
[∫ ∞

0

∫ ∞

0
I3l(α, λ)π(α, λ|x)dαdλ

]−1/m
,

(5.4)

where

I3l(α, λ) =



(r−1)!αλ
(l−1)!(r−l−1)!

∫ xr
0 x−m

l
Q′(1/xl)

x2
l

[1−(ϕ(λ,xl))α]l−1

[1−(ϕ(λ,xr))α]r−1 (ϕ(λ, xl))α−1(1 − ϕ(λ, xl))
[(ϕ(λ, xl))α − (ϕ(λ, xr))α]r−l−1dxl, l = 1, 2, . . . , r − 1

(n−s)!αλ
(l−s−1)!(n−l)!

∫ ∞
xs

x−m
l

Q′(1/xl)
x2

l

(ϕ(λ,xl))α(n−l)

(ϕ(λ,xs))α(n−s) (ϕ(λ, xl))α−1(1 − ϕ(λ, xl))
[(ϕ(λ, xs))α − (ϕ(λ, xl))α]l−s−1dxl, l = s + 1, s + 2, . . . , n.

It can be seen that equations (5.2), (5.3), and (5.4) are not in nice forms. Therefore,
in order to predict xl, we apply the Metropolis-Hastings algorithm. The Bayes predictive
estimates of xl under the squared error, LINEX, and general entropy loss functions turn
out to be

• under squared error loss function, x̂l = 1
D−D0

∑D
q=D0+1 I1l(αq, λq),

• under LINEX loss function, x̂l = − 1
k ln

(
1

D−D0

∑D
q=D0+1 I2l(αq, λq)

)
,

• under general entropy loss function, x̂l =
(

1
D−D0

∑D
l=D0+1 I3l(αq, λq)m

)−1/m

.
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5.2. Interval prediction
Here, we evaluate Bayesian interval prediction based on the predictive survival function.

The posterior predictive survival function is

S∗(t|X) =
∫ ∞

0

∫ ∞

0
S(t|X)π(α, λ|X)dαdλ,

where S(t|X) denotes the prior predictive survival function and it is given by

S(t|X) =



P (xl<t|X)
P (xl<xr|X) =

∫ t

0 fX(xl|X)dxl∫ xr

0 fX(xl|X)dxl
, l = 1, 2, . . . , r − 1,

P (xl>t|X)
P (xl>xs|X) =

∫ n

t
fX(xl|X)dxl∫ n

xs
fX(xl|X)dxl

, l = s + 1, s + 2, . . . , n.

Now a 100(1−ν)% equal tail prediction interval (L, U) of xl can be obtained from following
equations

S∗(L|X) = 1 − ν/2 and S∗(U |X) = ν/2.

In a similar manner, the corresponding predictive interval of xl is obtained.

6. Simulation study and applications
In this section, we perform some numerical studies and evaluate behavior of proposed

estimation and prediction estimates. We consider Q(x) = 1/x and show the results for
the inverted exponentiated exponential (IEE) distribution. We, firstly, conduct exten-
sive Monte Carlo simulation experiments in order to investigate the performance of the
proposed estimations. Then, we analyzed two real data sets in reference to the studied
problem.

6.1. Monte Carlo Simulation study
We study performances of various estimators through Monte Carlo simulation. Point

estimators of α and λ are evaluated based on average estimates (AEs) and mean squared
errors (MSEs). Note that Bayes estimates are obtained under squared error (SE), LINEX,
and general entropy (GE) loss functions. Interval estimators are compared against average
lengths (ALs) and coverage probabilities (CPs). For the Bayes estimate, informative prior
(IP) and non-informative prior (NIP) are considered for finding estimates. Under IP
setup, hyper-parameters are chosen in such a way that the prior mean is close to the true
parameter. For the simulation, We take two values of n as 50 and 80. Corresponding
to the values of n, we take a different set of values of r and s. The AEs and MSEs are
computed for various combinations of (n, r, s). For the simulation, parameters are assigned
as (α, λ) = (1.2, 0.8) and (0.80, 1.40) in an arbitrary manner. The hyper-parameters are
assigned as closed to zero value in the case of NIP. Under IP case, these are assigned
as (a, b, c, d) = (2.16, 1.80, 1.92, 2.40) and (1.44, 1.80, 3.36, 2.40). The results for point
estimates are tabulated in Tables 1 and 3, whereas for interval estimation, it is tabulated
in Table 2 and 4 based on 10,000 simulation runs. The nominal confidence level is 95%.
One may refer to [3] and [7] for some useful discussion on performance of various interval
estimates in such situations. In addition, predictive estimates for censored observation
based on different loss functions and two sets of prior are computed in Table 5. We draw
the following conclusion from the simulation results:

• As the effective sample size increases (s increases or r decreases), the MLEs and
the Bayes estimate under different loss functions are improved in terms of the lesser
value of MSEs.
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Table 1. AEs and MSEs of all estimates for α = 1.2 and λ = 0.8.

MLE Bayesian (NIP) Bayesian (IP)

SE LINEX GE SE LINEX GE

(n, r, s) θ k = −0.5 k = 0.5 m = −1.5 m = −0.5 k = −0.5 k = 0.5 m = −1.5 m = −0.5
(50,11,30) α AE 1.3420 1.3177 1.2854 1.3527 1.2946 1.3408 1.2791 1.2545 1.3055 1.2607 1.2976

MSE 0.1631 0.1362 0.1175 0.1596 0.1264 0.1472 0.0807 0.0711 0.0927 0.0754 0.0867
λ AE 0.8673 0.8448 0.8350 0.8548 0.8331 0.8563 0.8320 0.8239 0.8402 0.8222 0.8416

MSE 0.0480 0.0406 0.0386 0.0428 0.0392 0.0421 0.0272 0.0259 0.0286 0.0263 0.0282
(50,11,35) α AE 1.3463 1.3198 1.2781 1.3660 1.2899 1.3500 1.2729 1.2428 1.3058 1.2502 1.2959

