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Abstract
The aim of this research is to examine and evaluate the reflection of mathematical knowledge on examples 
of ancient mosaic art. As a result of the comparison between history of mathematics and art of mosaics, a 
connection has been made between the well-known theorems and patterns through the nature of the forms. 
For this purpose, patterns like swastika, meander, spiral and cube forms, as well as the forms that can be 
produced from the graph related to the lunar area calculation of Hippocrates of Chios have been analyzed. In 
addition, analyzes, discussions and evaluations on the identification of the forms similar to the semi-regular 
solids of Archimedes and the hexagons of Pappus of Alexandria have been presented. It is thought that the 
methods used and the information obtained in this study will contribute to the research of mosaic art and 
history of mathematics, the documentation and evaluation of archaeological artifacts, the museology practices 
and conservation studies.
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Öz
Bu çalışmanın amacı, Antik Dönem’de matematik bilgisinin mozaik sanatına yansımasının incelenmesi ve 
değerlendirilmesidir. Matematik tarihi ve mozaik sanatının karşılaştırılması sonucu, en bilinen matematik 
teoremleri ve mozaik motifleri arasında formların doğası üzerinden bir bağlantı kurulmuştur. Örneğin svastika, 
meander, spiral, küp ve prizma formları ve Khioslu Hippokrates’in lunar alanlar hesabı ile ilgili grafikten 
üretilebilen formlar analiz edilmiştir. Ayrıca, İskenderiyeli Pappus’un altıgenleri ve Arkhimedes’in yarı 
düzgün katıları ile benzerlik gösteren formların tespitine yönelik analizler, tartışmalar ve değerlendirmeler 
sunulmuştur. Bu çalışmada kullanılan yöntemlerin ve elde edilen bilgilerin; mozaik sanatı ve matematik tarihi 
araştırmalarına, arkeolojik eserlerin belgelenmesine ve değerlendirilmesine, müzecilik uygulamalarına ve 
konservasyon çalışmalarına katkı sağlayacağı düşünülmektedir.

Anahtar Kelimeler: Matematik, geometri, mozaik, teorem, desen.

DOI:	10.26658/jmr.1376705	(Research	Article	/	Araştırma	Makalesi)	

*	 	Erhan	Aydoğdu,	Dokuz	Eylül	University,	Department	of	Archaeology,	Tınaztepe	Campus,	Buca-İzmir,	Türkiye.	 https://orcid.org/0000-0001-
6480-0291.	E-mail:	erhanabdal@gmail.com	

	 Ali	Kazım	Öz,	Dokuz	Eylül	University,	Department	of	Archaeology,	Tınaztepe	Campus,	Buca-İzmir,	Türkiye.	 https://orcid.org/0000-0002-
3005-323X.	E-mail:	ali.oz@deu.edu.tr

https://orcid.org/0000-0001-6480-0291
https://orcid.org/0000-0002-3005-323X


40				Erhan	Aydoğdu	-	Ali	Kazım	Öz

1. Introduction
The initial step towards studying geometric forms in mosaic art involved 
compiling comprehensive catalogs that allowed for the observation of the 
chronological development of mosaics. Through this cataloging process, the 
forms that comprise the geometric motif category were able to be distinguished 
and	defined.	Efforts	to	create	motif	terminology	and	study	the	material	necessary	
to analyze geometric patterns on ancient mosaics have been ongoing since the 
1930s, with earlier studies also being present. From the 1930s to 1963, research 
conducted in this area served as the preparatory process for the recognition 
of mosaic art as a discipline. These studies highlighted the importance of 
distinguishing,	defining,	and	analyzing	geometric	forms	in	patterns,	comparing	
similar	 or	 varying	 forms	 in	mosaics	 from	 different	 regions,	 and	 noting	 local	
styles,	leading	to	the	definition	of	workshops	and	investigation	of	interactions	
between	 them	 (Aydoğdu	 2022:	 145).	 Since	 1963,	 with	 the	 first	 international	
colloquium on Greek and Roman mosaics, and particularly from around 2000 
to 2022, a mature working method has emerged for solving geometric forms, 
involving geometrical reproduction of basic ornament forms, obtaining complex 
ornaments with a grid and element pattern approach (Décor I: 10), suggesting 
algorithms for repetitive use, and comparing variant forms with geometric 
solutions.	However,	this	working	model	is	insufficient	in	determining	the	extent	
and depth of the relationship between mosaic art and mathematics, as well as 
establishing the connection of geometric patterns with the history of mathematics 
and	mathematical	methods	(Aydoğdu	2022:	13-17).

In the present circumstances, the weakest aspect of studies on the relationship 
between mosaic art and mathematics is the link between the history of mathematics 
and mathematical methods in analysis. The questioning of the relationship 
between geometric mosaics and mathematical knowledge is considered to be the 
weakest link in the chain of these studies.

Geometric mosaics derive their content from geometry and are named in 
reference to it, leading to questions about the relationship between geometric 
ornaments and knowledge of geometry. The mosaicist is the actor in this 
relationship, but considering the various stages of design and construction, 
the	 term	 “mosaicist”	 is	 used	 instead	 of	 specific	 distinctions	 such	 as	 “mosaic	
artist”, “mosaic master”, or “mosaic worker”. How did the mosaicist establish 
a	relationship	with	geometry,	and	did	they	possess	scientific	knowledge	of	it?	
There are three possible answers to this question: “mosaicist knew geometry”, 
“mosaicist did not know geometry”, or “mosaicist had only practical geometry 
knowledge”. However, there is no clear record from ancient times to the present 
to	definitively	prove	which	of	these	propositions	is	correct.	There	are	no	records	
showing that a geometric mosaic was designed using geometry and its material 
equivalent. Therefore, we can only consider these propositions as possibilities.

Mosaicists took their place in history. In one hand, we have the geometric 
mosaics	left	over	from	them,	and	in	the	other	hand	we	have	scientific	geometry.	
Based	on	these	two	things,	can	we	determine	which	of	these	propositions	might	
be	true?	How	and	to	what	extent	can	we	detect	it?	These	are	the	fundamental	
questions that raise this study. In the context of the fundamental questions, the 
subject	of	 this	 study	 is	 the	 identification	and	evaluation	of	mosaic	decoration	
showing parallelism with mathematical ideas, theorems, problems and related 
mathematical	 graphics	 in	 ancient	 Greek	 mathematics.	 Since	 the	 subject	 of	
the study embodies the problems, discussions and evaluations related to the 
determination of the relationship between mosaic art and mathematics, with 
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examples showing the parallels between Greek mathematics and geometric 
mosaics, the title of the study was chosen as “Determination of the mathematical 
theorems on ancient mosaics”.

The analysis of swastika, meander, spiral forms, and quatrefoil have been 
conducted in this study1 using mathematical ideas such as measuring the 
perimeter	 of	 a	 polygon	 and	 the	 graph	 attributed	 to	Hippocrates	 of	Chios	 for	
calculating the areas between circle arcs. The study also includes analyses and 
discussions on identifying cube forms, Archimedes’ semi-regular solids, and 
Pappus’ hexagons.

Through the nature of the forms, this study establishes a connection between 
mosaic art and the history of mathematics, pointing to mathematics as the 
inspiration	 for	 the	 decorative	 repertoire.	 It	 offers	 insight	 into	 the	 relationship	
between geometry and geometric ornament.

2. Method
In terms of providing the basis for theoretical analysis and in order to observe 
the relationship between mathematics and mosaic in ancient period, history of 
mathematics and history of mosaic art were brought together and the parallels 
between their developments were evaluated.

Squaring	 the	 circle,	 dividing	 an	 angle	 by	 three	 (trisection),	 and	 doubling	 the	
cube are kown as the three famous problems of the ancient period. There are 
problems which are the extensions of these problems such as drawing polygons 
within the circle and doubling the square. In addition, there are the problems of 
not so famous but special in terms of mathematics. The solutions put forward 
by the ancient mathematicians regarding these problems and the graphics of the 
solutions were compared with the ornamental repertoire of mosaic art through 
catalogues. Relationships between the graphics and geometric ornaments were 
investigated. 

