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* k and p are taken from prime numbers in these equations.
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1. INTRODUCTION

in terms of gener

k? + 4s > 0. The sequence of generalized Fibonacci numbers
rrence relation

Let k and s be two nonz
(Un(k, s)) is defjned by the

with the initial conditions V,(k,s) = 2 and V;(k,s) = k for n = 1. When we choose k = s = 1, these
sequences are the well known Fibonacci and Lucas sequences, respectively. The characteristic equation

—kx—s5s=0
u dﬂ—uItiseasilyseenthata+ﬁ=k,a—ﬂ=\/k2+4s,a,8=—s.
and V. (k,s) =a™+ p™

has roots a =

Binet formulas for these numbers are U, (k,s) = — ﬁ
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Diophantine equations whose solutions are generalized Fibonacci and Lucas numbers has been of interest
to mathematicians. Solutions to the Diophantine equation

x? —kxy +y? = +1

can be found in [1]. Moreover, solutions to the Diophantine equations

x2— (k2 +4)y? =+4andx? — (k2 + 1)y? = +1

can be seen in [2]. For k > 3, Keskin and Duman [3] have dealt with the Diophantine equations
x2 —kxy +y? =+(k £2),

x* — (k* = 4)y? = +4(k + 2),

x? —kxy +y? = +(k? —4)(k £ 2),

x%2 — (k2 + 2)xy + y? = —k?,

x?2 — (k2 £ 2)xy + y? = k?,

x% + 4xy — [(k? — 2)y]? = 4k>.

Let k and p be prime numbers with p > 2. Motivated by t , We solve the Diophantine equations
x? — kxy —y? = +k,

x? — (k% + 4)y? = +4k,

x? = 2pxy —y* = £2p,

x? — kxy —y? = +k(k? + 4).

2. PRELIMINARIE

(2.1)
(2.2)
(2.3)
We have givén above only the properties of the generalized Fibonacci and Lucas humbers that we will use
in the proof of our main results. More information about these sequences can be found in [4]. The following
lemmas are given in [2].

Lemma 2.1. Let k > 1 be an integer. Then, all solutions to the equation

x2— (k2 +4)y? =4

in positive integers are given by (x,y) = (Vo5 Uy,) Withn > 1.
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Lemma 2.2. Let k > 1 be an integer. Then, all solutions to the equation

x2— (k2 +4)y?=—-4

in positive integers are given by (x,y) = (Vop—1, Usp—1) Withn > 1.

Lemma 2.3. Let k > 1 be an integer with k # 2. Then, all solutions to the equation
x> = (k*+1)y* =1

Van(2k,1)
2 ’

in positive integers are given by (x,y) = ( U,,(2k, 1)) withn > 1.

Lemma 2.4. Let k > 1 be an integer with k # 2. Then, all solutions to the equati
x?2— (k* + D)y? = -1

Von—1(2k,1)

Uz (2K, 1) >

in positive integers are given by (x,y) = (

3. MAIN RESULTS

Theorem 3.1. Let k be a prime number. Then, all solutigfs to thefgquation

x2—kxy—y?=k (3.1)
in positive integers are given by

(x,¥) = (Uan-1 + Uzn, U + Uppq) OF

Proof. Assume that x? — kxy — ve integers x and y. So, x? —y? > 0. Taking u =
x+yandv =x —y, we get 4uv + k(uA\— v?). From this, we can say k|uv. Let k|v. Then we can
write that u? — v2 — 4u (o —4. be easily shown that ku — 2v > 0. The last equation
implies that (u - 2% —4. According to Lemma 2.2, we can say u — 2: =V,,—1 and

— Uan+Uzn+2Uzn—1

5 = Uyp + Uzp_1,

tUsn—2—kUsn—1 _ 2Usn—1+2Uzn—2

= Uzp-1 + Uzps.

2 2
k(u? — v2) 4k, we can write 4 (%) v—u?+v2=4andso (v + 2%) — (k2 +4) (%) = 4. Thanks
to Lemma 2.1, we can say v + 2% = V,, and % = U,, with n > 1. These equalities imply that u = kU,,
and v = V,, — 2% = Vo — 2Uzp = Uppyq + Upp_1 — 2U,,. Thus, we arrive that

_ut+v _ KUppn+Uppi1+Upn—1—2Uzn _ 2Uzpn41—2Uzn _ U —U
i 2 = 2 = Uzn+1 2ns

y = u=v _ kUsn—Usn+1=Uzpn—1+2Usn _ kUsn—(kUzn+Uzn—1+Uzn—1—2Uzn) — 2Usn—2Usn—
2 2 2 2

- UZn - UZn—l-
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Consequently, we get (x,y) = (Uzps1 — Uz, Uz — Uzn—1). Finally, considering the equality (2.1) it can
be seen that these pairs are solutions to the equation (3.1).