MSE 0.1693 0.1389 0.1156 0.1698 0.1264 0.1534 0.0753 0.0649 0.0892 0.0694 0.0823
λ AE 0.8631 0.8366 0.8254 0.8479 0.8231 0.8497 0.8231 0.8142 0.8321 0.8123 0.8337

MSE 0.0476 0.0393 0.0373 0.0416 0.0380 0.0409 0.0249 0.0237 0.0262 0.0241 0.0258
(50,21,45) α AE 1.3220 1.3020 1.2771 1.3285 1.2840 1.3200 1.2737 1.2538 1.2948 1.2588 1.2888

MSE 0.1344 0.1165 0.1033 0.1325 0.1096 0.1241 0.0756 0.068 0.0847 0.0715 0.0802
λ AE 0.8608 0.8425 0.8338 0.8513 0.8322 0.8526 0.8321 0.8247 0.8396 0.8232 0.8408

MSE 0.0427 0.0374 0.0357 0.0393 0.0363 0.0388 0.0266 0.0254 0.0278 0.0258 0.0275
(50,11,40) α AE 1.2970 1.2731 1.2216 1.3315 1.2346 1.3119 1.2307 1.1954 1.2699 1.2029 1.2587

MSE 0.1459 0.1201 0.0984 0.1525 0.1083 0.1348 0.0607 0.0530 0.0729 0.0566 0.0665
λ AE 0.8413 0.8106 0.7978 0.8237 0.7946 0.8262 0.8029 0.7933 0.8128 0.7908 0.8148

MSE 0.0443 0.0365 0.0348 0.0385 0.0358 0.0376 0.0222 0.0214 0.0232 0.0219 0.0227
(50,16,45) α AE 1.3009 1.2796 1.2528 1.3084 1.2598 1.2995 1.2537 1.2328 1.2758 1.2376 1.2698

MSE 0.1045 0.0945 0.0830 0.1091 0.0883 0.1016 0.0593 0.0533 0.0669 0.0559 0.0632
λ AE 0.8619 0.8389 0.8280 0.8500 0.8258 0.8516 0.8284 0.8194 0.8376 0.8175 0.8391

MSE 0.0477 0.0413 0.0391 0.0438 0.0399 0.0430 0.0281 0.0268 0.0297 0.0272 0.0292
(50,11,45) α AE 1.2319 1.2102 1.1835 1.2391 1.1891 1.2315 1.1988 1.1783 1.2207 1.1822 1.2156

MSE 0.0639 0.0605 0.0550 0.0686 0.0578 0.0642 0.0387 0.0363 0.0424 0.0376 0.0404
λ AE 0.8331 0.8057 0.7921 0.8196 0.7887 0.8222 0.8027 0.7919 0.8137 0.7892 0.8159

MSE 0.0448 0.0382 0.0364 0.0404 0.0375 0.0394 0.0253 0.0243 0.0266 0.0249 0.0261
(80,11,60) α AE 1.2955 1.2873 1.2669 1.3089 1.2723 1.3023 1.2657 1.2487 1.2835 1.2529 1.2785

MSE 0.1040 0.0967 0.0870 0.1083 0.0915 0.1023 0.0674 0.0615 0.0745 0.0642 0.0711
λ AE 0.8393 0.8287 0.8232 0.8343 0.8221 0.8352 0.8221 0.8173 0.8270 0.8163 0.8279

MSE 0.0247 0.0230 0.0223 0.0238 0.0225 0.0236 0.0176 0.0171 0.0182 0.0172 0.0180
(80,11,65) α AE 1.2817 1.2742 1.2573 1.2920 1.2617 1.2869 1.2583 1.2438 1.2733 1.2473 1.2693

MSE 0.0812 0.0781 0.0712 0.0862 0.0744 0.0821 0.0570 0.0526 0.0623 0.0546 0.0598
λ AE 0.8383 0.8290 0.8239 0.8341 0.8229 0.8350 0.8235 0.8190 0.8281 0.8181 0.8290

MSE 0.0236 0.0224 0.0218 0.0232 0.0219 0.0230 0.0177 0.0172 0.0182 0.0173 0.0181
(80,21,75) α AE 1.2658 1.2559 1.2420 1.2703 1.2453 1.2665 1.2445 1.2324 1.2571 1.2352 1.2539

MSE 0.0660 0.0638 0.0592 0.0692 0.0613 0.0665 0.0485 0.0454 0.0521 0.0468 0.0504
λ AE 0.8363 0.8255 0.8198 0.8312 0.8186 0.8323 0.8208 0.8157 0.8260 0.8146 0.8270

MSE 0.0251 0.0239 0.0231 0.0247 0.0234 0.0244 0.0189 0.0184 0.0195 0.0185 0.0194
(80,11,70) α AE 1.2727 1.2652 1.2510 1.2801 1.2545 1.2760 1.2529 1.2404 1.2659 1.2433 1.2625

MSE 0.0718 0.0693 0.0640 0.0754 0.0665 0.0724 0.0528 0.0492 0.0570 0.0509 0.0550
λ AE 0.8345 0.8259 0.8213 0.8307 0.8203 0.8315 0.8216 0.8174 0.8259 0.8165 0.8267

MSE 0.0219 0.0209 0.0204 0.0216 0.0205 0.0214 0.0169 0.0165 0.0174 0.0166 0.0173
(80,16,75) α AE 1.2668 1.2581 1.2452 1.2716 1.2483 1.2680 1.2476 1.2362 1.2594 1.2387 1.2565

MSE 0.0637 0.0615 0.0572 0.0665 0.0592 0.0641 0.0477 0.0447 0.0512 0.0460 0.0495
λ AE 0.8356 0.8263 0.8213 0.8313 0.8203 0.8322 0.8221 0.8176 0.8267 0.8167 0.8275

