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Abstract
The aim of this research is to examine and evaluate the reflection of mathematical knowledge on examples 
of ancient mosaic art. As a result of the comparison between history of mathematics and art of mosaics, a 
connection has been made between the well-known theorems and patterns through the nature of the forms. 
For this purpose, patterns like swastika, meander, spiral and cube forms, as well as the forms that can be 
produced from the graph related to the lunar area calculation of Hippocrates of Chios have been analyzed. In 
addition, analyzes, discussions and evaluations on the identification of the forms similar to the semi-regular 
solids of Archimedes and the hexagons of Pappus of Alexandria have been presented. It is thought that the 
methods used and the information obtained in this study will contribute to the research of mosaic art and 
history of mathematics, the documentation and evaluation of archaeological artifacts, the museology practices 
and conservation studies.
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Öz
Bu çalışmanın amacı, Antik Dönem’de matematik bilgisinin mozaik sanatına yansımasının incelenmesi ve 
değerlendirilmesidir. Matematik tarihi ve mozaik sanatının karşılaştırılması sonucu, en bilinen matematik 
teoremleri ve mozaik motifleri arasında formların doğası üzerinden bir bağlantı kurulmuştur. Örneğin svastika, 
meander, spiral, küp ve prizma formları ve Khioslu Hippokrates’in lunar alanlar hesabı ile ilgili grafikten 
üretilebilen formlar analiz edilmiştir. Ayrıca, İskenderiyeli Pappus’un altıgenleri ve Arkhimedes’in yarı 
düzgün katıları ile benzerlik gösteren formların tespitine yönelik analizler, tartışmalar ve değerlendirmeler 
sunulmuştur. Bu çalışmada kullanılan yöntemlerin ve elde edilen bilgilerin; mozaik sanatı ve matematik tarihi 
araştırmalarına, arkeolojik eserlerin belgelenmesine ve değerlendirilmesine, müzecilik uygulamalarına ve 
konservasyon çalışmalarına katkı sağlayacağı düşünülmektedir.
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1. Introduction
The initial step towards studying geometric forms in mosaic art involved 
compiling comprehensive catalogs that allowed for the observation of the 
chronological development of mosaics. Through this cataloging process, the 
forms that comprise the geometric motif category were able to be distinguished 
and defined. Efforts to create motif terminology and study the material necessary 
to analyze geometric patterns on ancient mosaics have been ongoing since the 
1930s, with earlier studies also being present. From the 1930s to 1963, research 
conducted in this area served as the preparatory process for the recognition 
of mosaic art as a discipline. These studies highlighted the importance of 
distinguishing, defining, and analyzing geometric forms in patterns, comparing 
similar or varying forms in mosaics from different regions, and noting local 
styles, leading to the definition of workshops and investigation of interactions 
between them (Aydoğdu 2022: 145). Since 1963, with the first international 
colloquium on Greek and Roman mosaics, and particularly from around 2000 
to 2022, a mature working method has emerged for solving geometric forms, 
involving geometrical reproduction of basic ornament forms, obtaining complex 
ornaments with a grid and element pattern approach (Décor I: 10), suggesting 
algorithms for repetitive use, and comparing variant forms with geometric 
solutions. However, this working model is insufficient in determining the extent 
and depth of the relationship between mosaic art and mathematics, as well as 
establishing the connection of geometric patterns with the history of mathematics 
and mathematical methods (Aydoğdu 2022: 13-17).

In the present circumstances, the weakest aspect of studies on the relationship 
between mosaic art and mathematics is the link between the history of mathematics 
and mathematical methods in analysis. The questioning of the relationship 
between geometric mosaics and mathematical knowledge is considered to be the 
weakest link in the chain of these studies.

Geometric mosaics derive their content from geometry and are named in 
reference to it, leading to questions about the relationship between geometric 
ornaments and knowledge of geometry. The mosaicist is the actor in this 
relationship, but considering the various stages of design and construction, 
the term “mosaicist” is used instead of specific distinctions such as “mosaic 
artist”, “mosaic master”, or “mosaic worker”. How did the mosaicist establish 
a relationship with geometry, and did they possess scientific knowledge of it? 
There are three possible answers to this question: “mosaicist knew geometry”, 
“mosaicist did not know geometry”, or “mosaicist had only practical geometry 
knowledge”. However, there is no clear record from ancient times to the present 
to definitively prove which of these propositions is correct. There are no records 
showing that a geometric mosaic was designed using geometry and its material 
equivalent. Therefore, we can only consider these propositions as possibilities.

Mosaicists took their place in history. In one hand, we have the geometric 
mosaics left over from them, and in the other hand we have scientific geometry. 
Based on these two things, can we determine which of these propositions might 
be true? How and to what extent can we detect it? These are the fundamental 
questions that raise this study. In the context of the fundamental questions, the 
subject of this study is the identification and evaluation of mosaic decoration 
showing parallelism with mathematical ideas, theorems, problems and related 
mathematical graphics in ancient Greek mathematics. Since the subject of 
the study embodies the problems, discussions and evaluations related to the 
determination of the relationship between mosaic art and mathematics, with 
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examples showing the parallels between Greek mathematics and geometric 
mosaics, the title of the study was chosen as “Determination of the mathematical 
theorems on ancient mosaics”.

The analysis of swastika, meander, spiral forms, and quatrefoil have been 
conducted in this study1 using mathematical ideas such as measuring the 
perimeter of a polygon and the graph attributed to Hippocrates of Chios for 
calculating the areas between circle arcs. The study also includes analyses and 
discussions on identifying cube forms, Archimedes’ semi-regular solids, and 
Pappus’ hexagons.

Through the nature of the forms, this study establishes a connection between 
mosaic art and the history of mathematics, pointing to mathematics as the 
inspiration for the decorative repertoire. It offers insight into the relationship 
between geometry and geometric ornament.

2. Method
In terms of providing the basis for theoretical analysis and in order to observe 
the relationship between mathematics and mosaic in ancient period, history of 
mathematics and history of mosaic art were brought together and the parallels 
between their developments were evaluated.

Squaring the circle, dividing an angle by three (trisection), and doubling the 
cube are kown as the three famous problems of the ancient period. There are 
problems which are the extensions of these problems such as drawing polygons 
within the circle and doubling the square. In addition, there are the problems of 
not so famous but special in terms of mathematics. The solutions put forward 
by the ancient mathematicians regarding these problems and the graphics of the 
solutions were compared with the ornamental repertoire of mosaic art through 
catalogues. Relationships between the graphics and geometric ornaments were 
investigated.	