3.	Analysis	and	Comparison

3.1.	Mathematical	Structure	of	Swastika,	Meander	and	Spiral	Forms
The length of a line segment is equal to its own length. The length of the broken 
line consisting of two line segments is the sum of the lengths of the segments 
forming the broken line. The perimeter of a triangle is the sum of the lengths of 
the	line	segments	forming	the	sides	of	the	triangle.	Only	itself	is	sufficient	for	a	
line segment. The line segment is equal to itself. To calculate the total length of 
two line segments forming a broken line, the two lines are placed side by side on 
the same straight line and added end to end. For this operation, the line segment 
is transferred with a compass on the linear line carrying the other line segment to 
which it will be attached. Thus, the total length of the broken line is represented 
by a line segment equal to the sum of the individual lengths of the lines forming 
this broken line. In the case of the perimeter of a triangle, the situation is the 
same as on the broken line. We don’t care about the numerical equivalent of 
length, since we set aside the numerical measure. We are only concerned with 
what the perimeter of the triangle is, and how long the straight line representing 
that length is. When the side lengths that make up the triangle are added end to 

1	 This	work	produced	from	the	doctorate	thesis	titled	as	“The	Reflection	of	the	Mathematic	Knowledge	
on	the	Arts	of	Mosaic	and	Sculpture”.	The	thesis	was	supported	by	Dokuz	Eylül	University	Scientific	
Research	Coordination	Unit.	Project	Number:	2018.	KB.	SOS.	009.
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end on a linear line, the length equal to the sum of the side lengths of the triangle 
is obtained. A three-step sequence of operations is performed to geometrically 
calculate the perimeter of the triangle (Fig. 1).

The method applied to the broken line and the triangle can be applied to a square. 
In this case, there are four edges to transfer and four transfer operations. The 
sides |AB|, |BC|, |CD|, and |DA| are extended in the direction A, B, C, and D 
respectively. The length |BC| is transferred to the axis obtained by extending the 
|BC| in the direction B, and the point T1 is marked. The length |CT1| is transferred 
to the axis obtained by extending the |CD| in the direction C, and the point T2 
is marked. The length |DT2| is transferred to the axis obtained by extending the 
|DA| in the direction D, and the point T3 is marked. The length |AT3| is transferred 
to the axis obtained by extending the |AB| in the direction A, and the point T4 is 
marked. The length |AT4| is equal to the perimeter of the square ABCD. These 
transfer	operations	leave	behind	four	arcs.	Their	radii	are	different,	and	they	are	
added end to end. The broken line connecting the points A, T1, T2, T3 and T4 
accompanies the arcs (Fig. 2).

Figure 1
Length transfer (drawing by authors).

Figure 2
Periphery of a square (drawing by authors).
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Once the transferred lengths are distinguished from each other, we can see which 
length goes where. When the inner tangent circle of the square is included in the 
graph, the swastika and meander pattern becomes visible. If the loops on the 
extended edges are continued and expressed in contrasting colors, the geometric 
structure that explains the meander and swastika patterns is obtained. Line 
segments that make up the pattern are the segments used in the length transfer. 
Therefore, the swastika pattern is the main component and the main result of 
this geometric structure (Fig. 3). The meander pattern consists of areas bounded 
by the loop lines that form the swastika. The meander is therefore a secondary 
consequence of the process of length transfer (Fig. 4). Meander and swastika are 
not the only consequences of the length transfer. The broken line set formed by 
the line segments performing the length transfer is accompanied by a curve set 
that imitates the spiral, which is the combination of circle arcs.

The broken line set initiated from one corner of the polygon, when applied to 
all corners, will accompany each broken line set with a pseudo-spiral. There is 
no doubt that these so-called spirals are not really spirals and can be called as 
spirals for the sake of convenience. It is reached from the triangle to the triangle 
spiral. And consequently, the square spiral is reached from the square, and the 
pentagon spiral is reached from the pentagon (Fig. 5a-c). If the spiral forms 
are continued towards the center of the polygon, central spirals are obtained 
(Fig. 5d-f). If clockwise spirals are considered together with counterclockwise 
spirals,	symmetrical	spirals	are	obtained	(Fig.	5g-i).	Centrally	symmetrical	spiral	
structures can be extended to hexagon, octagon and decagon structures.

According to these results, the swastika and meander patterns are linear results 
of the length transfer process. The curvilinear result of the transfer process 
is the spiral form. Linear results originate from the ruler, while curvilinear 
results originate from the caliper. Another example of this is that the regular 
hexagon drawing also includes the rosette motif. When the length transfer 
processes applied to polygons such as triangle, square, hexagon, and octagon are 
continued	by	increasing	the	number	of	polygon	sides	towards	infinity,	the	result	
is	Archimedes’	spiral	(Aydoğdu	2022:	168-181)	(Fig.	6).

Figure 3
Circumference	of	square	and	swastika
(drawing by authors).

Figure 4
Circumference	of	square,	meander	and	
swastika (drawing by authors).
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Figure 5
Spiral	forms	(drawing	by	authors).

Figure 6
Archimedes’	Spiral	(Heath	1897:	179).
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3.2.	Hippocrates	of	Chios	and	the	Lunar	Fields
Hippocrates	 of	Chios	 (circa	 430	BC)	 is	 best	 known	 for	 three	 brilliant	works	
such	as	works	on	lunar	fields	(quadrature	of	lunes),	doubling	the	cube,	and	his	
lost work on the elements of geometry.	The	first	of	 these	brilliant	studies,	 the	
calculation	of	lunar	fields,	is	thought	to	have	emerged	in	relation	to	the	squaring 
of the circle. His computational work is aimed at calculating areas between 
arcs of circles and is an early example of investigating areas bounded by more 
complex	 curves	 (Heath	 1921a:	 183-200;	Boyer	 1968:	 72-74;	Aydoğdu	 2022:	
182-185).

Information	 about	 Hippocrates’	 work	 on	 lunar	 fields	 comes	 from	 two	 main	
sources.	The	first	of	these	sources	is	the	information	conveyed	by	Simplicius,	
who lived in the 6th century AD, from Eudemos, who was well-known around 
320	BC.	The	second	source	is	the	information	transferred	from	the	Aristotelian	
commentator Alexander of Aphrodisias, which is well-known around AD 200 
(Boyer	1968:	73).	The	starting	point	of	the	calculation	of	the	areas	between	the	
circle arcs is seen as the segments obtained by cutting the circle with a straight 
line. The starting point of the study is expressed by the following proposition: 
“Segments	of	circles	with	the	same	ratio	of	one	to	the	other	(cut	by	the	same	ratio)	
are proportional to the squares of their bases” (Heath 1921a: 187). The historical 
roots	of	the	diagram	go	back	to	the	5th	century	BC,	since	the	diagram	given	by	
Eudemos or Alexander is considered to be the earliest examples of curvilinear 
areas in Greek mathematics and these examples are attributed to Hippocrates of 
Chios.	The	diagram	must	have	pioneered	other	diagrams	that	were	directly	its	
own consequence. Therefore, it is valuable to reveal the diagram’s relevance to 
the elemental pattern concept of mosaic art.

The	graph	attributed	to	Hippocrates	of	Chios,	in	its	current	form,	corresponds	
to a quarter of a circle. In order to obtain a complete view, the relationship of 
the	lunar	field	with	the	quarter	circle	has	been	reflected	to	the	other	quarters	of	
the	circle,	so	 that	 the	 lunar	field	calculation	has	extended	to	 the	whole	circle.	
The result obtained reveals the lunar four leaves form or four spindle leaves, 
namely quatrefoil (Décor II: 42) (Fig. 7). The resulting lunar four leaves form 
can be used repetitively on the horizontal or vertical axis as an elemental pattern. 
Repeated use reveals another elemental pattern, the form of four lunar circles 
within a square or circle of four spindles (Décor II: 38; Vargas Vázquez 2017: 
347-364	figs.	2-3).