MSE 0.0232 0.0221 0.0215 0.0228 0.0217 0.0226 0.0180 0.0175 0.0185 0.0176 0.0184
(80,11,75) α AE 1.2603 1.2531 1.2410 1.2655 1.2438 1.2623 1.2441 1.2334 1.2552 1.2358 1.2525

MSE 0.0552 0.0541 0.0505 0.0582 0.0522 0.0563 0.0432 0.0406 0.0462 0.0418 0.0448
λ AE 0.8310 0.8233 0.8189 0.8277 0.8180 0.8285 0.8198 0.8158 0.8239 0.8150 0.8246

MSE 0.0195 0.0187 0.0183 0.0193 0.0184 0.0191 0.0157 0.0153 0.0161 0.0154 0.0160

• In the case of point estimation, the MSEs under Bayesian approach are less than
those under maximum likelihood method in most cases. It is also observed that
the MSEs under NIP are higher than that of IP setup.

• We note that MLEs of both the parameters compete well with Bayes estimates
obtained under noninformative prior. In this case, MSE values for MLEs get closer
to the corresponding NIP estimates with an increase in effective sample size. Fur-
thermore, performance of respective Bayes estimates obtained under informative
prior is quite good compared to both MLEs and NIP estimates. Under LINEX loss,
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Table 2. ALs and CPs of all estimates for α = 1.2 and λ = 0.8.

ACI BCI

NIP IP

(n, r, s) Criterion α λ α λ α λ

(50,11,30) AL 2.8700 1.2590 1.4715 0.7958 1.4064 0.7520
CP 0.9530 0.9696 0.9797 0.9795 0.9797 0.9815

(50,11,35) AL 2.2252 1.0399 1.3424 0.7481 1.3011 0.7202
CP 0.9631 0.9770 0.9761 0.9728 0.9766 0.9795

(50,21,45) AL 2.0145 1.3435 1.1327 0.8329 1.0827 0.7921
CP 0.9548 0.9644 0.9719 0.9696 0.9719 0.9734

(50,11,40) AL 1.7294 0.8907 1.2045 0.7095 1.1764 0.6898
CP 0.9689 0.9775 0.9613 0.9559 0.9771 0.9698

(50,16,45) AL 1.6791 1.0078 1.1209 0.7486 1.0884 0.7252
CP 0.9649 0.9737 0.9755 0.9651 0.9759 0.9741

(50,11,45) AL 1.3660 0.7826 1.0827 0.6733 1.0604 0.6578
CP 0.9658 0.9717 0.9501 0.9505 0.9620 0.9651

(80,11,60) AL 1.1481 0.5966 0.9948 0.5441 0.9781 0.5345
CP 0.9663 0.962 0.9525 0.9527 0.9595 0.9604

(80,11,65) AL 1.0313 0.5685 0.9215 0.5270 0.9068 0.5182
CP 0.9680 0.9545 0.9543 0.9465 0.9602 0.9557

(80,21,75) AL 0.9918 0.6284 0.8465 0.5591 0.8329 0.5493
CP 0.9665 0.9721 0.9525 0.9518 0.9595 0.9595

(80,11,70) AL 0.9428 0.5434 0.8579 0.5091 0.8459 0.5016
CP 0.9644 0.9516 0.9491 0.9449 0.9573 0.9543

(80,16,75) AL 0.9199 0.5682 0.8231 0.5248 0.8114 0.5164
CP 0.9716 0.9548 0.9537 0.9449 0.9579 0.9523

(80,11,75) AL 0.8633 0.5219 0.7977 0.4936 0.7876 0.4869
CP 0.9577 0.9541 0.9471 0.9491 0.9521 0.9561

it is seen that assignment k = −0.5 yields marginally better estimates compared
to the other choices of k. This holds for both NIP and IP prior cases. Similar
observations hold for estimates obtained under GE loss function. Overall, Bayes
estimates evaluated under assignments k = −0.5 and m = −1.5 provide really
good estimates compared to other tabulated estimates.

• In the case of interval estimation, the ALs reduce as sample sizes increase. All the
CPs are close to the nominal level of 0.95.

• We also observe that the ALs of the Bayesian credible intervals (BCIs) are smaller
than those of approximate confidence intervals (ACIs). Also, ALs have larger
values in the case of NIP than those of IP distributions.

• From Table 5, it can be seen that the point prediction under squared error, LINEX,
and general entropy are close to the true value, and the Bayesian prediction interval
(BPI) contains the true value.

• We observe that increased sample sizes lead to improved estimates for unknown
parameters. This holds for both point and interval estimation.

6.2. Application
In this section, we analyze two real datasets for illustrative purposes.

6.2.1. Application I. The dataset I is taken from [22] and shown in Table 6. It repre-
sents the survival time (in days) of the 58 patients with Hypernephroma.

Considered data is fitted by the IEE distribution which is a member of inverted expo-
nentiated family. The value of Kolmogorov-Smirnov’s (K-S) test is 0.0904 with p-value
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Table 3. AEs and MSEs of all estimates for α = 0.8 and λ = 1.4.