3. Analysis and Comparison

3.1. Mathematical Structure of Swastika, Meander and Spiral Forms
The length of a line segment is equal to its own length. The length of the broken 
line consisting of two line segments is the sum of the lengths of the segments 
forming the broken line. The perimeter of a triangle is the sum of the lengths of 
the line segments forming the sides of the triangle. Only itself is sufficient for a 
line segment. The line segment is equal to itself. To calculate the total length of 
two line segments forming a broken line, the two lines are placed side by side on 
the same straight line and added end to end. For this operation, the line segment 
is transferred with a compass on the linear line carrying the other line segment to 
which it will be attached. Thus, the total length of the broken line is represented 
by a line segment equal to the sum of the individual lengths of the lines forming 
this broken line. In the case of the perimeter of a triangle, the situation is the 
same as on the broken line. We don’t care about the numerical equivalent of 
length, since we set aside the numerical measure. We are only concerned with 
what the perimeter of the triangle is, and how long the straight line representing 
that length is. When the side lengths that make up the triangle are added end to 

1	 This work produced from the doctorate thesis titled as “The Reflection of the Mathematic Knowledge 
on the Arts of Mosaic and Sculpture”. The thesis was supported by Dokuz Eylül University Scientific 
Research Coordination Unit. Project Number: 2018. KB. SOS. 009.
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end on a linear line, the length equal to the sum of the side lengths of the triangle 
is obtained. A three-step sequence of operations is performed to geometrically 
calculate the perimeter of the triangle (Fig. 1).

The method applied to the broken line and the triangle can be applied to a square. 
In this case, there are four edges to transfer and four transfer operations. The 
sides |AB|, |BC|, |CD|, and |DA| are extended in the direction A, B, C, and D 
respectively. The length |BC| is transferred to the axis obtained by extending the 
|BC| in the direction B, and the point T1 is marked. The length |CT1| is transferred 
to the axis obtained by extending the |CD| in the direction C, and the point T2 
is marked. The length |DT2| is transferred to the axis obtained by extending the 
|DA| in the direction D, and the point T3 is marked. The length |AT3| is transferred 
to the axis obtained by extending the |AB| in the direction A, and the point T4 is 
marked. The length |AT4| is equal to the perimeter of the square ABCD. These 
transfer operations leave behind four arcs. Their radii are different, and they are 
added end to end. The broken line connecting the points A, T1, T2, T3 and T4 
accompanies the arcs (Fig. 2).

Figure 1
Length transfer (drawing by authors).

Figure 2
Periphery of a square (drawing by authors).
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Once the transferred lengths are distinguished from each other, we can see which 
length goes where. When the inner tangent circle of the square is included in the 
graph, the swastika and meander pattern becomes visible. If the loops on the 
extended edges are continued and expressed in contrasting colors, the geometric 
structure that explains the meander and swastika patterns is obtained. Line 
segments that make up the pattern are the segments used in the length transfer. 
Therefore, the swastika pattern is the main component and the main result of 
this geometric structure (Fig. 3). The meander pattern consists of areas bounded 
by the loop lines that form the swastika. The meander is therefore a secondary 
consequence of the process of length transfer (Fig. 4). Meander and swastika are 
not the only consequences of the length transfer. The broken line set formed by 
the line segments performing the length transfer is accompanied by a curve set 
that imitates the spiral, which is the combination of circle arcs.

The broken line set initiated from one corner of the polygon, when applied to 
all corners, will accompany each broken line set with a pseudo-spiral. There is 
no doubt that these so-called spirals are not really spirals and can be called as 
spirals for the sake of convenience. It is reached from the triangle to the triangle 
spiral. And consequently, the square spiral is reached from the square, and the 
pentagon spiral is reached from the pentagon (Fig. 5a-c). If the spiral forms 
are continued towards the center of the polygon, central spirals are obtained 
(Fig. 5d-f). If clockwise spirals are considered together with counterclockwise 
spirals, symmetrical spirals are obtained (Fig. 5g-i). Centrally symmetrical spiral 
structures can be extended to hexagon, octagon and decagon structures.

According to these results, the swastika and meander patterns are linear results 
of the length transfer process. The curvilinear result of the transfer process 
is the spiral form. Linear results originate from the ruler, while curvilinear 
results originate from the caliper. Another example of this is that the regular 
hexagon drawing also includes the rosette motif. When the length transfer 
processes applied to polygons such as triangle, square, hexagon, and octagon are 
continued by increasing the number of polygon sides towards infinity, the result 
is Archimedes’ spiral (Aydoğdu 2022: 168-181) (Fig. 6).

Figure 3
Circumference of square and swastika
(drawing by authors).

Figure 4
Circumference of square, meander and 
swastika (drawing by authors).
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Figure 5
Spiral forms (drawing by authors).

Figure 6
Archimedes’ Spiral (Heath 1897: 179).
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3.2. Hippocrates of Chios and the Lunar Fields
Hippocrates of Chios (circa 430 BC) is best known for three brilliant works 
such as works on lunar fields (quadrature of lunes), doubling the cube, and his 
lost work on the elements of geometry. The first of these brilliant studies, the 
calculation of lunar fields, is thought to have emerged in relation to the squaring 
of the circle. His computational work is aimed at calculating areas between 
arcs of circles and is an early example of investigating areas bounded by more 
complex curves (Heath 1921a: 183-200; Boyer 1968: 72-74; Aydoğdu 2022: 
182-185).

Information about Hippocrates’ work on lunar fields comes from two main 
sources. The first of these sources is the information conveyed by Simplicius, 
who lived in the 6th century AD, from Eudemos, who was well-known around 
320 BC. The second source is the information transferred from the Aristotelian 
commentator Alexander of Aphrodisias, which is well-known around AD 200 
(Boyer 1968: 73). The starting point of the calculation of the areas between the 
circle arcs is seen as the segments obtained by cutting the circle with a straight 
line. The starting point of the study is expressed by the following proposition: 
“Segments of circles with the same ratio of one to the other (cut by the same ratio) 
are proportional to the squares of their bases” (Heath 1921a: 187). The historical 
roots of the diagram go back to the 5th century BC, since the diagram given by 
Eudemos or Alexander is considered to be the earliest examples of curvilinear 
areas in Greek mathematics and these examples are attributed to Hippocrates of 
Chios. The diagram must have pioneered other diagrams that were directly its 
own consequence. Therefore, it is valuable to reveal the diagram’s relevance to 
the elemental pattern concept of mosaic art.

The graph attributed to Hippocrates of Chios, in its current form, corresponds 
to a quarter of a circle. In order to obtain a complete view, the relationship of 
the lunar field with the quarter circle has been reflected to the other quarters of 
the circle, so that the lunar field calculation has extended to the whole circle. 
The result obtained reveals the lunar four leaves form or four spindle leaves, 
namely quatrefoil (Décor II: 42) (Fig. 7). The resulting lunar four leaves form 
can be used repetitively on the horizontal or vertical axis as an elemental pattern. 
Repeated use reveals another elemental pattern, the form of four lunar circles 
within a square or circle of four spindles (Décor II: 38; Vargas Vázquez 2017: 
347-364 figs. 2-3).