3.3.	Platonic	Solids	and	Cube	Examples
In the Timaeus dialogue, Plato tells his thoughts on the creation of the ideally 
abstract universe and beings as material reality, and the realization of material 
beings by ideal forms. Firstly, the requirements for the construction of a visible 
and tangible universe are determined (Plat. Tim. 31 b 4-32 c 4). The maker of 
the universe	 begins	by	 shaping	each	of	 the	 four	 elements	 (fire,	 air,	 earth	 and	
water) that will make up the universe to be as complete and perfect as possible 
(Plat. Tim. 53 b 5-6). The maker determines three regular polygons as equilateral 
triangle, square, and pentagon, as the parts that will form the solid bodies to 
instantiate the elements. The rules that will work in the formation of the solid 
that will represent the four basic elements and the universe as a whole, are that 
the number of surfaces joining at each corner of the object is the same and 
each surface is a regular polygon. As a result of these evaluations, the model 
chosen for the fire is a regular four-faced (tetrahedron), each facet of which is 
equilateral triangle. For the air, the eight-faced (octahedron), each facet of which 

Figure 7
Extending the lunar area account to the circle
(drawing by authors).
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is equilateral triangle, is chosen. The water is represented by the regular twenty-
faced (icosihedron), each facet of which is equilateral triangle. The earth will be 
represented by the regular six-faced (hexahedron, namely cube), each facet of 
which is square. Finally, the dodecahedron is chosen to represent the universe as 
a whole, as it is the shape closest to the sphere (Plat. Tim. 55 c 4-6). Thus, Plato 
determines	the	ideal	forms	of	the	elements,	namely	the	five	regular	solids,	that	
will	bring	into	being	complex,	shapeless	and	formless	beings	(Aydoğdu	2022:	
60-73, 195-198) (Fig. 8).

Whether these solids were introduced by Plato or earlier by Pythagoras or the 
early	Pythagoreans	is	debatable.	Based	on	Plato’s	Timaeus, the earliest authority 
on	the	five	solids	is	thought	to	be	Plato,	and	these	solids	are	named	as	the	Platonic	
solids (Heath 1921a: 158).

In the 13th book of  Euclid, the method of constructing the octahedron, hexahedron 
(cube), icosihedron, and dodecahedron in the sphere is given, respectively (Eukl. 
elem.	XIII.	6.	14-17).	An	indefinite	dated	marginal	note	(scholium)	in	Euclid’s	
book	states	that	Pythagoreans	knew	only	three	of	the	five	solids	as	the	tetrahedron,	
hexahedron, and dodecahedron, and that the octahedron and icosihedron were 
introduced by Plato’s friend Theaetetus	of	Athens	(414-369	BC)	(Boyer	1968:	
715). Heron of Alexandria (AD 10-85) has also gave his calculations for Plato’s 
solids in the second book of his Metrika, in which he calculated the volumes of 
solids (Procl. On Euclid I;	Eukl.	elem.	XIII.	438-439;	Heath	1921a:	220;	Boyer	
1968: 54, 159).

In Décor II (Décor II: pls. 287b, 294b), there are examples of cube-in-hexagonal 
representation. An ornament from Gamzigrad has been described as a hexagonal 
labyrinth of 3 lozenge-shaped sections (Décor II: 128 pl. 321c). An ornament 
from Ouzouer-sur-Trézée shows the cube form in four hexagons around a square 
and the use of a four-pointed star in the spaces between the cubes (Décor II: 
230-231 pl. 409d). Another example from Ouzouer-sur-Trézée demonstrates the 
repeated	use	of	the	form	introduced	by	Kepler	and	the	hexagonal	spaces	between	
them.	The	star	of	six	 lozenges	 is	a	structure	highlighted	by	rhombuses.	Since	
only	the	parts	of	the	star	form	are	colored	in	Kepler	form,	the	parts	that	allow	
the perception of the cubes combine to form hollow hexagons. Thus, instead of 
three-dimensional cubes, two-dimensional rectangular leaves forming the star 
are brought to the fore (Décor II: 251 pl. 423b) (Fig. 9).

3.4.	Semi-regular	Solids	of	Archimedes
The	first	of	the	ideas	that	play	a	role	in	the	construction	of	the	Platonic	solids	
is	the	filling	of	space	with	the	repetitive	use,	without	spacing	in	between	them,	
of the same solid; and the second thought is that each surface of the solid is 
made from the same polygon. Platonic solids are expressed as regular solids by 
referring to these properties. Archimedes removes the constraint of making all 
the surfaces of the solid from the same polygon and allows the surfaces of the 
solid	 to	be	made	from	different	 regular	polygons.	 In	addition,	he	changes	 the	
condition that there should be no spacing between the repeated use of solids 
and accepts that there may be spacing. These tolerances are the reasons for the 
transition from being regular to being semi-regular	 (Aydoğdu	 2022:	 98-101,	
199).

Pappus of Alexandria (AD 290-350) states that Archimedes examined 13 semi-
regular solids apart from Plato’s regular solids (Thompson 1925: 181-188). 
Solids	 became	 the	 focus	 of	 attention	 again	 in	 the	 Renaissance	 Period.	 Luca	
Pacioli (AD 1445-1514), in the Divina Proportione (Divine Ratio) of AD 1509, 

Figure 8
Platonic solids (Pacioli 1509: pls. I, II, VII, 
VIII, XV, XVI, XXI, XXII, XXVII, XXVIII).

Figure 9
Examples of the cube forms and their 
repetitive use (Décor II: pls. 321c, 409d, 
423b).
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gives the ratio later known as the golden ratio, polygons, and drawings of solids 
attributed to Leonardo Da Vinci (Pacioli 1509: pls. I-II, VII, VIII, XV-XVI, 
XXI-XXII,	 XXVII,	 XXVIII;	 Taylor	 1942).	Albrecht	Dürer	 (AD	 1471-1528),	
in his book Underweysung (Unterweisung) der Messung mit dem Zirkel und 
Richtscheyt, published in 1525, gives a drawing of seven of the Archimedes 
solids.	Five	solids	given	by	Pacioli	are	also	among	these	drawings	(Dürer	1525:	
32,	34,	93).	Danielle	Barbaro	(AD	1513-1570),	who	was	also	the	commentator	
of Vitruvius, gives drawings of eleven of the Archimedes’ solids in his book La 
Pratica della perspettiva,	published	in	1568	(Barbaro	1568).	Johannes	Kepler	
(AD 1571-1630), in his book Harmonicus Mundi, published in 1619, shows 
how solids could be drawn, and gives their names used today. While examining 
the	method	of	constructing	solids,	Kepler	also	considers	the	ability	of	regular	
polygons	to	span	the	two-dimensional	plane	without	spacing.	Kepler’s	graphs	
show	that	the	first	designs	of	three-dimensional	objects	were	developed	in	the	
two-dimensional	plane,	and	then	were	dealt	with	the	third	dimension	(Keppleri	
1619:	61-65	[Libri	II.	Prop.	XXVIII];	Kepleri	1864:	123-126)	(Figs.	10-12).