MLE Bayesian (NIP) Bayesian (IP)

SE LINEX GE SE LINEX GE

(n, r, s) θ k = −0.5 k = 0.5 m = −1.5 m = −0.5 k = −0.5 k = 0.5 m = −1.5 m = −0.5
(50,11,30) α AE 0.9508 0.9076 0.8854 0.9313 0.8849 0.9304 0.8672 0.8517 0.8837 0.8504 0.8841

MSE 0.1388 0.0878 0.0771 0.1004 0.0798 0.0967 0.0452 0.0403 0.0511 0.0413 0.0497
λ AE 1.5916 1.5127 1.4614 1.5664 1.4779 1.5463 1.4679 1.432 1.5054 1.4432 1.4921

MSE 0.2907 0.2085 0.1828 0.241 0.1988 0.22 0.0995 0.0887 0.1138 0.0948 0.1052
(50,11,35) α AE 0.9151 0.8876 0.8715 0.9046 0.8708 0.9045 0.8577 0.8458 0.8702 0.8447 0.8708

MSE 0.0990 0.0714 0.0644 0.0795 0.0662 0.0772 0.0404 0.0368 0.0445 0.0376 0.0435
λ AE 1.5738 1.5168 1.4719 1.5637 1.4867 1.5460 1.4763 1.4434 1.5106 1.4539 1.4983

MSE 0.2538 0.1983 0.1755 0.2267 0.1894 0.2087 0.1034 0.0926 0.1173 0.0987 0.1090
(50,21,45) α AE 0.8840 0.8593 0.8475 0.8716 0.8464 0.8721 0.8380 0.8294 0.8470 0.8282 0.8479

MSE 0.0600 0.0485 0.0446 0.0530 0.0456 0.0518 0.0270 0.0252 0.0292 0.0255 0.0287
λ AE 1.6072 1.5373 1.4760 1.6023 1.4966 1.5766 1.4855 1.4431 1.5306 1.4568 1.5138

MSE 0.3598 0.2661 0.2285 0.3143 0.2520 0.2828 0.1242 0.1084 0.1455 0.1173 0.1326
(50,11,40) α AE 0.8943 0.8756 0.8635 0.8884 0.8627 0.8886 0.8530 0.8436 0.8628 0.8426 0.8635

MSE 0.0695 0.0568 0.0520 0.0621 0.0532 0.0607 0.0349 0.0323 0.0378 0.0328 0.0371
λ AE 1.5642 1.5203 1.4802 1.5621 1.4938 1.5462 1.483 1.4526 1.5145 1.4625 1.5031

MSE 0.2254 0.1886 0.1677 0.2141 0.1802 0.1982 0.1053 0.0946 0.1187 0.1006 0.1108
(50,16,45) α AE 0.8796 0.8611 0.8507 0.8720 0.8498 0.8725 0.8423 0.8342 0.8507 0.8332 0.8514

MSE 0.0572 0.0483 0.0448 0.0523 0.0456 0.0513 0.0298 0.0279 0.0320 0.0283 0.0315
λ AE 1.5687 1.5207 1.4745 1.5692 1.4901 1.5506 1.4809 1.4467 1.5167 1.4578 1.5037

MSE 0.2532 0.2090 0.1840 0.2401 0.1992 0.2203 0.1112 0.0992 0.1268 0.1060 0.1175
(50,11,45) α AE 0.8687 0.8548 0.8456 0.8643 0.8447 0.8649 0.8407 0.8332 0.8484 0.8322 0.8491

MSE 0.0482 0.0426 0.0397 0.0458 0.0404 0.0450 0.0287 0.0270 0.0306 0.0274 0.0302
λ AE 1.5296 1.4948 1.4595 1.5316 1.4712 1.5180 1.4679 1.4403 1.4966 1.4491 1.4864

MSE 0.1821 0.1605 0.1445 0.1801 0.1542 0.1678 0.0961 0.0874 0.1069 0.0923 0.1005
(80,11,60) α AE 0.8489 0.8421 0.8350 0.8495 0.8341 0.8502 0.8331 0.8269 0.8394 0.8260 0.8401

MSE 0.0325 0.0309 0.0291 0.0329 0.0295 0.0324 0.0227 0.0215 0.0240 0.0218 0.0238
λ AE 1.4778 1.4584 1.4374 1.4799 1.444 1.4726 1.4453 1.4275 1.4635 1.433 1.4574

MSE 0.0979 0.0924 0.0864 0.0997 0.0899 0.0953 0.0655 0.0616 0.0702 0.0638 0.0674
(80,11,65) α AE 0.8429 0.8363 0.8302 0.8425 0.8294 0.8432 0.8295 0.8242 0.8349 0.8234 0.8356

MSE 0.0293 0.0282 0.0268 0.0297 0.0272 0.0294 0.0217 0.0208 0.0228 0.0210 0.0226
λ AE 1.4694 1.4516 1.4322 1.4715 1.4383 1.4648 1.4409 1.4242 1.4580 1.4294 1.4524

MSE 0.0904 0.0862 0.0811 0.0924 0.0842 0.0886 0.0629 0.0594 0.0671 0.0614 0.0646
(80,21,75) α AE 0.843 0.8349 0.8297 0.8402 0.8289 0.8409 0.8287 0.8242 0.8334 0.8234 0.8340

MSE 0.0244 0.0234 0.0224 0.0245 0.0226 0.0243 0.0180 0.0173 0.0188 0.0174 0.0186
λ AE 1.4896 1.4683 1.4446 1.4926 1.4522 1.4841 1.4542 1.4342 1.4746 1.4405 1.4677

MSE 0.1112 0.1049 0.0972 0.1141 0.1017 0.1085 0.0734 0.0685 0.0795 0.0713 0.0760
(80,11,70) α AE 0.8382 0.8322 0.8270 0.8374 0.8262 0.8381 0.8267 0.8221 0.8314 0.8214 0.8321

MSE 0.0239 0.0233 0.0223 0.0244 0.0225 0.0241 0.0185 0.0178 0.0193 0.0179 0.0192
λ AE 1.4689 1.4528 1.4346 1.4715 1.4403 1.4652 1.4432 1.4273 1.4595 1.4322 1.4541

MSE 0.0838 0.08030 0.0756 0.0859 0.0783 0.0825 0.0601 0.0568 0.0640 0.0586 0.0617
(80,16,75) α AE 0.8361 0.8293 0.8245 0.8342 0.8238 0.8349 0.8244 0.8201 0.8287 0.8194 0.8294