3.3. Platonic Solids and Cube Examples
In the Timaeus dialogue, Plato tells his thoughts on the creation of the ideally 
abstract universe and beings as material reality, and the realization of material 
beings by ideal forms. Firstly, the requirements for the construction of a visible 
and tangible universe are determined (Plat. Tim. 31 b 4-32 c 4). The maker of 
the universe begins by shaping each of the four elements (fire, air, earth and 
water) that will make up the universe to be as complete and perfect as possible 
(Plat. Tim. 53 b 5-6). The maker determines three regular polygons as equilateral 
triangle, square, and pentagon, as the parts that will form the solid bodies to 
instantiate the elements. The rules that will work in the formation of the solid 
that will represent the four basic elements and the universe as a whole, are that 
the number of surfaces joining at each corner of the object is the same and 
each surface is a regular polygon. As a result of these evaluations, the model 
chosen for the fire is a regular four-faced (tetrahedron), each facet of which is 
equilateral triangle. For the air, the eight-faced (octahedron), each facet of which 

Figure 7
Extending the lunar area account to the circle
(drawing by authors).
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is equilateral triangle, is chosen. The water is represented by the regular twenty-
faced (icosihedron), each facet of which is equilateral triangle. The earth will be 
represented by the regular six-faced (hexahedron, namely cube), each facet of 
which is square. Finally, the dodecahedron is chosen to represent the universe as 
a whole, as it is the shape closest to the sphere (Plat. Tim. 55 c 4-6). Thus, Plato 
determines the ideal forms of the elements, namely the five regular solids, that 
will bring into being complex, shapeless and formless beings (Aydoğdu 2022: 
60-73, 195-198) (Fig. 8).

Whether these solids were introduced by Plato or earlier by Pythagoras or the 
early Pythagoreans is debatable. Based on Plato’s Timaeus, the earliest authority 
on the five solids is thought to be Plato, and these solids are named as the Platonic 
solids (Heath 1921a: 158).

In the 13th book of  Euclid, the method of constructing the octahedron, hexahedron 
(cube), icosihedron, and dodecahedron in the sphere is given, respectively (Eukl. 
elem. XIII. 6. 14-17). An indefinite dated marginal note (scholium) in Euclid’s 
book states that Pythagoreans knew only three of the five solids as the tetrahedron, 
hexahedron, and dodecahedron, and that the octahedron and icosihedron were 
introduced by Plato’s friend Theaetetus of Athens (414-369 BC) (Boyer 1968: 
715). Heron of Alexandria (AD 10-85) has also gave his calculations for Plato’s 
solids in the second book of his Metrika, in which he calculated the volumes of 
solids (Procl. On Euclid I; Eukl. elem. XIII. 438-439; Heath 1921a: 220; Boyer 
1968: 54, 159).

In Décor II (Décor II: pls. 287b, 294b), there are examples of cube-in-hexagonal 
representation. An ornament from Gamzigrad has been described as a hexagonal 
labyrinth of 3 lozenge-shaped sections (Décor II: 128 pl. 321c). An ornament 
from Ouzouer-sur-Trézée shows the cube form in four hexagons around a square 
and the use of a four-pointed star in the spaces between the cubes (Décor II: 
230-231 pl. 409d). Another example from Ouzouer-sur-Trézée demonstrates the 
repeated use of the form introduced by Kepler and the hexagonal spaces between 
them. The star of six lozenges is a structure highlighted by rhombuses. Since 
only the parts of the star form are colored in Kepler form, the parts that allow 
the perception of the cubes combine to form hollow hexagons. Thus, instead of 
three-dimensional cubes, two-dimensional rectangular leaves forming the star 
are brought to the fore (Décor II: 251 pl. 423b) (Fig. 9).

3.4. Semi-regular Solids of Archimedes
The first of the ideas that play a role in the construction of the Platonic solids 
is the filling of space with the repetitive use, without spacing in between them, 
of the same solid; and the second thought is that each surface of the solid is 
made from the same polygon. Platonic solids are expressed as regular solids by 
referring to these properties. Archimedes removes the constraint of making all 
the surfaces of the solid from the same polygon and allows the surfaces of the 
solid to be made from different regular polygons. In addition, he changes the 
condition that there should be no spacing between the repeated use of solids 
and accepts that there may be spacing. These tolerances are the reasons for the 
transition from being regular to being semi-regular (Aydoğdu 2022: 98-101, 
199).

Pappus of Alexandria (AD 290-350) states that Archimedes examined 13 semi-
regular solids apart from Plato’s regular solids (Thompson 1925: 181-188). 
Solids became the focus of attention again in the Renaissance Period. Luca 
Pacioli (AD 1445-1514), in the Divina Proportione (Divine Ratio) of AD 1509, 

Figure 8
Platonic solids (Pacioli 1509: pls. I, II, VII, 
VIII, XV, XVI, XXI, XXII, XXVII, XXVIII).

Figure 9
Examples of the cube forms and their 
repetitive use (Décor II: pls. 321c, 409d, 
423b).
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gives the ratio later known as the golden ratio, polygons, and drawings of solids 
attributed to Leonardo Da Vinci (Pacioli 1509: pls. I-II, VII, VIII, XV-XVI, 
XXI-XXII, XXVII, XXVIII; Taylor 1942). Albrecht Dürer (AD 1471-1528), 
in his book Underweysung (Unterweisung) der Messung mit dem Zirkel und 
Richtscheyt, published in 1525, gives a drawing of seven of the Archimedes 
solids. Five solids given by Pacioli are also among these drawings (Dürer 1525: 
32, 34, 93). Danielle Barbaro (AD 1513-1570), who was also the commentator 
of Vitruvius, gives drawings of eleven of the Archimedes’ solids in his book La 
Pratica della perspettiva, published in 1568 (Barbaro 1568). Johannes Kepler 
(AD 1571-1630), in his book Harmonicus Mundi, published in 1619, shows 
how solids could be drawn, and gives their names used today. While examining 
the method of constructing solids, Kepler also considers the ability of regular 
polygons to span the two-dimensional plane without spacing. Kepler’s graphs 
show that the first designs of three-dimensional objects were developed in the 
two-dimensional plane, and then were dealt with the third dimension (Keppleri 
1619: 61-65 [Libri II. Prop. XXVIII]; Kepleri 1864: 123-126) (Figs. 10-12).

The mosaics provide examples showing similarities with Archimedes’ semi-
regular solids. Décor II allows to observe three of these examples. The first 
example in catalog order comes from Brescello (Italy) (Fig. 13a). This example 
is defined in Décor II as: “Centralized pattern, in a circle and around a hexagon, 
in 2 registers, of 6 squares adjacent to the hexagon, and of 12 squares contiguous 
to the circle, all of the squares contiguous by a point and forming lozenges and 
triangles (here outlined).” (Décor II: 189 pl. 375b). The second example of this 
combined use is the example of Sainte Colombe (France), which is defined as the 
development of the Brescello example (Décor II: 190 pl. 376a). Enriching the 
insides of squares and rhombus patterns by painting them in contrasting colors 
is considered as a state of development (Fig. 13b). Geometrically, its difference 
from the Brescello example is that the circle surrounding the pattern is expanded 
a little more, and the empty spaces as a result of the expansion are filled with 
triangles. It should be noted that the upper base of the Rhombici cuboctaedron 
is also square. The third example comes from the Mataró (Espagne) (Décor 
II: 190 pl. 376b). The squares have been decorated with guilloche patterns. 