The mosaics provide examples showing similarities with Archimedes’ semi-
regular solids. Décor II	 allows	 to	 observe	 three	 of	 these	 examples.	The	 first	
example	in	catalog	order	comes	from	Brescello	(Italy)	(Fig.	13a).	This	example	
is	defined	in	Décor II	as:	“Centralized	pattern,	in	a	circle	and	around	a	hexagon,	
in 2 registers, of 6 squares adjacent to the hexagon, and of 12 squares contiguous 
to the circle, all of the squares contiguous by a point and forming lozenges and 
triangles (here outlined).” (Décor II: 189 pl. 375b). The second example of this 
combined	use	is	the	example	of	Sainte	Colombe	(France),	which	is	defined	as	the	
development	of	the	Brescello	example	(Décor	II:	190	pl.	376a).	Enriching	the	
insides of squares and rhombus patterns by painting them in contrasting colors 
is	considered	as	a	state	of	development	(Fig.	13b).	Geometrically,	its	difference	
from	the	Brescello	example	is	that	the	circle	surrounding	the	pattern	is	expanded	
a	little	more,	and	the	empty	spaces	as	a	result	of	the	expansion	are	filled	with	
triangles. It should be noted that the upper base of the Rhombici cuboctaedron 
is also square. The third example comes from the Mataró (Espagne) (Décor 
II: 190 pl. 376b). The squares have been decorated with guilloche patterns. 

Figure 10
Archimedes’ semi-regular solids (solids 1-7)
(Keppleri	1619:	Libri	II.	64).

Figure 11
Archimedes’ semi-regular solids (solids 8-13) 
(Keppleri	1619:	Libri	II.	62).

Figure 12
Polyhedrons	(Keppleri	1619:	Libri	II.	58-59).
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Geometrically,	 its	 differences	 from	 the	 Brescello	 example	 are	 that	 the	 circle	
surrounding	 the	pattern	 is	 further	 expanded	compared	 to	 the	Sainte	Colombe	
example,	 and	 the	 empty	 spaces	 as	 a	 result	 of	 the	 expansion	 are	filled	with	 a	
square	organization.	The	most	obvious	difference	is	that	the	upper	base	of	the	
Rhombici cuboctaedron has been depicted as a hexagon instead of a square (Fig. 
13c).
The pattern is geometrically composed of a hexagon in the center, equilateral 
triangles that combine with the sides of the hexagon, each side of which carries 
a square, and a circle that carries this geometric structure. In the structure 
consisting of hexagons, squares and triangles, the spaces between the squares 
produce motifs in the form of rhombuses. The construction of the pattern begins 
with	a	regular	hexagon.	Setting	up	a	square	on	each	side	of	the	hexagon	is	the	
second step. Equilateral triangles, the sides of which are equal to the sides of the 
square,	are	added	to	the	squares.	Squares	are	set	on	the	two	exposed	sides	of	these	
equilateral triangles. The ends of the last squares touch the circle surrounding 
the	pattern.	The	result	obtained	is	the	geometric	texture	of	the	Brescello	sample	
(Fig. 14). 

Figure 13
Examples	from	Brescello,	

Sainte	Colombe,	and	Mataró
 (Décor II: 189 pl. 375b, 376a, b).

Figure 14
Geometric	construction	of	Brescello	
example (drawing by authors).
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The	geometric	texture	of	the	Brescello	sample	seems	to	be	related	to	the	semi-
regular	solids	of	Archimedes	for	two	reasons.	The	first	reason	is	that	it	shares	the	
same plan with the Rhombici cuboctaedron, one of Archimedes’ 13 semi-regular 
solids. The Rhombici cuboctaedron has 26 faces consisting of 8 triangles and 18 
squares	(Keppleri	1619:	Liber	II	fig.	10).	Each	triangle	connects	three	squares.	
Its	view	from	six	directions	is	octagonal.	Namely,	the	lateral	borders	of	the	solid	
have an octagonal view from six directions: top, bottom, left, right, opposite and 
rear. It has a square at its lower base, eight squares at its equator, and the upper 
base is a square plane. Equatorial squares are connected to the upper base by 
squares in the midline and by triangles in the lateral lines. Thus, the equatorial 
squares are connected to the upper base by four triangles at the four corners and 
four squares at the midline.
In perspective, the part that is distinguished by sharp lines is 3 of the 8 squares 
of the equator, a square connecting the left and right of these three squares to 
the upper base, and a triangle between these connected squares. The perspective 
view,	in	this	context,	in	Kepler’s	drawing	covers	the	middle	line	and	the	top	of	
the drawing. This perspective view is repeated six times around the hexagon in 
the	center	of	the	motif	in	the	Brescello	example.	In	each	iteration,	the	squares	
and triangular structure in the perspective image are preserved, while the patterns 
that adorn the surface of these shapes vary, suggesting that the solid is given a 
perspective	view	from	a	different	angle	each	time	(Fig.	15a,	b).

Figure 15
Semi-regular	solids	and	

Brescello	Example	(drawing	by	authors).



50    Erhan	Aydoğdu	-	Ali	Kazım	Öz

In	Kepler’s	drawing,	except	the	middle	one	of	the	three	squares	on	the	equator	
of the solid;  the other two squares on the equator, the two connecting squares, 
and	the	upper	base,	a	total	of	five	squares	are	in	the	form	of	a	rhombus.	In	the	
Brescello	example,	the	three	squares,	the	middle	square	and	the	two	connecting	
squares are perfect squares, while the squares to the left and right at the equator 
are rhombic, and the upper base is a rhombus truncated by the circle. The 
Brescello	example	more	closely	models	 the	actual	structure	of	 the	solid	 (Fig.	
15a, b).

Each triangle connecting the equatorial squares to the upper base is coincident 
with a square on each of its three sides. This connection form is also seen in the 
Rhomb Icosidodecaedron. In this solid, in front view, a pentagon is connected to 
the surrounding decagon by a similar connecting line. In the midline, the edge 
of the decagon extends upwards with a square. A triangle that accepts the upper 
edge of the square as the base is connected and the remaining two sides of this 
triangle unite with a square to reach the pentagon at the top. From the decagon 
upwards, the square-triangle-two square-upper base connection is the same as 
the	Brescello	example	(Fig.	15c,	d).

The exit from a triangle located at the equator of the Rhomb Icosidodecaedron 
takes	place	with	squares	added	to	its	sides.	In	the	Brescello	example,	 there	is	
a hexagon at the equator, and the exit from the hexagon takes place by adding 
squares to the sides of the hexagon. According to the type of solid, the number of 
upper bases targeted by the exit from the equator varies according to the number 
of sides of the geometric shape that is the exit point.

In the Rhomb Icosidodecaedron structure, since the exit from the center starts 
from the triangle, the triangular region with concave sides and truncated ends, 
which shaped by the connection lines of the exit directions from the equator and 
accepting the target geometric shape as the end region is in three direction. In 
the	Brescello	example	(Blake	1930:	113	pl.	41.4),	since	the	exit	from	the	center	
starts from the hexagon, this region is in six directions but symmetrically in 
three directions. The Rhomb Icosidodecaedron	and	 the	Brescello	example	are	
therefore structurally similar (Fig. 15e, f). According to these evaluations, the 
Brescello	sample	combines	two	of	the	Archimedes	solids	in	the	same	plane.

The	Brescello	example	can	be	read	as	solid	views	repeated	around	the	central	
hexagon.	Couldn’t	another	polygon	be	chosen	instead	of	the	central	hexagon?	
Of course it could be chosen. Each of these choices can be formulated as “central 
polygon-square-triangle-squares”. We can see some of the examples that may 
arise	depending	on	the	selection	of	polygons	in	Kepler’s	drawings.	For	example,	
in the arrangement around the central triangle, solid appearances lead to 
pentagonal spaces (Fig. 15c). In the case of arranging around the central square, 
it can be predicted that the lozenge-shaped forms that give the perspective view 
of the solid shape will be distorted. The case of using a central pentagon contains 
difficulties	 specific	 to	 the	 regular	 pentagon	 (Fig.	 15c).	 The	 regular	 heptagon	
falls outside the polygons that can be constructed with an measureless ruler and 
compass. In the case of using a central octagon, it can be predicted that the 
lozenge-shaped	forms,	which	give	three-dimensional	effect,	will	be	compressed	
and	 the	organization	will	 be	difficult.	The	case	of	using	 a	 central	nonagon	 is	
also	the	same	as	using	a	heptagon.	Given	these	possible	options,	the	Brescello	
example represents the option of arranging around a regular hexagon as a 
reasonable option.