MSE 0.0218 0.0212 0.0203 0.0221 0.0205 0.0219 0.0169 0.0163 0.0175 0.0164 0.0174
λ AE 1.4703 1.4526 1.4327 1.4731 1.4389 1.4661 1.4425 1.4254 1.4601 1.4307 1.4543

MSE 0.0900 0.0862 0.0809 0.0926 0.0840 0.0887 0.0633 0.0597 0.0676 0.0618 0.0651
(80,11,75) α AE 0.8361 0.8303 0.8258 0.8349 0.8251 0.8355 0.8257 0.8217 0.8299 0.8210 0.8305

MSE 0.0209 0.0204 0.0197 0.0213 0.0198 0.0211 0.0167 0.0161 0.0173 0.0162 0.0172
λ AE 1.4687 1.4537 1.4365 1.4714 1.4419 1.4655 1.4448 1.4296 1.4603 1.4343 1.4552

MSE 0.0784 0.0754 0.0711 0.0805 0.0736 0.0775 0.0574 0.0544 0.0611 0.0561 0.0590

0.7302. Since the p-value is relatively high, which shows that the data are reasonably fit-
ted by IEE distribution. Further, we also show the fitting using some graphical technique
such as empirical CDF versus theoretical CDF plot, Probability-Probability (P-P) plot
and Quantile-Quantile (Q-Q) plot in Figure 1. These plots also suggest that the data are
reasonably fitted by IEE distribution.

Next, we generate two sets of doubly censored data by choosing specific values of r and
s, as shown in Table 7.

The convergence of MCMC samples under given data sets is illustrated in Figure 2
via trace and density plots of posterior samples of α and λ. Figure 2 indicates that
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Table 4. ALs and CPs of all estimates for α = 0.8 and λ = 1.4.

ACI BCI

NIP IP

(n, r, s) Criterion α λ α λ α λ

(50,11,30) AL 1.4869 2.026 0.9499 1.5342 0.9199 1.4482
CP 0.9510 0.9640 0.9560 0.9720 0.9800 0.9880

(50,11,35) AL 1.0991 1.7496 0.8330 1.4541 0.8100 1.3864
CP 0.9582 0.9631 0.9500 0.9552 0.9674 0.9766

(50,21,45) AL 0.9265 2.0831 0.7254 1.6587 0.6965 1.5696
CP 0.9518 0.9507 0.9651 0.9550 0.9786 0.9831

(50,11,40) AL 0.8802 1.5867 0.7425 1.3858 0.7244 1.3310
CP 0.9685 0.9532 0.9512 0.9518 0.9683 0.9730

(50,16,45) AL 0.8094 1.7000 0.6931 1.4753 0.6737 1.4110
CP 0.9599 0.9548 0.9555 0.9539 0.9665 0.9725

(50,11,45) AL 0.7409 1.4641 0.6634 1.3215 0.6480 1.2707
CP 0.9642 0.9462 0.9516 0.9492 0.9600 0.9656

(80,11,60) AL 0.6476 1.1222 0.6016 1.0540 0.5905 1.0246
CP 0.9627 0.9512 0.9608 0.9550 0.9654 0.9636

(80,11,65) AL 0.5949 1.0792 0.5586 1.0192 0.5498 0.9940
CP 0.9546 0.9478 0.9478 0.9528 0.9545 0.9620

(80,21,75) AL 0.5481 1.1737 0.5215 1.1150 0.5120 1.0840
CP 0.9581 0.9464 0.9532 0.953 0.9609 0.9638

(80,11,70) AL 0.5509 1.0471 0.5224 0.9936 0.5147 0.9706
CP 0.9534 0.9492 0.9510 0.9525 0.9548 0.9618

(80,16,75) AL 0.5280 1.0857 0.5042 1.0354 0.4961 1.0081
CP 0.9548 0.9487 0.9530 0.9543 0.9595 0.9613

(80,11,75) AL 0.5154 1.0188 0.4915 0.9698 0.4849 0.9481
CP 0.9532 0.9519 0.9501 0.9545 0.9537 0.9608

MCMC chains provide acceptable behavior for α and β. The plot of density converges well
under varying chains. This indicates that samples may have been generated from assumed
posterior distribution. Next, we obtain estimates of α and λ under doubly censored data.
When there is no information on parameter, Bayes estimates are evaluated under NIP.
The results are given in Table 8.

The results listed in Table 8 suggest that all the point estimate are closed to each other,
and Bayes estimates under LINEX loss function is under-estimated in the positive loss
parameter and over-estimated in the negative loss parameter. Also, the same results are
obtained in the case of the general entropy loss function. Further, Bayes intervals are
better than approximate intervals under the criterion of interval length.

6.2.2. Application II. This data represent failure times of air conditioning systems
of planes, see [34]. The data are listed in Table 9. We divide data by 10 for ease of
computation purpose. Similarly, as in Dataset I, we also draw the plots for Dataset II.

Again we check goodness-of-fit for this data by IEE distribution using K-S test. It is
found that the K-S value is 0.2109 and p-value is 0.1388. We observe that p-value is greater
than pre-specified significance level 0.05. This reasonably indicates that the considered
data set is appropriately fitted by IEE model. Further, we also show the fitting using
some graphical techniques in Figure 3, which also suggests that the data fitted good by
the IEE distribution.

Here, we generate two different sets of doubly censored data by choosing specific values
of r and s as shown in Table 10.
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Table 5. Bayesian point and interval predictive estimations under different prior
settings.