Figure 10
Archimedes’ semi-regular solids (solids 1-7)
(Keppleri 1619: Libri II. 64).

Figure 11
Archimedes’ semi-regular solids (solids 8-13) 
(Keppleri 1619: Libri II. 62).

Figure 12
Polyhedrons (Keppleri 1619: Libri II. 58-59).
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Geometrically, its differences from the Brescello example are that the circle 
surrounding the pattern is further expanded compared to the Sainte Colombe 
example, and the empty spaces as a result of the expansion are filled with a 
square organization. The most obvious difference is that the upper base of the 
Rhombici cuboctaedron has been depicted as a hexagon instead of a square (Fig. 
13c).
The pattern is geometrically composed of a hexagon in the center, equilateral 
triangles that combine with the sides of the hexagon, each side of which carries 
a square, and a circle that carries this geometric structure. In the structure 
consisting of hexagons, squares and triangles, the spaces between the squares 
produce motifs in the form of rhombuses. The construction of the pattern begins 
with a regular hexagon. Setting up a square on each side of the hexagon is the 
second step. Equilateral triangles, the sides of which are equal to the sides of the 
square, are added to the squares. Squares are set on the two exposed sides of these 
equilateral triangles. The ends of the last squares touch the circle surrounding 
the pattern. The result obtained is the geometric texture of the Brescello sample 
(Fig. 14). 

Figure 13
Examples from Brescello, 

Sainte Colombe, and Mataró
 (Décor II: 189 pl. 375b, 376a, b).

Figure 14
Geometric construction of Brescello 
example (drawing by authors).



Determination of the Mathematical Theorems on Ancient Mosaics / Matematik Teoremlerinin Antik Dönem Mozaikleri Üzerinde Tespiti    49

The geometric texture of the Brescello sample seems to be related to the semi-
regular solids of Archimedes for two reasons. The first reason is that it shares the 
same plan with the Rhombici cuboctaedron, one of Archimedes’ 13 semi-regular 
solids. The Rhombici cuboctaedron has 26 faces consisting of 8 triangles and 18 
squares (Keppleri 1619: Liber II fig. 10). Each triangle connects three squares. 
Its view from six directions is octagonal. Namely, the lateral borders of the solid 
have an octagonal view from six directions: top, bottom, left, right, opposite and 
rear. It has a square at its lower base, eight squares at its equator, and the upper 
base is a square plane. Equatorial squares are connected to the upper base by 
squares in the midline and by triangles in the lateral lines. Thus, the equatorial 
squares are connected to the upper base by four triangles at the four corners and 
four squares at the midline.
In perspective, the part that is distinguished by sharp lines is 3 of the 8 squares 
of the equator, a square connecting the left and right of these three squares to 
the upper base, and a triangle between these connected squares. The perspective 
view, in this context, in Kepler’s drawing covers the middle line and the top of 
the drawing. This perspective view is repeated six times around the hexagon in 
the center of the motif in the Brescello example. In each iteration, the squares 
and triangular structure in the perspective image are preserved, while the patterns 
that adorn the surface of these shapes vary, suggesting that the solid is given a 
perspective view from a different angle each time (Fig. 15a, b).

Figure 15
Semi-regular solids and 

Brescello Example (drawing by authors).
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In Kepler’s drawing, except the middle one of the three squares on the equator 
of the solid;  the other two squares on the equator, the two connecting squares, 
and the upper base, a total of five squares are in the form of a rhombus. In the 
Brescello example, the three squares, the middle square and the two connecting 
squares are perfect squares, while the squares to the left and right at the equator 
are rhombic, and the upper base is a rhombus truncated by the circle. The 
Brescello example more closely models the actual structure of the solid (Fig. 
15a, b).

Each triangle connecting the equatorial squares to the upper base is coincident 
with a square on each of its three sides. This connection form is also seen in the 
Rhomb Icosidodecaedron. In this solid, in front view, a pentagon is connected to 
the surrounding decagon by a similar connecting line. In the midline, the edge 
of the decagon extends upwards with a square. A triangle that accepts the upper 
edge of the square as the base is connected and the remaining two sides of this 
triangle unite with a square to reach the pentagon at the top. From the decagon 
upwards, the square-triangle-two square-upper base connection is the same as 
the Brescello example (Fig. 15c, d).

The exit from a triangle located at the equator of the Rhomb Icosidodecaedron 
takes place with squares added to its sides. In the Brescello example, there is 
a hexagon at the equator, and the exit from the hexagon takes place by adding 
squares to the sides of the hexagon. According to the type of solid, the number of 
upper bases targeted by the exit from the equator varies according to the number 
of sides of the geometric shape that is the exit point.

In the Rhomb Icosidodecaedron structure, since the exit from the center starts 
from the triangle, the triangular region with concave sides and truncated ends, 
which shaped by the connection lines of the exit directions from the equator and 
accepting the target geometric shape as the end region is in three direction. In 
the Brescello example (Blake 1930: 113 pl. 41.4), since the exit from the center 
starts from the hexagon, this region is in six directions but symmetrically in 
three directions. The Rhomb Icosidodecaedron and the Brescello example are 
therefore structurally similar (Fig. 15e, f). According to these evaluations, the 
Brescello sample combines two of the Archimedes solids in the same plane.

The Brescello example can be read as solid views repeated around the central 
hexagon. Couldn’t another polygon be chosen instead of the central hexagon? 
Of course it could be chosen. Each of these choices can be formulated as “central 
polygon-square-triangle-squares”. We can see some of the examples that may 
arise depending on the selection of polygons in Kepler’s drawings. For example, 
in the arrangement around the central triangle, solid appearances lead to 
pentagonal spaces (Fig. 15c). In the case of arranging around the central square, 
it can be predicted that the lozenge-shaped forms that give the perspective view 
of the solid shape will be distorted. The case of using a central pentagon contains 
difficulties specific to the regular pentagon (Fig. 15c). The regular heptagon 
falls outside the polygons that can be constructed with an measureless ruler and 
compass. In the case of using a central octagon, it can be predicted that the 
lozenge-shaped forms, which give three-dimensional effect, will be compressed 
and the organization will be difficult. The case of using a central nonagon is 
also the same as using a heptagon. Given these possible options, the Brescello 
example represents the option of arranging around a regular hexagon as a 
reasonable option.