Theorem 3.2. Let k be a prime number. Then, all solutions to the equation
x% —kxy —y? =—k (3.2)
in positive integers are given by

(x,y) = (Uzn—1 + Uz, Uspn_z + Uzn_3) Or (x,y) = (Uzp, — U1, Uzpn—1 — Upp—3) Withn > 1.

Proof. Let (x, y) be a positive integer solution to the equation x? — kxy — y? =
and v = x, this equation is converted to the equation u? — kuv — v? = k. Theore
solutions to the last equation are (w,v) = (Usp—1 + Usp, Uspn—z + Usp_q
Usny Uz — Uzn—1). The first of these equalities leads to x = v = Uyy—1 + U,./%

u=kx+y
us that the
(U2n+1 -
y=u—kv="U +Up-1—kUzp1 —kUzn2 = Upp + Usp3
and so (x,y) = (Uyp—1 + Uzp—z, Usn—2 + Usp—3). Considering thgecon hese edualities, we obtain
X =7V = UZTl - UZTl—l and

y=u—kv="Uu1 — U — kUzy + kUzp1 = U,

oreover, takin
(3.2).

and so (x,y) = (U2 — Uzp—1, Uzn—1 — Uzn_2).
shown that these pairs are solutions to the equ

account the equality (2.1) it can be

Theorem 3.3. Let k be a prime number. lutions to the equation

x?— (k2 +4)y? =4k (3.3)

in positive integers are given by

kuv — v =k. A eorem 3.1, we can say that (u,v) = (Uyp—1 + Usp, Uzpn—g + Uzp_q1) OF
(u,v) ~— U,,_1) are all solutions to the last equation. Firstly, let x+2ky =U,, +
U,

x =2Up, F1+2Un-1 —kUzpn—z = Uppn + Uz + Uppz + Uz = Vo1 + Vo

and y = v =Uy,,_1 + Uzp_2, We can deduce that (x,y) = (Von—1 + Von_2, Uzn_1 + Uzn_2). Secondly,

x+ky

put =

= Uypqq1 — Upp and v = Uy, — U,p,— 1. Therefore, we can write
X = Uzns1 + Uznp1 = kUzpn — Uz — Uz + kU = Uzpyr + Uzt — Uz = Uz = Vo = Vo
y =v = Uy, — Uy, and so we find that (x,y) = (Vap, — Van—1, Usn — Uzn—1). The equalities (2.1) and

(2.3) show that (Vo,—1 + Von—2, Usn—1 + Uzn_3) and (Vo — Vop_1, Usp — Usp—q) are solutions to the
equation (3.3).
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Since the proof of the following theorem can be derived from the previous one, its proof has been omitted.
Theorem 3.4. Let k be a prime number. Then, all solutions to the equation

x? — (k? + 4)y? = -4k (3.4)
in positive integers are given by

(x,¥) = (Vanz + Van_3, Uz + Upn_3) Or (x,y) = (Van_1 — Von—2,Upn_1 — Upp—p) Withn > 1.

Theorem 3.5. Let p be a prime number withp > 2 and U,, = U,,(2p, 1). Then, all solutiongfto the equation

x%2 —2pxy —y%?=2p (3.5)
in positive integers are given by

(x,¥) = (Uzp—1 + Uz, Uz + Uzp_q) O (x,y) = (Uzny1 — Uz, Uy

Proof. Suppose that (3.5) is satisfied for some positive integers equation, we can
conclude that x? — y? is even integer. So, x and y are the same,fa +Hand v =x —y. We
have that 4uv — 2p(u? — v?) = 8p. Choosing u = 2a and ab —p(a® —b%) =p.
This equation implies that p|2ab. Since p is odd, we ¢ y , let p|la. Hence, we get

a

2
2 (;) b — a? + b? = 1, which implies that (b + %) ccording to Lemma 2.3, there

is an integer n > 1 such that b +§ = w ands = U,,(2p, 1) MAys, we can write u = 2a = 2pU,, =

kU,, and v = 2b = V,,, — 2U,,,. We find that

_ u+v _ kU2n+V2n—2U2n _ kU2n+U2n+1

x = — Uan+1+Usnsa1—2Usn _
2 2

2 - U2n+1_U2nv

u—-v _ kUZn_U2n+1+2U2n _
2 2 -

1+2Uzn _ 2Uzn—2Uzpn—1
2

y = =Uyp —Uzp_1.