Considering	the	geometric	plan	of	the	Brescello	example,	the	Sainte-Colombe	
and Mataro examples are not faithful to this plan. In order to obtain variants 
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with faithfully to the plan, it is expected that the circle surrounding the model 
is	kept	constant	and	the	details	are	modified.	However,	this	has	not	been	done.	
The	plan	itself	has	been	modified.	These	differences	show	that	what	created	the	
Brescello	example	was	not	a	standard	geometric	plan	describing	the	example,	
but	a	simple,	easily	modified	plan.

The	geometric	 plan	 is	 about	 dividing	 the	 circumference	of	 the	 circle	first	 by	
6, then by 12, and then by 24. However, the organization from the central 
hexagon to reach the upper base of the Rhombici cuboctaedron is not a natural 
element of the plan. To describe this organization on surfaces of varying sizes, 
it is necessary to determine the ratio between the outer circle and the central 
hexagon. Reaching the outer circle from the center of the central hexagon 
and reaching the triangle and square arrangements in the intermediate layers 
requires complex calculations. Of course, these operations can be performed 
by transferring lengths instead of complex calculation. This practical solution 
works by adding a square to a hexagon, then adding a triangle. The geometric 
plan points to the Archimedes solids as a solution.

3.5. Hexagons of Pappus of Alexandria
Pappus of Alexandria (AD 284-305) is known circa AD 320. Pappus’ historical 
role is to reconsider and give a summary of the mathematical knowledge that 
reached up to his time, to put an end to the long stagnation in the theory of Greek 
mathematics,	and	to	bring	about	a	revival	(Heath	1921b:	355;	Boyer	1968:	196-
215, 686). In book eight of his work named as Synagoge, Pappus tackles an 
interesting problem on drawing seven identical hexagons in a circle. One of 
the hexagons will be at the center of the circle and the others will be around the 
center of the circle. While one side of the hexagons drawn around is the same 
as one of the sides of the central hexagon, the side opposite the same side will 
cut the circumference of the circle as a chord. Along with solving the problem, 
Pappus also gives a drawing that graphically describes the problem. Therefore, 
this pattern can be named as Pappus form (Pappus.	Synagoge	VIII.	c.	23.	Prop.	
19;	Heath	1921b:	438-439;	Aydoğdu	2022:	185-187)	(Fig.	16).

Figure 16
Pappus’ hexagons

(Pappus.	Synagog	VIII.	c.	23.	Prop.	19).
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In Décor II, patterns similar to the graphic presented by Pappus are found in 
the	examples	of	Saint-Bertrand-de-Comminges	(France),	Nîmes	(France),	and	
Vaison la Romaine (France) from the Gaul region (Décor II: 239 pl. 415a-d) 
(Fig. 17).  These patterns, as an extension of the regular hexagon (honey comb) 
form	(Décor	I:	321	pl.	204a),	are	defined	in	the	category	of	triaxial	patterns	as	
“in a circle and around a hexagon, 6 adjacent hexagons and 6 truncated hexagons 
(as triangles with concave base) on the periphery” (Décor II: 239 pl. 415a).

When Pappus’ design of hexagons around a hexagon is considered as a pattern, 
it	 is	 naturally	 expected	 that	 the	 pattern	 will	 lead	 to	 different	 variations.	 In	
the examples of Fliessem (Germany), Autun (France) and Vienne (France), 
quadrilaterals have been arranged around the hexagon (Décor II: 243 pl. 418a-
c).	In	the	examples	of	Nîmes	(France),	Sens	(France),	and	Carthage	(Tunisia),	
concave hexagons are arranged around the concave hexagon and can also be 
perceived as lunar six leaves around lunar six leaves (Décor II: 240 pl. 416a-c) 
(Fig. 18).

Planeterium	 Hause	 mosaic	 (Spain,	 Italica)	 bears	 hexagonal	 ornaments.	 The	
mosaic is dated to the middle of the second century AD (Penedo 1993: 73-78 
kat.	no:	13-14	pls.	VIII-IX;	López	Monteagudo	-	Neira	2010:	17-189	fig.	205).		
This mosaic is contemporary with Ptolemy’s Almagest. It is thought that Pappus 
was alive circa AD 284-305 and was known around AD 320, and his work called 
Synagoge belongs to this period. In this case, there is a time gap of about a 
century and a half between the Planetarium House mosaic and Pappus’ graphic. 
The same is true for Peacock mosaic from the Gaul region (Lassus 1971: 45-72 
fig.	48;	Décor	II:	pl.	415c)	(Fig.	17c).	Another	example,	attributed	to	the	mid-1st	
century	AD	from	Pompeii	(De	Vos	1991:	36-60	fig.	27),	shows	that	the	Pappus 
form existed in mosaic art two and a half centuries before Pappus.

4. Discussion
The determination of mathematical theorems in mosaic art is an area of study 
that can establish a direct relationship between mathematics and mosaic art. 
If a mathematician’s drawing is depicted in a mosaic, it raises the question 
of whether there was contact between mosaicists and mathematicians, their 

Figure 17
Use	of	Pappus’	hexagons	as	decorations
(Décor II: pl. 415a-d).

Figure 18
Concave	hexagonal	applications
(Décor II: 240 pl. 416a-c).
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works, or people who were knowledgeable about these works. However, the 
identification	of	a	mathematician’s	drawing	in	a	mosaic	is	not	enough	to	prove	
the existence of such a contact. Even if the existence of direct or indirect contact 
was guaranteed, the geometric ornament in the mosaic would remain a crucial 
factor in proving the exchange of information or graphics. Therefore, while 
identification	 is	 important,	 it	 is	 not	 sufficient	 for	 the	 determination.	 It	 is	 also	
important	 to	 acknowledge	 the	 difficulties	 that	may	 arise	 during	 identification	
and	to	discuss	the	arguments	leading	to	the	identification.	To	provide	a	healthy	
framework for discussion, this study explores topics such as Greek mathematics or 
scientific	geometry,	practical	geometry,	the	source	of	the	mosaicist’s	knowledge,	
difficulties	 in	 constructing	 forms	 and	 their	 consequences,	 representation	 of	
solids	on	the	plane,	identification	of	two-dimensional	form,	and	their	results,	all	
presented under separate headings.

4.1.	Greek	Mathematics	or	Scientific	Geometry	and	Practical	Geometry
It is thought that geometry emerged and developed long before the emergence of 
writing	(Boyer	1968:	7).	The	Nile	Valley	and	Mesopotamia	provide	examples	of	
primitive	writing	from	before	the	end	of	the	4th	millennium	BC.	But	few	of	them	
have	 been	 associated	with	 the	 theme	 of	mathematics	 (Boyer	 1968:	 1-10).	 In	
Egypt and Mesopotamia, mathematics is at the level of the craft. Measurements 
and calculations made to meet the needs of daily life constitute the content of 
mathematics. Formulas had undoubtedly established in problem solutions, but 
the	operations	and	calculations	could	not	turn	into	theory	(Boyer	1968:	12).	The	
fact that mathematics, which reached a certain level of development in Egypt 
and Mesopotamia, became a science discipline, is the feature that characterizes 
the	Greek	mathematics	(Heath	1921a:	65-66;	Boyer	1968:	48-67).	It	is	thought	
that geometry, which started as a craft practice in this line of development, 
turned	 into	 scientific	geometry.	The	period	of	Greek	mathematics	 as	 a	whole	
covers	 the	 12	 centuries,	 which	 historically	 fall	 between	 the	 6th	 century	 BC	
and the 6th century AD. The 26 cities, which are mentioned together with the 
philosophers and scientists who revealed the Greek mathematics, determine the 
Mediterranean	environment	and	the	southwestern	shores	of	the	Black	Sea	as	the	
geography	where	mathematics	spread	(Boyer	1968:	196).	We	can	see	the	point	
that Greek mathematics reached in three centuries by looking at the the Elements 
of	Eucleides	(ca.	300	BC).	Elements	consists	of	13	books.	The	Elements contain 
almost all basic mathematical knowledge such as higher arithmetic, number 
theory, synthetic geometry (point, line, plane, circle, sphere) and algebra (Heath 
1921a: 354-360). The forms used in geometric mosaics correspond to a very 
small set of this content.