Considering the geometric plan of the Brescello example, the Sainte-Colombe 
and Mataro examples are not faithful to this plan. In order to obtain variants 
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with faithfully to the plan, it is expected that the circle surrounding the model 
is kept constant and the details are modified. However, this has not been done. 
The plan itself has been modified. These differences show that what created the 
Brescello example was not a standard geometric plan describing the example, 
but a simple, easily modified plan.

The geometric plan is about dividing the circumference of the circle first by 
6, then by 12, and then by 24. However, the organization from the central 
hexagon to reach the upper base of the Rhombici cuboctaedron is not a natural 
element of the plan. To describe this organization on surfaces of varying sizes, 
it is necessary to determine the ratio between the outer circle and the central 
hexagon. Reaching the outer circle from the center of the central hexagon 
and reaching the triangle and square arrangements in the intermediate layers 
requires complex calculations. Of course, these operations can be performed 
by transferring lengths instead of complex calculation. This practical solution 
works by adding a square to a hexagon, then adding a triangle. The geometric 
plan points to the Archimedes solids as a solution.

3.5. Hexagons of Pappus of Alexandria
Pappus of Alexandria (AD 284-305) is known circa AD 320. Pappus’ historical 
role is to reconsider and give a summary of the mathematical knowledge that 
reached up to his time, to put an end to the long stagnation in the theory of Greek 
mathematics, and to bring about a revival (Heath 1921b: 355; Boyer 1968: 196-
215, 686). In book eight of his work named as Synagoge, Pappus tackles an 
interesting problem on drawing seven identical hexagons in a circle. One of 
the hexagons will be at the center of the circle and the others will be around the 
center of the circle. While one side of the hexagons drawn around is the same 
as one of the sides of the central hexagon, the side opposite the same side will 
cut the circumference of the circle as a chord. Along with solving the problem, 
Pappus also gives a drawing that graphically describes the problem. Therefore, 
this pattern can be named as Pappus form (Pappus. Synagoge VIII. c. 23. Prop. 
19; Heath 1921b: 438-439; Aydoğdu 2022: 185-187) (Fig. 16).

Figure 16
Pappus’ hexagons

(Pappus. Synagog VIII. c. 23. Prop. 19).
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In Décor II, patterns similar to the graphic presented by Pappus are found in 
the examples of Saint-Bertrand-de-Comminges (France), Nîmes (France), and 
Vaison la Romaine (France) from the Gaul region (Décor II: 239 pl. 415a-d) 
(Fig. 17).  These patterns, as an extension of the regular hexagon (honey comb) 
form (Décor I: 321 pl. 204a), are defined in the category of triaxial patterns as 
“in a circle and around a hexagon, 6 adjacent hexagons and 6 truncated hexagons 
(as triangles with concave base) on the periphery” (Décor II: 239 pl. 415a).

When Pappus’ design of hexagons around a hexagon is considered as a pattern, 
it is naturally expected that the pattern will lead to different variations. In 
the examples of Fliessem (Germany), Autun (France) and Vienne (France), 
quadrilaterals have been arranged around the hexagon (Décor II: 243 pl. 418a-
c). In the examples of Nîmes (France), Sens (France), and Carthage (Tunisia), 
concave hexagons are arranged around the concave hexagon and can also be 
perceived as lunar six leaves around lunar six leaves (Décor II: 240 pl. 416a-c) 
(Fig. 18).

Planeterium Hause mosaic (Spain, Italica) bears hexagonal ornaments. The 
mosaic is dated to the middle of the second century AD (Penedo 1993: 73-78 
kat. no: 13-14 pls. VIII-IX; López Monteagudo - Neira 2010: 17-189 fig. 205).  
This mosaic is contemporary with Ptolemy’s Almagest. It is thought that Pappus 
was alive circa AD 284-305 and was known around AD 320, and his work called 
Synagoge belongs to this period. In this case, there is a time gap of about a 
century and a half between the Planetarium House mosaic and Pappus’ graphic. 
The same is true for Peacock mosaic from the Gaul region (Lassus 1971: 45-72 
fig. 48; Décor II: pl. 415c) (Fig. 17c). Another example, attributed to the mid-1st 
century AD from Pompeii (De Vos 1991: 36-60 fig. 27), shows that the Pappus 
form existed in mosaic art two and a half centuries before Pappus.

4. Discussion
The determination of mathematical theorems in mosaic art is an area of study 
that can establish a direct relationship between mathematics and mosaic art. 
If a mathematician’s drawing is depicted in a mosaic, it raises the question 
of whether there was contact between mosaicists and mathematicians, their 

Figure 17
Use of Pappus’ hexagons as decorations
(Décor II: pl. 415a-d).

Figure 18
Concave hexagonal applications
(Décor II: 240 pl. 416a-c).
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works, or people who were knowledgeable about these works. However, the 
identification of a mathematician’s drawing in a mosaic is not enough to prove 
the existence of such a contact. Even if the existence of direct or indirect contact 
was guaranteed, the geometric ornament in the mosaic would remain a crucial 
factor in proving the exchange of information or graphics. Therefore, while 
identification is important, it is not sufficient for the determination. It is also 
important to acknowledge the difficulties that may arise during identification 
and to discuss the arguments leading to the identification. To provide a healthy 
framework for discussion, this study explores topics such as Greek mathematics or 
scientific geometry, practical geometry, the source of the mosaicist’s knowledge, 
difficulties in constructing forms and their consequences, representation of 
solids on the plane, identification of two-dimensional form, and their results, all 
presented under separate headings.

4.1. Greek Mathematics or Scientific Geometry and Practical Geometry
It is thought that geometry emerged and developed long before the emergence of 
writing (Boyer 1968: 7). The Nile Valley and Mesopotamia provide examples of 
primitive writing from before the end of the 4th millennium BC. But few of them 
have been associated with the theme of mathematics (Boyer 1968: 1-10). In 
Egypt and Mesopotamia, mathematics is at the level of the craft. Measurements 
and calculations made to meet the needs of daily life constitute the content of 
mathematics. Formulas had undoubtedly established in problem solutions, but 
the operations and calculations could not turn into theory (Boyer 1968: 12). The 
fact that mathematics, which reached a certain level of development in Egypt 
and Mesopotamia, became a science discipline, is the feature that characterizes 
the Greek mathematics (Heath 1921a: 65-66; Boyer 1968: 48-67). It is thought 
that geometry, which started as a craft practice in this line of development, 
turned into scientific geometry. The period of Greek mathematics as a whole 
covers the 12 centuries, which historically fall between the 6th century BC 
and the 6th century AD. The 26 cities, which are mentioned together with the 
philosophers and scientists who revealed the Greek mathematics, determine the 
Mediterranean environment and the southwestern shores of the Black Sea as the 
geography where mathematics spread (Boyer 1968: 196). We can see the point 
that Greek mathematics reached in three centuries by looking at the the Elements 
of Eucleides (ca. 300 BC). Elements consists of 13 books. The Elements contain 
almost all basic mathematical knowledge such as higher arithmetic, number 
theory, synthetic geometry (point, line, plane, circle, sphere) and algebra (Heath 
1921a: 354-360). The forms used in geometric mosaics correspond to a very 
small set of this content.

