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Abstract. This paper presents some results for conformal η-Ricci-Yamabe

solitons (CERYS) on invariant and anti-invariant submanifolds of a (LCS)n-
manifold admitting a quarter-symmetric metric connection (QSMC). In ad-

dition, we developed the characterization of CERYS on M-projectively flat,

Q-flat, and concircularly flat anti-invariant submanifolds of a (LCS)n-manifold
with respect to the aforementioned connection. Finally, we construct an ex-

tensive example that appoints some of our inferences.

1. Background and Motivations

Conformal Ricci flow is defined in a Riemannian n-manifold (V, g) as a general-
isation of classical Ricci flow by [6]

∂g

∂t
= −2(Ric+ g

n
)− pg, τ(g) = −1,

where p is called the conformal pressure, g is the Riemannian metric; τ and Ric
denote the scalar curvature and the Ricci tensor of V, respectively.

A conformal Ricci soliton on (V, g) is defined as follows [2]:

LF1
g + 2Ric = [

1

n
(pn+ 2)− 2µ]g,
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where µ ∈ ℜ (ℜ is the set of real numbers) and LF1
denotes the Lie-derivative

operator along a smooth vector field F1

A Ricci-Yamabe flow of type (κ, l), which is a scalar combination of Ricci and
Yamabe flows, is defined as follows [7]:

∂

∂t
g(t) = 2κRic(g(t))− lτ(t)g(t), g(0) = g0,

for some scalars κ and l.
A Riemannian manifold is said to have a Ricci-Yamabe solitons of type (κ, l) (briefly,
RYS) if [4, 29]

LF1g + 2κRic+ (2µ− lτ)g = 0,

where l, κ, µ ∈ ℜ.
In [30], Zhang et al. studied conformal Ricci-Yamabe soliton (briefly, CRYS), which
is defined on (V, g) by

LF1
g + 2κRic+ [2µ− lτ − 1

n
(pn+ 2)]g = 0.

In this follow-up, the conformal η-Ricci-Yamabe soliton (briefly, CERYS) on (V, g)
is defined by [28]

LF1
g + 2κRic+ [2µ− lτ − 1

n
(pn+ 2)]g + 2ν η ⊗ η = 0, (1)

where l, κ, µ, ν ∈ ℜ. If F1=grad(f), then the Equation (1) is called a gradient
conformal η-Ricci-Yamabe soliton (briefly, GCERYS) and given by

∇2f + κRic+ [µ− lτ

2
− 1

2
(p+

2

n
)]g + ν η ⊗ η = 0,

where ∇2f is said to be the Hessian of f . A CRYS (or GCRYS) is said to be
shrinking, steady or expanding if µ < 0, = 0 or > 0, respectively. A CERYS (or
GCERYS) reduces to (i) CERS if κ = 1, l = 0, (ii) CEYS if κ = 0, l = 1, and
(iii) conformal η-Einstein soliton (briefly, CEES) if κ = 1, l = −1.

Shaikh [22] introduced the concept of n-dimensional Lorentzian concircular struc-
ture manifold (briefly, (LCS)n-manifold) and demonstrated its existence with sev-
eral examples [24], which generalises the concept of LP-Sasakian manifolds intro-
duced in [13,14]. We refer to the works [1,10,23] for more extensive studies. Mantica
and Molinari [18] recently demonstrated that a (LCS)n-manifold (n > 3) is equal
to the GRW spacetime. The authors also examined the applicability of (LCS)n-
manifolds in general theory of relativity and cosmology in [3]. Thus the geometry
of submanifolds has grown in popularity in modern analysis due to its importance
in practical mathematics and theoretical physics.

A linear connection ∇̄ on (V, g) is said to be a quarter-symmetric connection
(briefly, QSC) [8] if its torsion tensor T̄ has the form

T̄ (F1,F2) = ∇̄F1
F2 − ∇̄F2

F1 − [F1,F2] = A(F2)ψ
∗(F1)−A(F1)ψ

∗(F2), (2)



ON CONFORMAL η-RICCI-YAMABE SOLITONS 613

where A is a 1-form and ψ∗ is a (1, 1) type tensor field. If a quarter-symmetric
linear connection ∇̄ satisfies the condition

(∇̄F1
g)(F2,F3) = 0,

for all F1,F2,F3 ∈ χ(V), then ∇̄ is said to be a quarter-symmetric metric connec-
tion (briefly, QSMC). If a contact metric manifold admits a QSC, then we take A=η
and ψ∗=ϕ and hence (2) takes the form T̄ (F1,F2) = η(F2)ϕ(F1)− η(F1)ϕ(F2).