Greek	geometry	or	scientific	geometry	treats	forms	based	on	logical	inference,	
and	defines	the	mathematical	properties	of	forms,	their	own	properties	and	their	
relations with other forms. The expression “practical geometry” is used to express 
functional and easily applicable techniques and knowledge in craft practice. It 
is known that the information presented in prescription form is widely used, 
especially in the Roman world. Vitruvius does this when he recommends using 
a 3-4-5 foot long triangle to make right angles at the corners (Vitr. IX, 6-8). The 
source of this practical knowledge is mathematical knowledge of the nature of 
the right triangle.

Practical knowledge of geometric forms, no matter where or how it comes from, 
stems from the nature of those forms. For example, using nails and string to 
draw	circles,	it	is	an	example	of	practical	geometry	that	reflects	the	relationship	
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of center, radius and perimeter, and this is an ancient knowledge. To obtain an 
equilateral	 triangle,	 it	 is	 sufficient	 to	 join	 three	 laths	 of	 equal	 length	 at	 their	
end points: This operation is the result of equilateral and triangular properties. 
Similarly,	 a	 square	can	be	obtained.	Equilateral	 triangles	can	be	combined	 to	
form a hexagon. These examples can be multiplied for physical construction. 
When	forms	and	their	configurations	within	a	certain	scale	need	to	be	planned	for	
physical construction (for example on a piece of paper), “practical knowledge” 
becomes knowledge about the maneuvers of the ruler and compass.

Greek mathematics is concerned not only with the abstract study of geometry, 
but with its practice. The search for polygons that can only be drawn with 
a measureless ruler and a compass (or string and nail) is concerned with 
determining the possibilities of realizing abstract forms with very simple tools 
and simple methods. For example, polygon drawing is obtained by dividing the 
circumference of the circle at equal intervals. That is, the circle is divided into 
equal segments by rays extending outward from the center. In abstract analyzes 
of	scientific	geometry,	the	ruler	and	compass	maneuvers	come	from	theory.	These	
maneuvers are extremely practical for many polygons. From this point of view, 
it can be thought that “practical geometry” should not be treated as a completely 
separate	 category	 from	 the	 “scientific	 geometry”	 context.	The	 content,	 scope	
and limits of the set of “practical geometry” or “practical knowledge” can 
become more understandable by examining the works of mosaicists on the axis 
of	scientific	geometry.

4.2.	Source	of	Geometry	Knowledge	of	Mosaicists
In	the	context	of		“practical	geometry”	and	“scientific	geometry”,	the	issue	of	how	
geometric mosaics were made is controversial. At the center of the discussions, 
we	can	see	that	the	relationship	between	the	mosaicist	and	scientific	geometry	is	
questioned. The question to be answered is: Where did the mosaicists’ knowledge 
of	geometry	come	from?

While seeking the answer to this question, the social status of mosaicists has 
also	 been	 taken	 into	 account.	Because	 the	 source	 of	 knowledge	 of	 geometry	
may be the academic environment or mosaic workshops (master-apprentice 
relationship). On the other hand, it has been thought that there were two separate 
processes in the creation of geometric mosaics, such as the design process and 
the	 construction	 process	 (Daszewski	 -	Michaelides	 1989:	 14;	 Duran-Kremer	
2012: 59-70). In this case, it can be thought that the actors of the design and 
workmanship	processes	were	different	people	and	that	these	people	did	not	have	
the same opportunities to access geometry information. The design demands of 
the	customers	and	their	guiding	effects	on	the	process	are	also	open	to	discussion.	
Relationships	and	interaction	between	different	categories	of	people	that	interfere	
with the labor process interaction emerge as key considerations. It is thought that 
mosaic worker’s access to geometry knowledge through academia was not so 
possible. Access to practical geometry knowledge through the master-apprentice 
relationship	is	seen	as	a	more	reasonable	option	(Balmelle	-	Darmon	1986:	247;	
Bruneau	1987:	154).	

Geometric forms used in the decoration of geometric mosaics belong to the 
geometry repertoire. There are successful representation of geometric forms 
and	complex	configurations	in	mosaics.	It	is	known	that	rulers	and	compasses	
(or	nail	and	string)	were	used	 in	 the	making	of	mosaics	(Vitr.	VII.I.3).	Based	
on these reasons, focusing on the possibility that mosaicists knew geometry 
and investigating the content, limits and possible sources of their knowledge 
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can contribute to the understanding and evaluation of geometric mosaics. This 
approach does not lead to an underestimation of the originality of mosaicist’s 
designs, their creativity, their artistry and their ability to solve practical problems 
they encounter. On the contrary, it can serve to develop a healthier understanding 
of these issues. At this point, it would be useful to clarify the relationship between 
scientific	geometry	and	practical	geometry	as	follows.

4.3.	Difficult	or	Impossible	Forms,	Practical	Difficulties	and	Degenerate	
Forms
Scientific	geometry	says	 that	all	 regular	polygons	are	 theoritically	possible	 in	
space	(or	in	plane).	Difficulties	are	faced	when	it	comes	to	drawing	or	physically	
constructing	 polygons.	 Straight	 line	 and	 circle	 are	 embodied	 as	 ruler	 and	
compass without measure. Maneuvers with these instruments are under the 
control of theory. Therefore, “measureless ruler and compass” are extensions of 
mathematical thought to the physical world. It starts with an equilateral triangle 
and	continues	with	a	square.	As	for	the	five-sided	regular	polygon	(pentagon),	it	
is seen that it is not so easy, but it is succeeded. The construction of the regular 
hexagon is quite practical. As for the seven-sided polygon (heptagon), there 
is a silence. Octagon is easy. There is silence again in the nine-sided polygon 
(nonagon). These silences continue until the 19th century AD: It is proved that 
the regular heptagon and nonagon, which are possible in theory, cannot be 
constructed	with	measureless	ruler	and	compass	(Wantzel	1837:	366-372;	Cajori	
1918: 339-347; Tavares - Freitas 2018: 187-194).

The regular pentagon is included in the repertoire of polygons that can be drawn 
with	measureless	ruler	and	compass,	but	it	is	difficult	to	consume,	so	it	is	not	
that practical. Therefore, we should never miss the opportunity to be surprised 
if we come across the regular pentagon form in mosaic art. As for heptagon and 
nonagon, there is no place for them in the repertoire, within the possibilities 
of drawing with measureless ruler and compass. If we come across a regular 
heptagon or nonagon in mosaic art, we should be doubly surprised: First, 
because this work cannot be accomplished with measureless ruler and compass; 
secondly, because they somehow managed to do this job.

Couldn’t	 the	 mosaicists	 have	 built	 the	 heptagon	 or	 nonagon	 in	 some	 other	
practical	way?	Of	 course,	 they	 could.	They	 could	 join	 seven	 or	 nine	 slats	 of	
equal length at the ends. They could also adjust the equality of the angles with 
a	circle.	It	might	not	be	perfect,	but	it	would	look	aesthetic.	So,	apart	from	the	
tools and methods used in the construction of other polygons, and therefore with 
a practice that is detached from the theoretical integrity, we can expect these 
polygons to be built and include them in the repertoire. 

We can summarize the conclusion to be reached from this short discussion as 
follows: Pentagon, heptagon and nonagon are theoretically possible; but, in the 
context of construction with measureless ruler and compass, regular pentagon is 
difficult	to	construct,	regular	heptagon	or	nonagon	is	impossible.