Greek geometry or scientific geometry treats forms based on logical inference, 
and defines the mathematical properties of forms, their own properties and their 
relations with other forms. The expression “practical geometry” is used to express 
functional and easily applicable techniques and knowledge in craft practice. It 
is known that the information presented in prescription form is widely used, 
especially in the Roman world. Vitruvius does this when he recommends using 
a 3-4-5 foot long triangle to make right angles at the corners (Vitr. IX, 6-8). The 
source of this practical knowledge is mathematical knowledge of the nature of 
the right triangle.

Practical knowledge of geometric forms, no matter where or how it comes from, 
stems from the nature of those forms. For example, using nails and string to 
draw circles, it is an example of practical geometry that reflects the relationship 
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of center, radius and perimeter, and this is an ancient knowledge. To obtain an 
equilateral triangle, it is sufficient to join three laths of equal length at their 
end points: This operation is the result of equilateral and triangular properties. 
Similarly, a square can be obtained. Equilateral triangles can be combined to 
form a hexagon. These examples can be multiplied for physical construction. 
When forms and their configurations within a certain scale need to be planned for 
physical construction (for example on a piece of paper), “practical knowledge” 
becomes knowledge about the maneuvers of the ruler and compass.

Greek mathematics is concerned not only with the abstract study of geometry, 
but with its practice. The search for polygons that can only be drawn with 
a measureless ruler and a compass (or string and nail) is concerned with 
determining the possibilities of realizing abstract forms with very simple tools 
and simple methods. For example, polygon drawing is obtained by dividing the 
circumference of the circle at equal intervals. That is, the circle is divided into 
equal segments by rays extending outward from the center. In abstract analyzes 
of scientific geometry, the ruler and compass maneuvers come from theory. These 
maneuvers are extremely practical for many polygons. From this point of view, 
it can be thought that “practical geometry” should not be treated as a completely 
separate category from the “scientific geometry” context. The content, scope 
and limits of the set of “practical geometry” or “practical knowledge” can 
become more understandable by examining the works of mosaicists on the axis 
of scientific geometry.

4.2. Source of Geometry Knowledge of Mosaicists
In the context of  “practical geometry” and “scientific geometry”, the issue of how 
geometric mosaics were made is controversial. At the center of the discussions, 
we can see that the relationship between the mosaicist and scientific geometry is 
questioned. The question to be answered is: Where did the mosaicists’ knowledge 
of geometry come from?

While seeking the answer to this question, the social status of mosaicists has 
also been taken into account. Because the source of knowledge of geometry 
may be the academic environment or mosaic workshops (master-apprentice 
relationship). On the other hand, it has been thought that there were two separate 
processes in the creation of geometric mosaics, such as the design process and 
the construction process (Daszewski - Michaelides 1989: 14; Duran-Kremer 
2012: 59-70). In this case, it can be thought that the actors of the design and 
workmanship processes were different people and that these people did not have 
the same opportunities to access geometry information. The design demands of 
the customers and their guiding effects on the process are also open to discussion. 
Relationships and interaction between different categories of people that interfere 
with the labor process interaction emerge as key considerations. It is thought that 
mosaic worker’s access to geometry knowledge through academia was not so 
possible. Access to practical geometry knowledge through the master-apprentice 
relationship is seen as a more reasonable option (Balmelle - Darmon 1986: 247; 
Bruneau 1987: 154). 

Geometric forms used in the decoration of geometric mosaics belong to the 
geometry repertoire. There are successful representation of geometric forms 
and complex configurations in mosaics. It is known that rulers and compasses 
(or nail and string) were used in the making of mosaics (Vitr. VII.I.3). Based 
on these reasons, focusing on the possibility that mosaicists knew geometry 
and investigating the content, limits and possible sources of their knowledge 
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can contribute to the understanding and evaluation of geometric mosaics. This 
approach does not lead to an underestimation of the originality of mosaicist’s 
designs, their creativity, their artistry and their ability to solve practical problems 
they encounter. On the contrary, it can serve to develop a healthier understanding 
of these issues. At this point, it would be useful to clarify the relationship between 
scientific geometry and practical geometry as follows.

4.3. Difficult or Impossible Forms, Practical Difficulties and Degenerate 
Forms
Scientific geometry says that all regular polygons are theoritically possible in 
space (or in plane). Difficulties are faced when it comes to drawing or physically 
constructing polygons. Straight line and circle are embodied as ruler and 
compass without measure. Maneuvers with these instruments are under the 
control of theory. Therefore, “measureless ruler and compass” are extensions of 
mathematical thought to the physical world. It starts with an equilateral triangle 
and continues with a square. As for the five-sided regular polygon (pentagon), it 
is seen that it is not so easy, but it is succeeded. The construction of the regular 
hexagon is quite practical. As for the seven-sided polygon (heptagon), there 
is a silence. Octagon is easy. There is silence again in the nine-sided polygon 
(nonagon). These silences continue until the 19th century AD: It is proved that 
the regular heptagon and nonagon, which are possible in theory, cannot be 
constructed with measureless ruler and compass (Wantzel 1837: 366-372; Cajori 
1918: 339-347; Tavares - Freitas 2018: 187-194).

The regular pentagon is included in the repertoire of polygons that can be drawn 
with measureless ruler and compass, but it is difficult to consume, so it is not 
that practical. Therefore, we should never miss the opportunity to be surprised 
if we come across the regular pentagon form in mosaic art. As for heptagon and 
nonagon, there is no place for them in the repertoire, within the possibilities 
of drawing with measureless ruler and compass. If we come across a regular 
heptagon or nonagon in mosaic art, we should be doubly surprised: First, 
because this work cannot be accomplished with measureless ruler and compass; 
secondly, because they somehow managed to do this job.

Couldn’t the mosaicists have built the heptagon or nonagon in some other 
practical way? Of course, they could. They could join seven or nine slats of 
equal length at the ends. They could also adjust the equality of the angles with 
a circle. It might not be perfect, but it would look aesthetic. So, apart from the 
tools and methods used in the construction of other polygons, and therefore with 
a practice that is detached from the theoretical integrity, we can expect these 
polygons to be built and include them in the repertoire. 

We can summarize the conclusion to be reached from this short discussion as 
follows: Pentagon, heptagon and nonagon are theoretically possible; but, in the 
context of construction with measureless ruler and compass, regular pentagon is 
difficult to construct, regular heptagon or nonagon is impossible.