Point prediction Interval prediction

(n, r, s) l True value SE LINEX (−0.002) GE (−0.700) BPI Length
Prior I: a = 1.44, b = 1.8, c = 2.88, d = 2.40
(30,5,26) 1 0.2053 0.3663 0.3663 0.3608 (0.2828 0.4585) 0.1757

2 0.3619 0.4850 0.4850 0.4808 (0.3997 0.5697) 0.1700
3 0.3972 0.5871 0.5871 0.5842 (0.5212 0.6486) 0.1274
4 0.6444 0.6822 0.6822 0.6806 (0.6415 0.7151) 0.0736
27 27.1443 24.9352 25.4548 24.1317 (19.9143 31.7562) 11.8419
28 48.3692 44.6443 47.5444 40.8333 (25.9927 72.1402) 46.1475
29 104.7182 116.2216 109.5389 102.9703 (68.5045 134.1018) 65.6035
30 165.7776 175.7860 174.2773 142.8336 (129.2558 196.9236) 67.6678

(35,6,30) 1 0.2293 0.3089 0.3088 0.3044 (0.2291 0.3829) 0.1538
2 0.2397 0.4015 0.4015 0.3981 (0.3296 0.4730) 0.1434
3 0.3167 0.4809 0.4809 0.4783 (0.4141 0.5439) 0.1298
4 0.4182 0.5519 0.5519 0.5500 (0.5011 0.5993) 0.0982
5 0.4581 0.6220 0.6220 0.6210 (0.5919 0.6469) 0.0550
31 13.1001 15.2949 16.3833 14.9864 (12.9653 18.2609) 5.2956
32 24.1963 23.9111 23.6154 22.5257 (15.3677 35.0016) 19.6339
33 44.2238 43.5758 47.3863 38.8193 (20.7207 74.4157) 53.6950
34 105.4059 119.2495 107.2124 101.0801 (61.1404 131.1298) 69.9894
35 141.8698 169.0679 164.7949 135.4872 (122.1321 191.3960) 69.2639

Prior II: a = 2.16, b = 1.80, c = 3.60, d = 2.40
(30,5,26) 1 0.3257 0.3290 0.3290 0.3258 (0.2683 0.3838) 0.1155

2 0.3695 0.4108 0.4108 0.4087 (0.3571 0.4584) 0.1013
3 0.5593 0.4759 0.4759 0.4746 (0.4342 0.5097) 0.0755
4 0.5759 0.5316 0.5316 0.5309 (0.5102 0.5501) 0.0399
27 6.1942 6.2258 6.1611 6.1039 (5.0189 7.2616) 2.2427
28 6.5969 9.2037 36.4867 8.9900 (7.2277 12.7268) 5.4991
29 10.4379 17.0450 7.5380 15.1259 (8.2520 31.6645) 23.4125
30 17.1398 52.1332 58.7644 41.4539 (15.8194 99.6399) 83.8205

(35,6,30) 1 0.3852 0.2970 0.2970 0.2929 (0.2275 0.3613) 0.1338
2 0.4389 0.3864 0.3864 0.3833 (0.3234 0.4508) 0.1274
3 0.4418 0.4549 0.4549 0.4524 (0.3914 0.5085) 0.1171
4 0.4511 0.5226 0.5226 0.5209 (0.4748 0.5602) 0.0854
5 0.5187 0.5883 0.5883 0.5874 (0.5643 0.6104) 0.0461
31 14.7049 14.0760 15.8457 13.9040 (12.3943 16.2255) 3.8312
32 18.2224 20.0438 19.0002 19.2751 (14.7475 27.1166) 12.3691
33 24.4327 34.4450 35.6048 31.4276 (18.3428 58.7377) 40.3949
34 35.2306 68.0574 77.6848 58.8785 (29.2314 120.6116) 91.3802
35 70.4484 148.8468 158.1031 122.1909 (91.8836 190.0679) 98.1843

Table 6. Real dataset I from [22].

77 18 8 68 35 8 26 84 17 52 26 108 18 72 38 99 9 56
36 108 10 36 6 9 12 5 104 6 115 9 21 14 52 9 48 15
5 28 25 25 40 16 8 70 6 8 12 20 8 99 12 181 20 14
26 16 30 20
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Figure 1. Empirical and theoretical distribution plots, PP plot, and QQ plot for
the IEE distribution from dataset I.

Table 7. Doubly censored data from dataset I.

Data 1: (n, r, s) = (58, 6, 45)
8 8 8 8 8 9 9 9 9 10 12 12 12 14 14 15 16 16
17 18 18 20 20 20 21 25 25 26 26 26 28 30 35 36 36 38
40 48 52 52

Data 2: (n, r, s) = (58, 11, 45)
9 9 9 9 10 12 12 12 14 14 15 16 16 17 18 18 20 20
20 21 25 25 26 26 26 28 30 35 36 36 38 40 48 52 52

Figure 4 indicates that MCMC chains show acceptable pattern for α and β under
given data. The plot of density converges well under different chains which indicates that
samples may come from assumed posterior distribution. We next obtain estimates of α
and λ under doubly censored data. We evaluate Bayes estimates under NIP. We report
the results in Table 11.
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(a) Trace and density plot of both parameters α (up) and λ (down) for data 1 of dataset I.

(b) Trace and density plot of both parameters α (up) and λ (down) for data 2 of real dataset I.

Figure 2. Trace and density plot for dataset I.

Furthermore, we obtain the point and interval predictive values of the censored obser-
vations. From Table 12, we observe that the predictive estimates of the first four censored
data are close to the true value. The same results are obtained for the last four observa-
tions as well. We also observe that the difference between the true value and the predicted
value is less than the nearer value from the censored data. Similarly, we can obtain the
predictive value of censored observation for dataset II. To save space, the results are not
listed here.
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Table 8. Point and interval estimates for dataset I.