Difficulty	 or	 impossibility	 in	 the	 construction	 of	 geometric	 forms	 may	 arise	
directly from the nature of the polygon (pentagon, heptagon, nonagon), as well 
as from the approach chosen for repetitive use, as in the square grid-element 
pattern	approach.	Consider	the	regular	hexagon	form.	It	is	quite	easy	to	draw	with	
a ruler and compass. However, when trying to create a honeycomb texture, it is 
faced with the fact that the regular hexagon cannot be repeated in the square grid 
structure.	Because	the	height	and	width	of	a	regular	hexagon	are	not	equal.	This	
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problem can be solved by using equilateral triangle grid instead of square grid  
(Décor I: 321 pl. 204e). The resulting graphic constitutes an open infrastructure 
for creative designs (Fig. 9c). If the square grid cannot be dispensed with, the 
“regularity” requirement should be abandoned. That is, the regular hexagon 
must be squeezed into the square. When this is done, the result obtained is again 
a hexagon, but this time an irregular hexagon (Décor I: 321 pl. 204f). It can 
be called a “degenerate hexagon” in reference to its rule-related deformation. 
With the deformation of the regular hexagon, the equilateral triangles dividing 
the hexagon are also deformed and become “degenerate triangles”. Within the 
square grid, degenerate triangles repeated as parts of a hexagon naturally give 
rise to designs such as a zig-zag pattern repeated throughout the strip, a lozenge 
pattern repeated in one direction, or repeated cubes (Décor I: 321 pl. 204d; 
Aydoğdu	2022:	195-198	figs.	105-112).

4.4.	Representation	of	Solids	in	Plane	and	Identification	Problem
In two-dimensional representation, two-dimensional geometric forms are 
depicted as they are. A perspective view of the form is used to represent a three-
dimensional form on the plane (in two dimensions). The form is depicted as it 
appears, not as it is. When the perspective changes, the image also changes. 
In	freehand	drawing,	a	three-dimensional	form	can	be	depicted	from	infinitely	
different	 angles.	 When	 the	 drawing	 possibilities	 are	 restricted	 to	 regular	
geometric forms, the depiction options are reduced. 

Let’s	 take	 the	 cube	 form.	 Different	 methods	 can	 be	 followed	 for	 the	 cube	
depiction. Adding lozenges to the two edges of a square that connects to the same 
corner is a method. In this method, the boundaries of the design form an non-
regular hexagon (Fig. 8.4.a). Another method is to divide the regular hexagon 
into three lozenges (Fig. 9a-c, Fig. 12.Qq-Vv). This method makes places where 
the regular hexagon can be represented also suitable for cube design. The use 
of  “degenerate hexagon” instead of regular hexagon in the cube design is also a 
practical option and the resulting cube forms can be seen as “degenerate cubes”. 
Similar	to	the	depiction	of	the	squares	forming	the	cube	surface	as	diamonds	in	
perspective view, the polygons forming the surface of the solid in other solids 
are deformed in accordance with the perspective (Figs. 10-12). 

If the closed and open forms of the cube (Fig. 8.4.a, b) are compared, from the 
observer’s	 point	 of	 view	 (top-right),	 the	 differences	between	 the	depiction	of	
the visible surfaces and the depiction of the skeleton of the form can be seen. 
In	closed	form,	surfaces	have	been	distinguished	by	the	difference	in	color	and	
texture. In the open form, the skeleton of the cube has been drawn. The surfaces 
between the square, which is understood to be the front face, and the square, 
which is understood to be the back face, are in the shape of a lozenge. In open 
form,	the	surfaces	have	not	been	distinguished	by	color	and	texture	difference.	
If the thick lines forming the skeleton were not textured and the light-shadow 
effect	was	not	emphasized,	if	the	lines	were	linear,	since	there	is	no	significant	
size	difference	between	the	squares	(closeness-distance),	we	wouldn’t	be	able	
to distinguish the front and the back. In other words, our perception would be 
confused	as	if	we	were	seeing	the	form	from	two	different	angles	(left-bottom	and	
right-upper). It could also be argued that the drawing was not three-dimensional 
but two-dimensional.

In the mosaics, we can see that the closed form of the cube is depicted instead 
of the open form, and the boundaries of the form consist of six sides. The 
visible surfaces of the cube give us six edges, naturally also the method for 
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its construction. In the example of the cube form, we can distinguish whether 
the design is two-dimensional or three-dimensional, by distinguishing the 
surfaces by color, texture or decoration in addition to the geometric structure 
that embodies the perspective view.

In	 this	 study,	 the	 similarities	 and	 differences	 between	 Archimedes’s	 solids	
(Rhombici cuboctaedron and Rhomb Icosidodecaedron) and the mosaic 
ornaments	from	Brescello	(Italy),	Sainte	Colombe	(France)	and	Mataró	(Espagne)	
(Fig. 13a-c) have been evaluated. In the evaluations about ornaments, the solids 
have been taken as reference because they are ideal forms. It is worth noting that 
the	differences	between	the	ornament	and	the	ideal	form	do	not	attribute	a	defect	
or	deficiency	to	the	work,	and	enable	a	healthier	evaluation	of	the	differences.

The common feature of these mosaics geometrically is that they have a design 
consisting of hexagon-square-triangle-square layers from the center outwards. 
The	configuration	repeated	around	the	central	hexagon	in	this	design	is	the	same	
as seen in the Rhombici cuboctaedron (Fig. 15a). The organization seen in the 
Rhomb Icosidodecaedron and the organization seen in the geometric design of 
these mosaics are similar in terms of the arrangement of the forms from the 
center to the outward (central form-square-triangle-squares) (Fig. 15b, c). 
Based	on	 these	determinations,	 in	 terms	of	 similarity,	a	 relationship	has	been	
established between the mosaic ornaments in question and the semi-regular 
solids of Archimedes.

Whether the geometric organization represented in these mosaics represents a 
two-dimensional	design	or	a	three-dimensional	object	from	different	angles	is	
open to debate. The design has been shown step by step in the geometric plan 
of	the	Brescello	mosaic	(Fig.	14).	When	there	is	only	a	central	hexagon,	when	
squares are added to the hexagon, or when it comes to the hexagon-square-
triangle structure, the design is unquestionably two-dimensional (Fig. 14.1-3). 
When the hexagon-square-triangle-squares structure is reached, the discussion 
can	begin.	Because	the	lozenges,	which	give	the	perspective	effect,	are	changing	
the situation by emphasizing three dimensions (Fig. 14.4). The two-dimensional 
effect	is	getting	a	little	stronger	when	a	circle	is	drawn	around	the	design	(Fig.	
14.5). When the surfaces are distinguished by decorations, the repetitions of 
the Rhombici cuboctaedron form from the perspective view become evident 
(Fig. 14.6). From another point of view, since the three-dimensional appearance 
repetitions occur around the hexagon, the design can also be viewed as a mixed 
structure that processes two and three dimensions together.

The reason why the discussion about being two or three-dimensional, which is 
not	a	problem	in	the	identification	of	cube	design,	is	a	problem	in	Archimedes	
solids, is that the design in these mosaics meets the Rhombici coboctaedron form 
in accordance with the perspective, but on a partial appearance scale instead of 
the	whole	view.	Therefore,	what	is	done	in	this	study	is	an	identification	based	
on the partial appearance of the solid.

For other solids, as in the cube depiction, it can be expected that the closed form 
to be depicted and the boundaries of the form consist of the visible edges of 
the	solid.	Difficulties	due	to	the	polygon	forming	the	surfaces	of	the	solid	(for	
example,	the	regular	pentagon),	difficulties	due	to	the	number	of	visible	edges	
of the closed form (10 edges for the Rhombici cuboctaedron),	difficulties	due	
to the organization and deformation of the surfaces of the solid in accordance 
with the perspective view can be estimated. In addition, it can be thought that 
the	 solid	cannot	be	 represented	as	a	whole	due	 to	 the	 restrictive	effect	of	 the	
design with regular geometric forms instead of free drawing. An approach such 
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as preserving the geometric form organization of the solid (square-triangle-
squares)	but	choosing	an	easy	polygon	instead	of	a	difficult	 to	construct,	 thus	
degenerating the solid is also included in the possibilities.