Difficulty or impossibility in the construction of geometric forms may arise 
directly from the nature of the polygon (pentagon, heptagon, nonagon), as well 
as from the approach chosen for repetitive use, as in the square grid-element 
pattern approach. Consider the regular hexagon form. It is quite easy to draw with 
a ruler and compass. However, when trying to create a honeycomb texture, it is 
faced with the fact that the regular hexagon cannot be repeated in the square grid 
structure. Because the height and width of a regular hexagon are not equal. This 
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problem can be solved by using equilateral triangle grid instead of square grid  
(Décor I: 321 pl. 204e). The resulting graphic constitutes an open infrastructure 
for creative designs (Fig. 9c). If the square grid cannot be dispensed with, the 
“regularity” requirement should be abandoned. That is, the regular hexagon 
must be squeezed into the square. When this is done, the result obtained is again 
a hexagon, but this time an irregular hexagon (Décor I: 321 pl. 204f). It can 
be called a “degenerate hexagon” in reference to its rule-related deformation. 
With the deformation of the regular hexagon, the equilateral triangles dividing 
the hexagon are also deformed and become “degenerate triangles”. Within the 
square grid, degenerate triangles repeated as parts of a hexagon naturally give 
rise to designs such as a zig-zag pattern repeated throughout the strip, a lozenge 
pattern repeated in one direction, or repeated cubes (Décor I: 321 pl. 204d; 
Aydoğdu 2022: 195-198 figs. 105-112).

4.4. Representation of Solids in Plane and Identification Problem
In two-dimensional representation, two-dimensional geometric forms are 
depicted as they are. A perspective view of the form is used to represent a three-
dimensional form on the plane (in two dimensions). The form is depicted as it 
appears, not as it is. When the perspective changes, the image also changes. 
In freehand drawing, a three-dimensional form can be depicted from infinitely 
different angles. When the drawing possibilities are restricted to regular 
geometric forms, the depiction options are reduced. 

Let’s take the cube form. Different methods can be followed for the cube 
depiction. Adding lozenges to the two edges of a square that connects to the same 
corner is a method. In this method, the boundaries of the design form an non-
regular hexagon (Fig. 8.4.a). Another method is to divide the regular hexagon 
into three lozenges (Fig. 9a-c, Fig. 12.Qq-Vv). This method makes places where 
the regular hexagon can be represented also suitable for cube design. The use 
of  “degenerate hexagon” instead of regular hexagon in the cube design is also a 
practical option and the resulting cube forms can be seen as “degenerate cubes”. 
Similar to the depiction of the squares forming the cube surface as diamonds in 
perspective view, the polygons forming the surface of the solid in other solids 
are deformed in accordance with the perspective (Figs. 10-12). 

If the closed and open forms of the cube (Fig. 8.4.a, b) are compared, from the 
observer’s point of view (top-right), the differences between the depiction of 
the visible surfaces and the depiction of the skeleton of the form can be seen. 
In closed form, surfaces have been distinguished by the difference in color and 
texture. In the open form, the skeleton of the cube has been drawn. The surfaces 
between the square, which is understood to be the front face, and the square, 
which is understood to be the back face, are in the shape of a lozenge. In open 
form, the surfaces have not been distinguished by color and texture difference. 
If the thick lines forming the skeleton were not textured and the light-shadow 
effect was not emphasized, if the lines were linear, since there is no significant 
size difference between the squares (closeness-distance), we wouldn’t be able 
to distinguish the front and the back. In other words, our perception would be 
confused as if we were seeing the form from two different angles (left-bottom and 
right-upper). It could also be argued that the drawing was not three-dimensional 
but two-dimensional.

In the mosaics, we can see that the closed form of the cube is depicted instead 
of the open form, and the boundaries of the form consist of six sides. The 
visible surfaces of the cube give us six edges, naturally also the method for 
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its construction. In the example of the cube form, we can distinguish whether 
the design is two-dimensional or three-dimensional, by distinguishing the 
surfaces by color, texture or decoration in addition to the geometric structure 
that embodies the perspective view.

In this study, the similarities and differences between Archimedes’s solids 
(Rhombici cuboctaedron and Rhomb Icosidodecaedron) and the mosaic 
ornaments from Brescello (Italy), Sainte Colombe (France) and Mataró (Espagne) 
(Fig. 13a-c) have been evaluated. In the evaluations about ornaments, the solids 
have been taken as reference because they are ideal forms. It is worth noting that 
the differences between the ornament and the ideal form do not attribute a defect 
or deficiency to the work, and enable a healthier evaluation of the differences.

The common feature of these mosaics geometrically is that they have a design 
consisting of hexagon-square-triangle-square layers from the center outwards. 
The configuration repeated around the central hexagon in this design is the same 
as seen in the Rhombici cuboctaedron (Fig. 15a). The organization seen in the 
Rhomb Icosidodecaedron and the organization seen in the geometric design of 
these mosaics are similar in terms of the arrangement of the forms from the 
center to the outward (central form-square-triangle-squares) (Fig. 15b, c). 
Based on these determinations, in terms of similarity, a relationship has been 
established between the mosaic ornaments in question and the semi-regular 
solids of Archimedes.

Whether the geometric organization represented in these mosaics represents a 
two-dimensional design or a three-dimensional object from different angles is 
open to debate. The design has been shown step by step in the geometric plan 
of the Brescello mosaic (Fig. 14). When there is only a central hexagon, when 
squares are added to the hexagon, or when it comes to the hexagon-square-
triangle structure, the design is unquestionably two-dimensional (Fig. 14.1-3). 
When the hexagon-square-triangle-squares structure is reached, the discussion 
can begin. Because the lozenges, which give the perspective effect, are changing 
the situation by emphasizing three dimensions (Fig. 14.4). The two-dimensional 
effect is getting a little stronger when a circle is drawn around the design (Fig. 
14.5). When the surfaces are distinguished by decorations, the repetitions of 
the Rhombici cuboctaedron form from the perspective view become evident 
(Fig. 14.6). From another point of view, since the three-dimensional appearance 
repetitions occur around the hexagon, the design can also be viewed as a mixed 
structure that processes two and three dimensions together.

The reason why the discussion about being two or three-dimensional, which is 
not a problem in the identification of cube design, is a problem in Archimedes 
solids, is that the design in these mosaics meets the Rhombici coboctaedron form 
in accordance with the perspective, but on a partial appearance scale instead of 
the whole view. Therefore, what is done in this study is an identification based 
on the partial appearance of the solid.

For other solids, as in the cube depiction, it can be expected that the closed form 
to be depicted and the boundaries of the form consist of the visible edges of 
the solid. Difficulties due to the polygon forming the surfaces of the solid (for 
example, the regular pentagon), difficulties due to the number of visible edges 
of the closed form (10 edges for the Rhombici cuboctaedron), difficulties due 
to the organization and deformation of the surfaces of the solid in accordance 
with the perspective view can be estimated. In addition, it can be thought that 
the solid cannot be represented as a whole due to the restrictive effect of the 
design with regular geometric forms instead of free drawing. An approach such 
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as preserving the geometric form organization of the solid (square-triangle-
squares) but choosing an easy polygon instead of a difficult to construct, thus 
degenerating the solid is also included in the possibilities.