Data 1 α λ

MLE 1.2438 18.4017

Bayes estimate

SE 1.2482 18.3802

LINEX
k = 0.5 1.2263 15.5488

k = −0.5 1.2716 22.8323

GE
m = −0.5 1.2306 18.1971
m = −1.5 1.2659 18.5616

ACI (0.6674 1.8202)[1.1528] (11.3100 25.4934)[14.1834]
BCI (0.6903 1.8261)[1.1358] (11.4434 25.5885)[14.1451]

Data 2 α λ

MLE 1.1323 16.5044

Bayes estimate

SE 1.1290 16.3202

LINEX
k = 0.5 1.1080 13.4789

k = −0.5 1.1523 23.3725

GE
m = −0.5 1.1106 16.1039
m = −1.5 1.1479 16.5355

ACI (0.5804 1.6841)[1.1037] (9.1912 23.8175)[14.6263]
BCI (0.6086 1.6802)[1.0716] (9.2161 23.5245)[14.3087]

Table 9. Dataset II from [34]

1 3 5 7 11 11 11 12 14 14 14 16 16 20 21 23 42 47
52 62 71 71 87 90 95 120 120 225 246 261

Table 10. Doubly censored data from dataset II

Data 1: (n, r, s) = (30, 7, 23)
1.1 1.2 1.4 1.4 1.4 1.6 1.6 2.0 2.1 2.3 4.2 4.7 5.2 6.2 7.1 7.1 8.7

Data 2: (n, r, s) = (30, 4, 26)
0.7 1.1 1.1 1.1 1.2 1.4 1.4 1.4 1.6 1.6 2.0 2.1 2.3 4.2 4.7 5.2 6.2 7.1
7.1 8.7 9.0 9.5 12.0 12.0

7. Bayesian optimal design
We have discussed till now estimations of parameters under double censoring scheme

when the lifetime of an item follows IEE distribution. We evaluated estimates when
censoring scheme, i.e., (n, r, s), is known in advance. The design parameters (n, r, s) can
be selected in many ways for a given sample size n0. Due to cost factors, finding optimal
schemes for various practical scenarios may be difficult. In fact, deriving the optimal plans
for life tests has received wide attention under different censoring schemes. Pradhan and
Kundu [31], Pareek et al. [28], Kundu [20], Bhattacharya et al. [5], Lodhi et al. [23]
presented many important results in this direction. Optimal criterion selection is another
important factor in such inferences. Here we adopt Bayesian approach for obtaining such
plans under double censoring. The posterior variance is taken up as the optimal criterion
measure for the censoring scheme (n, r, s).
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Figure 3. Empirical distribution and fitted IEE distribution plot, PP plot, and
QQ plot for the IEE distribution from real dataset II.

7.1. Objective function
Variance of logarithm of the p-th (p ∈ (0, 1)) quantile of inverted exponentiated family

is given by (see also, [21])

ϕ(n, r, s) = Edata:n,r,s

[
V arposterior

(
ln xp|data

)]
, (7.1)

where xp is the p-th quantile of the distribution given by

xp = Q−1
[

− λ

ln
[
1 − (1 − p)(1/α)]

]
and V arposterior(·|data) denotes the variance of posterior distribution and Edata is the
expectation under likelihood.

Optimal design criterion problem can be considered in sequel to evaluate n, r, and s so
that (7.1) is minimum. We have V arposterior

(
ln xp|data

)
given as

V arposterior
(

ln xp|data
)

= δtV arposterior
(
θ|data

)
δ,
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(a) Trace and density plot of both parameters α (up) and λ (down) for data 1 of real dataset II.

(b) Trace and density plot of both parameters α (up) and λ (down) for data 2 of real dataset I.

Figure 4. Trace and density plot for dataset II.

where

δt =
(

∂ ln xp

∂α
∂ ln xp

∂λ

)
.

Now, (7.1) can be expressed as

ϕ(n, r, s) ≈ Edata:n,r,s

[
δtV arposterior

(
θ|data

)
δ
]
. (7.2)
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Table 11. Point and interval estimates for dataset II

Data 1 α λ

MLE 0.7472 1.3905

Bayes estimate

SE 0.7346 1.3730

LINEX
k = 0.5 0.7220 1.3173

k = −0.5 0.7479 1.4331

GE
m = −0.5 0.7176 1.3299
m = −1.5 0.7517 1.4145

ACI (0.3025 1.1919)[0.8894] (0.4498 2.3313)[1.8815]
BCI (0.3415 1.1795)[0.8380] (0.4816 2.2995)[1.8179]

Data 2 α λ

MLE 0.9108 1.5985

Bayes estimate

SE 0.8955 1.5649

LINEX
k = 0.5 0.8816 1.5186

k = −0.5 0.9100 1.6137

GE
m = −0.5 0.8800 1.5339
m = −1.5 0.9110 1.5950

ACI (0.4314 1.3902)[0.9588] (0.7182 2.4788)[1.7606]
BCI (0.4784 1.3594)[0.881] (0.7239 2.4040)[1.6801]

Table 12. Prediction for dataset I from Table 6.

Point prediction Interval prediction

(n, r, s) l True value SE LINEX (−0.002) GE (−0.700) BPI Length
(58,5,54) 1 5 3.5319 3.5325 3.5037 (3.1785 3.8451) 0.6630

2 5 4.3589 4.3594 4.3414 (4.0342 4.6105) 0.5763
3 6 4.9780 4.9784 4.9672 (4.7627 5.1560) 0.3933
4 6 5.5127 5.5129 5.5074 (5.3949 5.6039) 0.2090
55 108 136.8131 139.2143 135.1780 (124.7190 151.9873) 27.2683
56 108 194.5060 205.9849 188.6324 (160.2806 237.9956) 77.7150
57 115 285.0472 310.6712 268.2246 (239.4847 326.3485) 86.8638
58 181 313.9642 323.5371 261.0000 (259.0013 337.2843) 78.2830

Under large sample size, the posterior distribution is approximated as a multivariate nor-
mal distribution (see also, [27]). Thus, V arposterior

(
θ|data

)
becomes

V arposterior
(
θ|data

)
≈

[
S−1(θ) + I(θ̂)

]−1
, (7.3)

where I(θ̂) is the Fisher information evaluated at θ̂ and S(θ) is the prior variance-
covariance matrix which is obtained as

S(θ) =
[

V ar(α) Cov(α, λ)
Cov(λ, α) V ar(λ)

]
=

[a1
b2

1
0

0 a2
b2

2

]
.