4.5. The Pappus Form,	Adequacy	and	 Inadequacy	of	 Identification,	
Contributions
Pappus lived around the rule of Diocletianus (AD 284-305). He was a well-
known person circa AD 320. Pappus has done more than contribute to the history 
of mathematics by giving a list of Greek mathematicians and mentioning their 
work. His work is more like a handbook for Greek geometry than an encyclopedia 
(Heath	1921b:	355-358;	Boyer	1968:	196-215,	686).	Pappus	gives	a	summary	
of the information that has reached his time. This is an important part of his 
historical	role.	Was	the	problem	and	drawing	of	hexagons	in	a	circle	first	posed	
by	Pappus	or	did	he	inherit	it?	The	exact	answer	to	this	question	is	unknown.	
The limited resources on mathematical manuscripts do not allow to determine 
when	this	graph	first	appeared	in	mathematics.	The	mosaics	(from	Italica,	Gaul,	
Pompeii) present examples of the form of hexagons in a circle long before 
Pappus’ time. Mosaicists who lived before Pappus’s time cannot have learned 
this form from Pappus.  This situation is consistent with Pappus’ historical role. 
The mosaics document that the form was in use long before Pappus. In this 
respect,	the	identification	of	the	Pappus	form	on	mosaic	artifacts	is	important	for	
the history of mathematics.

An ornament similar to the graphic given by Pappus of Alexandria is seen on a 
polychrome	mosaic	from	the	Planetarium	House	in	Italica	(Spain).	Considering	
that	Spanish	mosaics	are	associated	with	Alexandria	(Dunbabin	1999:	149-150),	
identification	of	a	mathematical	graphic	on	a	mosaic	work	may	be	of	value	as	
a	finding	in	inferences	about	the	relationships	between	artifacts	from	different	
cities.

Patterns similar to the Pappus form	have	been	defined	in	the	category	of	triaxial	
patterns (Décor I: 12, Décor II: 239) as an extension of the regular hexagon 
(honey	comb)	 form	 (Décor	 I:	321	pl.	204a).	Similar	 to	 the	“two-dimensional	
versus three-dimensional” discussion, a discussion can also be made for the 
Pappus form: Did the mosaicist want to draw hexagons in a circle, or did he 
want	to	draw	a	circle	around	the	hexagons?	From	this	point	of	view,	it	can	be	
thought that the mosaicist’s approach to the subject, unlike Pappus’ approach, 
may be as simple as drawing a circle around the hexagons instead of drawing 
hexagons	 in	 the	 circle	 or	 placing	 the	 honeycomb	 in	 the	 circle.	 So,	 it	 can	 be	
claimed that there is no relationship between the Pappus form and the form in 
the mosaic works. Or, it can be claimed that the mosaicists and mathematicians 
came up with the same form independently and unaware of each other, without 
any contact between them. It can also be thought that a mathematician or Pappus 
saw the form in the mosaic and dealt with it as a mathematical problem.

The essence of the problem is to draw a central hexagon and hexagons around 
the central hexagon in a square area. Geometrically, the circle surrounding the 
hexagons states that the drawing will be performed in a square shaped area. 
Therefore, it is necessary to establish a proportion between the square frame and 
the	size	of	the	hexagon	to	be	repeated.	Since	the	dimensions	of	the	area	allocated	
to the drawing may change, it is important that the drawing is repeatable at the 
desired scale. If there was such a skill for applying the honeycomb form consisting 
of	regular	hexagons	at	different	scales,	this	situation	shows	that	mosaicists	had	
already faced and solved the problem expressed by Pappus, whether or not 
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the circle is drawn around the hexagons. Analysis of the geometric plans of 
the mosaics bearing these forms, together with the actual measurements, can 
illuminate how the mosaicists solved the problem and deepen the understanding 
of the content of practical knowledge. A connection can be established between 
the Pappus form and its counterparts in mosaic art, in terms of the fact that they 
are essentially related to the same problem and result in the same graphic, apart 
from their similarities only in shape.

5.	Conclusion
The analysis of the swastika, meander, and spiral forms has been conducted 
through the measurement of the perimeter of a polygon using only a ruler and 
compass, without the use of arithmetic operations. The resulting graphs provide a 
theoretical explanation for the design of the swastika and meander forms, as well 
as	clarification	on	Archimedes’	 spiral	design,	highlighting	 the	mathematically	
natural, necessary, and inevitable relationship between these forms. This 
analysis establishes a mathematical infrastructure and a theoretical framework 
for proposed algorithms aimed at determining the grid structure necessary 
to produce the ornament and the repetition order in grid cells for ornamental 
surfaces created through the repetitive use of meander and swastika forms.

The Décor catalogue (Décor I-II) provides a collection of geometric ornaments 
dating back to the 1st century AD through the 6th century AD. It is observed 
that polygons like triangles, squares, rectangles, hexagons, and octagons were 
frequently used in the repertoire of geometric ornaments, but regular pentagon 
and regular heptagon forms did not receive the same level of attention. The 
forms such as regular pentagon and regular heptagon are theoretically possible, 
but in the context of construction with measureless ruler and compass, regular 
pentagon	is	difficult	to	construct,	regular	heptagon	is	impossible.	The	scarcity	
of these forms in ornaments is attributed to the limitations posed by the nature 
of these geometric forms. In lieu of regular and semi-regular solids with regular 
pentagons in their composition, combined forms that imitate solids, as well as 
easy-to-construct degenerate forms, were more commonly used, which can be 
interpreted	as	a	consequence	of	these	difficulties.

The study of original and degenerate forms has shed light on the use of 
mathematical objects, such as equilateral triangles, regular hexagons, and 
cubes, as they appear in ornaments, as well as the use of degenerate forms for 
practical convenience. Additionally, insights have been gained regarding the 
use	of	square	grids	and	degenerate	grids.	Geometric	mosaics	hold	a	significant	
value in the history of mathematics, as they provide valuable documentation that 
contributes to the evaluation of mathematical graphics related to the forms and 
patterns they carry as ornaments. The Pappus form is a prime example of this. 
The	identification	of	geometric	forms	from	Greek	mathematics	in	mosaic	works,	
such	 as	Hippocrates	 of	Chios’	 diagram	 of	 lunar	 areas,	 Plato’s	 regular	 solids,	
Archimedes’ semi-regular solids, and Pappus’ hexagons, adds new dimensions 
to	studies	and	evaluations	of	mosaic	art.	However,	the	identification	alone	is	not	
sufficient	to	prove	the	existence	of	a	relationship	between	the	mathematician	and	
the	mosaicist.	The	identification	and	related	discussions	provide	insights	into	the	
relationship between geometry and geometric ornament, which is a necessary 
element for the existence of such a relationship, particularly in instances where 
the relationship between mathematician and mosaicist is subject to controversy.

Geometric models used in creating ornamental forms allow for a clear distinction 
and objective comparison between original and variant forms, facilitate the 
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evaluation of the connection between planning and reality, and enable the 
reproduction of damaged mosaic ornamentation. The general framework of 
mathematical analysis introduces the concepts of geometric reintegration and 
analytical restoration, which are relevant in the context of conservation studies. 
The sample analyses presented in this study could serve as an analysis model for 
comprehensive catalog analyses that extend to the limits of the Greek and Roman 
mosaic	art	decor	repertoire.	Analyzing	the	geometric	forms	and	configurations	
that	decorate	mosaics	with	scientific	geometry	can	lead	to	a	better	understanding	
of	these	forms	and	contribute	to	the	evaluation	of	findings	related	to	the	mosaic-
making process, such as traces, drawings, and techniques.
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