The relation between the Levi-Civita connection ∇ and a QSMC ∇̄ on a contact
metric manifold is given by

∇̄F1
F2 = ∇F1

F2 − η(F1)ϕ(F2).

Recently, the QSMC have been studied by many authors such as [9, 12, 19, 31]
and many others.

2. Preliminaries

Let Ṽ be an n-dimensional Lorentzian manifold admitting a unit time-like con-
circular vector field ζ. Then there is

g(ζ, ζ) = −1.

Since ζ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

g(F1, ζ) = η(F1)

satisfies [25]

(∇̃F1η)F2 = α[g(F1,F2) + η(F1)η(F2)], α ̸= 0,

∇̃F1ζ = α[F1 + η(F1)ζ], α ̸= 0, (3)

for F1,F2 ∈ χ(Ṽ), where ∇̃ denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and α is a non-zero scalar function that satisfies

∇̃F1
α = (F1α) = dα(F1) = ρη(F1),

ρ being a certain scalar function given by ρ=-(ζα). Let us have a look

ϕF1 =
1

α
∇̃F1

ζ, (4)

then utilizing (3) and (4) we acquire

ϕF1 = F1 + η(F1)ζ,

g(ϕF1,F2) = g(F1, ϕF2).

Thus the Lorentzian manifold Ṽ admits the unit time-like concircular vector field
ζ, its associated 1-form η and a (1,1) tensor field ϕ is said to be a Lorentzian
concircular structure manifold (briefly, (LCS)n-manifold) [17,22]. Especially, if we
take α=1, then we can obtain the LP-Sasakian structure of Matsumoto [13].
In an (LCS)n-manifold, we have [22]:

η(ζ) = −1, ϕ ◦ ζ = 0, η(ϕF1) = 0, g(ϕF1, ϕF2) = g(F1,F2) + η(F1)η(F2),
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ϕ2F1 = F1 + η(F1)ζ,

η(R̃(F1,F2)F3) = (α2 − ρ)[g(F2,F3)η(F1)− g(F1,F3)η(F2)],

R̃(F1,F2)ζ = (α2 − ρ)[η(F2)F1 − η(F1)F2],

R̃ic(F1, ζ) = (n− 1)(α2 − ρ)η(F1),

R̃(F1,F2)F3 = ϕR̃(F1,F2)F3 + (α2 − ρ)[g(F2,F3)η(F1)− g(F1,F3)η(F2)]ζ,

(∇̃F1ϕ)F2) = α[g(F1,F2)ζ + 2η(F1)η(F2)ζ + η(F2)F1],

for all F1,F2,F3 ∈ χ(Ṽ).
Let N be an m-dimensional (m < n) submanifold of an (LCS)n-manifold Ṽ with

induced metric g. Also, let ∇ be the induced connection on the tangent bundle TN
and ∇⊥ be the induced connection on the normal bundle T⊥N of N, respectively.
Then the Gauss and Weingarten formulae are respectively given by

∇̃F1
F2 = ∇F1

F2 + ℏ(F1,F2), (5)

and

∇̃F1F3 = −AF3F1 +∇⊥
F1

F3,

for all F1,F2 ∈ χ(N) and F3 ∈ χ⊥(N), where ℏ and AF3
are second fundamental

form and the shape operator (corresponding to the normal vector field F3), respec-

tively for the immersion of N into Ṽ. The second fundamental form ℏ and the shape
operator AF3 are related by [26]

g(ℏ(F1,F2),F3) = g(AF3
F1,F2),

for all F1,F2 ∈ χ(N) and F3 ∈ χ⊥(N). We note that ℏ(F1,F2) is bilinear and since
∇fF1F2=f∇F1F2 for any smooth function f on a manifold, then we have

ℏ(fF1,F2) = fℏ(F1,F2).