If we substitute the approximation of V arposterior
(
θ|data

)
from (7.3) into (7.2), we get

ϕ(n, r, s) ≈ Edata:n,r,s

[
δt(S−1(θ) + I(θ̂)

)−1
δ
]
. (7.4)
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Following the concept of [27], we say that, for large sample size, θ̂|θ converges to θ in
probability. Therefore, δt

(
S−1(θ) + I(θ̂)

)−1
δ in (7.4) can be approximated as δt

(
S−1(θ) +

I(θ)
)−1

δ. Further, the objective function (7.4) depends on p and so using the discussion
of [14], the optimization criterion is re-expressed as

ϕ(n, r, s) =Edata:n,r,s

∫ 1

0
V arposterior

(
ln xp|data

)
dW (p)

≈Edata:n,r,s

∫ 1

0

[
δt(S−1(θ) + I(θ)

)−1
δ
]
dW (p),

(7.5)

where 0 ≤ W (p) ≤ 1 is a non-negative weight function defined on [0, 1]. We take (7.5) as
the optimization function. Accordingly, a plan (n∗, r∗, s∗) is said to be better than plan
(n, r, s) if (n∗, r∗, s∗) leads to smaller value of ϕ(n, r, s) than (n, r, s).

7.2. Sensitivity analysis and numerical illustration
The procedure of evaluating optimal plans depends on assignment of hyper-parameters.

It is important to analyze effect of these values on proposed plans. For illustrative purpose,
substitute Q(1/x) = 1/x to make Equation (1.1) as a pdf of the IEE distribution. A
numerical study using Algorithm 2 is done to obtain optimal schemes when lifetime of the
unit follows IEE distribution with parameters α and λ. We consider W (p) = 1 and the
hyper-parameters of α and λ is to be considered as below

• Prior Set I :{a1 = 3.0, b1 = 2.5, a2 = 3.0, b2 = 2.0}.
• Prior Set II: {a1 = 3.4, b1 = 2.2, a2 = 1.5, b2 = 1.2}
• Prior Set III: {a1 = 2.0, b1 = 1.2, a2 = 3.6, b2 = 2.0}

Algorithm 2. Algorithm to obtain optimum testing plan under double censoring scheme
1: Start with an initial guess of the sample size, say n0.
2: For a fixed n0, sample size n can be considered as 2 ≤ n ≤ n0.
3: For a given n, s can be selected as 2 ≤ s ≤ n.
4: For a given s, r can be selected as 1 ≤ r ≤ (s − 1).
5: For every possible combination of n, r and s, compute the values of the objective

function defined in (7.5).
6: Choose the optimum testing plan (n∗, r∗, s∗) for which value of objective function

is minimum.

Next, we use the above algorithm and obtain the different optimum testing plans for
different values of n0 and the results are reported in Table 13. From Table 13, we draw
the following conclusions:

• As the sample size, n0, increases, the value of the objective function decreases.
• We observe that the values of the optimal plan (n∗, r∗, s∗) are different for the

same value of n0 with different prior sets. This implies that the optimal plan is
sensitive to the values of the hyper-parameters.

• It can be observed that, for almost all the cases, the optimal solution r∗ is equal
to 1. This means that no left censoring occurs in a double censoring scheme. It is
an interesting result even though we deal with double censoring.

8. Conclusions
We have considered problems of estimation, prediction and optimal plan for a family

of inverted exponentiated distributions under double censoring. We applied both classical
and Bayesian approaches to obtain inference results. We derived MLEs and approximate
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Table 13. Optimum solutions obtained based on prior sets for different values of
n0.

n0 Prior set n∗ r∗ s∗ ϕ(n∗, r∗, s∗)
10 I 9 1 6 0.032854360000
10 II 8 1 5 0.019597410000
10 III 10 2 3 0.020558200000
15 I 13 1 9 0.020153400000
15 II 14 1 10 0.008702918000
15 III 11 1 10 0.000110277200
20 I 20 1 15 0.010754500000
20 II 14 1 10 0.008702918000
20 III 11 1 10 0.000110277200
25 I 23 1 18 0.000359902400
25 II 24 1 18 0.007948447000
25 III 11 1 10 0.000110277200
30 I 23 1 18 0.000359902400
30 II 30 1 23 0.004591003000
30 III 11 1 10 0.000110277200
35 I 23 1 18 0.000359902400
35 II 32 1 25 0.000040833930
35 III 11 1 10 0.000110277200
40 I 38 1 31 0.000243234200
40 II 32 1 25 0.000040833930
40 III 38 1 38 0.000006756209
45 I 45 1 37 0.000039638330
45 II 32 1 25 0.000040833930
45 III 38 1 38 0.000006756209
50 I 45 1 37 0.000039638330
50 II 49 1 39 0.000000082493
50 III 38 1 38 0.000006756209

intervals for a member of this family of densities. Bayes estimates are evaluated under
proper and improper priors based on different loss functions. In sequel credible intervals
are constructed as well. Our numerical study suggested that MLEs show good behavior in
comparison with NIP Bayes estimates. However, estimates obtained under IP outperform
all other proposed estimates. We further predicted censored observations using a Bayesian
approach. Our finding is that prediction intervals contain censored observations of a given
data set. We have also observed that predictive intervals obtained using credible interval
have smaller interval lengths when we predict the observations just preceding the censored
(for left) observation and just succeeding the censored observation (for right). We have
observed that optimal scheme is sensitive to the value of hyper-parameters. Also the
objective function decreases as the sample size increases. Though we have considered a
SE, LINEX and GE loss functions under the Bayesian setup, yet other loss functions can
also be considered. The present work can also be extended to other censoring schemes,
such as adaptive censoring and generalized progressive first-failure censoring.
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