4.5. The Pappus Form, Adequacy and Inadequacy of Identification, 
Contributions
Pappus lived around the rule of Diocletianus (AD 284-305). He was a well-
known person circa AD 320. Pappus has done more than contribute to the history 
of mathematics by giving a list of Greek mathematicians and mentioning their 
work. His work is more like a handbook for Greek geometry than an encyclopedia 
(Heath 1921b: 355-358; Boyer 1968: 196-215, 686). Pappus gives a summary 
of the information that has reached his time. This is an important part of his 
historical role. Was the problem and drawing of hexagons in a circle first posed 
by Pappus or did he inherit it? The exact answer to this question is unknown. 
The limited resources on mathematical manuscripts do not allow to determine 
when this graph first appeared in mathematics. The mosaics (from Italica, Gaul, 
Pompeii) present examples of the form of hexagons in a circle long before 
Pappus’ time. Mosaicists who lived before Pappus’s time cannot have learned 
this form from Pappus.  This situation is consistent with Pappus’ historical role. 
The mosaics document that the form was in use long before Pappus. In this 
respect, the identification of the Pappus form on mosaic artifacts is important for 
the history of mathematics.

An ornament similar to the graphic given by Pappus of Alexandria is seen on a 
polychrome mosaic from the Planetarium House in Italica (Spain). Considering 
that Spanish mosaics are associated with Alexandria (Dunbabin 1999: 149-150), 
identification of a mathematical graphic on a mosaic work may be of value as 
a finding in inferences about the relationships between artifacts from different 
cities.

Patterns similar to the Pappus form have been defined in the category of triaxial 
patterns (Décor I: 12, Décor II: 239) as an extension of the regular hexagon 
(honey comb) form (Décor I: 321 pl. 204a). Similar to the “two-dimensional 
versus three-dimensional” discussion, a discussion can also be made for the 
Pappus form: Did the mosaicist want to draw hexagons in a circle, or did he 
want to draw a circle around the hexagons? From this point of view, it can be 
thought that the mosaicist’s approach to the subject, unlike Pappus’ approach, 
may be as simple as drawing a circle around the hexagons instead of drawing 
hexagons in the circle or placing the honeycomb in the circle. So, it can be 
claimed that there is no relationship between the Pappus form and the form in 
the mosaic works. Or, it can be claimed that the mosaicists and mathematicians 
came up with the same form independently and unaware of each other, without 
any contact between them. It can also be thought that a mathematician or Pappus 
saw the form in the mosaic and dealt with it as a mathematical problem.

The essence of the problem is to draw a central hexagon and hexagons around 
the central hexagon in a square area. Geometrically, the circle surrounding the 
hexagons states that the drawing will be performed in a square shaped area. 
Therefore, it is necessary to establish a proportion between the square frame and 
the size of the hexagon to be repeated. Since the dimensions of the area allocated 
to the drawing may change, it is important that the drawing is repeatable at the 
desired scale. If there was such a skill for applying the honeycomb form consisting 
of regular hexagons at different scales, this situation shows that mosaicists had 
already faced and solved the problem expressed by Pappus, whether or not 
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the circle is drawn around the hexagons. Analysis of the geometric plans of 
the mosaics bearing these forms, together with the actual measurements, can 
illuminate how the mosaicists solved the problem and deepen the understanding 
of the content of practical knowledge. A connection can be established between 
the Pappus form and its counterparts in mosaic art, in terms of the fact that they 
are essentially related to the same problem and result in the same graphic, apart 
from their similarities only in shape.

5. Conclusion
The analysis of the swastika, meander, and spiral forms has been conducted 
through the measurement of the perimeter of a polygon using only a ruler and 
compass, without the use of arithmetic operations. The resulting graphs provide a 
theoretical explanation for the design of the swastika and meander forms, as well 
as clarification on Archimedes’ spiral design, highlighting the mathematically 
natural, necessary, and inevitable relationship between these forms. This 
analysis establishes a mathematical infrastructure and a theoretical framework 
for proposed algorithms aimed at determining the grid structure necessary 
to produce the ornament and the repetition order in grid cells for ornamental 
surfaces created through the repetitive use of meander and swastika forms.

The Décor catalogue (Décor I-II) provides a collection of geometric ornaments 
dating back to the 1st century AD through the 6th century AD. It is observed 
that polygons like triangles, squares, rectangles, hexagons, and octagons were 
frequently used in the repertoire of geometric ornaments, but regular pentagon 
and regular heptagon forms did not receive the same level of attention. The 
forms such as regular pentagon and regular heptagon are theoretically possible, 
but in the context of construction with measureless ruler and compass, regular 
pentagon is difficult to construct, regular heptagon is impossible. The scarcity 
of these forms in ornaments is attributed to the limitations posed by the nature 
of these geometric forms. In lieu of regular and semi-regular solids with regular 
pentagons in their composition, combined forms that imitate solids, as well as 
easy-to-construct degenerate forms, were more commonly used, which can be 
interpreted as a consequence of these difficulties.

The study of original and degenerate forms has shed light on the use of 
mathematical objects, such as equilateral triangles, regular hexagons, and 
cubes, as they appear in ornaments, as well as the use of degenerate forms for 
practical convenience. Additionally, insights have been gained regarding the 
use of square grids and degenerate grids. Geometric mosaics hold a significant 
value in the history of mathematics, as they provide valuable documentation that 
contributes to the evaluation of mathematical graphics related to the forms and 
patterns they carry as ornaments. The Pappus form is a prime example of this. 
The identification of geometric forms from Greek mathematics in mosaic works, 
such as Hippocrates of Chios’ diagram of lunar areas, Plato’s regular solids, 
Archimedes’ semi-regular solids, and Pappus’ hexagons, adds new dimensions 
to studies and evaluations of mosaic art. However, the identification alone is not 
sufficient to prove the existence of a relationship between the mathematician and 
the mosaicist. The identification and related discussions provide insights into the 
relationship between geometry and geometric ornament, which is a necessary 
element for the existence of such a relationship, particularly in instances where 
the relationship between mathematician and mosaicist is subject to controversy.

Geometric models used in creating ornamental forms allow for a clear distinction 
and objective comparison between original and variant forms, facilitate the 
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evaluation of the connection between planning and reality, and enable the 
reproduction of damaged mosaic ornamentation. The general framework of 
mathematical analysis introduces the concepts of geometric reintegration and 
analytical restoration, which are relevant in the context of conservation studies. 
The sample analyses presented in this study could serve as an analysis model for 
comprehensive catalog analyses that extend to the limits of the Greek and Roman 
mosaic art decor repertoire. Analyzing the geometric forms and configurations 
that decorate mosaics with scientific geometry can lead to a better understanding 
of these forms and contribute to the evaluation of findings related to the mosaic-
making process, such as traces, drawings, and techniques.
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