Let p|b. So, 2ab — p(g (g) —a’?+b*=1or (a —%)2 - (p*+1) (g)z = -1,

A4 tells us that a —g = VZ"%(“) and % =Uyp_1(k, 1) forn > 1.

Von— Von—1+2Un—
pat b = pU,,_, and a = 2’2‘ L+ Uppoq = % In these cases,

Conversely, if (x,y) = (Uzp—1 + Uz, Uz + Uzn_1) OF (x,y) = (Uzns1 — Uz, Uzn — Uzn—1), then by
using (2.1), it can be seen that the equality (3.5) is satisfied.

Since the proof is similar to the previous one, we leave the proof of the following theorem to the readers.
Theorem 3.6. Let p be prime number with p > 2. Then all solutions to the equation
x%2 = 2pxy —y?=-2p (3.6)

in positive integers are given by
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(x,¥) = (Uan — Ugn-1,Uzn_1 — Uzp—2) Or (x,¥) = (Uzp + Uzpnyq, Uzno1 + Uzn) Withn > 1.

Theorem 3.7. Let k be a prime number and k? + 4 be square-free. Then, all solutions to the equation

x%2 —kxy —y? = —k(k?® + 4) (3.7)
in positive integers are given by

(x,y) = (Vang1 = Van, Van — Van—1) o8 (x,y) = (Vo + Va1, Vanoq + Van—p) withn > 1.

Proof: Assume that the equation (3.7) holds for positive integer x and y. In this case, x —¥Y is a positive

2_,.2
integer. Taking u = x 4+ y and v = x — y, we conclude that uv — k (” - ) = d so k|uv.
Since k is prime, we obtain k|u or k|v. Firstly, let k|u. Thus, we find that v? +
- 2u 2 2 u 2 2 - 2 . 2
i.e., (v + ?) — (k" +4) (E) = —4(k* 4+ 4). Since k* + 4 is a squaregffee integer, t k* +4lv +
27” . Then, we have v + Z?u = (k? + 4)a for positive integer a. If th

2
equation, we get (%) — (k? + 4)a? = 4. From Lemma 2.1, we
1. These equalities imply that u = kV,,, and

v=(k*+4)a—- 2% = (k% + 4) Uy — 2Vy,.

Thus, by a simple calculation, the values of x and vy are found to be

u+v _ kV2n+V2n+1+V2n_1—2V2n _ ZVZn

=7 2 Van,
y= % — kVZn_V2n+1;V2n—1+2V2n Vol Vo1,
respectively. Secondly, | i ave that 4u (g) —u? +v? = —4(k? + 4), it follows that

(u—%)z—(k2+4

is square-free, - ?U which leads to u — 2?” = (k? + 4)a. Here a is positive integer.

Hence, we obtain 2 = —4, Thanks to Lemma 2.2, we can write% =V,p1anda =U,,_4
forn >
— 2Von+2Von—
x = = 2n22n1:V2n+V2n—1a
y = _ n—2tVon-1—kVon—1 _ 2Von_2+2Von_1 __ Vo1 + Von_s
- = - - V2n- n-2-

2 2

On the contrary, if (x,y) = (Van+1 — Van, Von = Vone1) OF (x,¥) = (Vo + Vo1, Vanq + Van—2), then it
can be shown that the equality (3.7) is satisfied by (2.2).

We neglect the proof of the following theorem since its proof can be derived from the previous one.
Theorem 3.8. Let k be a prime number and k? + 4 be square-free. Then, all solutions to the equation

x% —kxy —y? = k(k? +4) (3.8)
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in positive integers are given by

(x,y) = (Vang1 + Van, Van + Van_q) or (x,y) = (Vo — Va1, Van—1 — Van—2) Withn > 1.

4. SUGGESTIONS

In this study, we deal with some Diophantine equations. The case where k is not a prime number in these
equations can be investigated separately as a new study. For this, the case where k is the product of two
odd primes can be considered first. However, we believe that finding a general solution will be difficult.
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