A submanifold N of an (LCS)n-manifold Ṽ is said to be totally umbilical if

ℏ(F1,F2) = g(F1,F2)H, (6)

where F1,F2 ∈ TN and the mean curvature vector H on N is given by H =
1
m

∑m
i=1 ℏ(υi, υi), where {υ1, υ2, ...., υm} is a local orthonormal frame of vector fields

on N. Moreover, if ℏ(F1,F2)=0 for all F1,F2 ∈ TN, then N is said to be totally

geodesic and if H=0 then N is called minimal in Ṽ.
A submanifold N of Ṽ is said to be invariant if the structure vector field ζ is

tangent to N at every point of N and ϕF1 is tangent to N for every vector field F1

tangent to N at every point of N, i.e., ϕ(TN) ⊂ TN at every point of N. Whereas,
N is said to be anti-invariant if for any F1 tangent to N, ϕF1 is normal to N, i.e.,
ϕ(TN) ⊂ T⊥N at every point of N, where T⊥N is the normal bundle of N.

Now we recall the following results:
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Lemma 1. [11] On an (LCS)n-manifold Ṽ with a QSMC
¯̃∇, we have

(i)
¯̃∇F1

F2 = ∇̃F1
F2 + η(F2)ϕF1 − g(ϕF1,F2)ζ,

(ii) R̄(F1,F2)F3 = R̃(F1,F2)F3 + (2α− 1)[g(ϕF1,F3)ϕF2 − g(ϕF2,F3)ϕF1]

+ α[η(F2)F1 − η(F1)F2]η(F3) + α[g(F2,F3)η(F1)− g(F1,F3)]ζ,

(iii) R̄ic(F2,F3) = R̃ic(F2,F3) + (α− 1)g(F2,F3) + (nα− 1)η(F2)η(F3)

−(2α− 1)εg(ϕF2,F3),

where R̄, R̄ic are the curvature and the Ricci tensors of Ṽ with respect to
¯̃∇ and

ε = traceϕ.

3. Cerys on Submanifolds of (LCS)n-Manifolds

Let (g, ζ, µ, κ, l) be a CERYS on submanifold N of an (LCS)n-manifold Ṽ. Then
in view of (1) we obtain

Lζg(F2,F3) = −2κRic(F2,F3)− [2µ− lτ − 1

n
(pn+ 2)]g(F2,F3) (7)

−2νη(F2)η(F3).

With the help of (4) and (5) one can get

αϕF1 = ∇̃F1
ζ = ∇F1

ζ + ℏ(F1, ζ). (8)

If N is invariant in Ṽ, then ϕF1, ζ ∈ TN. So from (8) we yields

(i) αϕF1 = ∇F1ζ, (ii) ℏ(F1, ζ) = 0. (9)

Using (9)(i) in (7), we obtain

Ric(F2,F3) = − 1

κ
[µ+α− lτ

2
− 1

2n
(pn+2)]g(F2,F3)−

(ν + α)

κ
η(F2)η(F3), (10)

where Lζg(F2,F3) = 2α[g(F2,F3) + η(F2)η(F3)].
Also, with the help of (9)(ii), we get from (6) that η(E)H = 0 =⇒ H = 0. So,

we obtain the result:

Theorem 1. If (g, ζ, µ, ν, κ, l) be a CERYS on an invariant submanifold N of an

(LCS)n-manifold Ṽ, then N is an η-Einstein manifold and also minimal in Ṽ.

Also, we have

R(F2,F3)ζ = ∇F2
∇F3

ζ −∇F3
∇F2

ζ −∇[F2,F3]ζ = (α2 − ρ)[η(F3)F2 − η(F2)F3],

which by using (9)(i), we lead to

Ric(F2, ζ) = (m− 1)(α2 − ρ)η(F2), for all F2. (11)
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By fixing F3=ζ in (10) and using (11), we get

µ = ν − κ(m− 1)(α2 − ρ) +
lτ

2
+

1

2
(p+

2

n
).

As consequence, we can make the following claim:

Theorem 2. If (g, ζ, µ, ν, κ, l) be a CERYS on an invariant submanifold N of an

(LCS)n-manifold Ṽ, then the CERYS reduces to
(i) CERS if µ = ν − (m− 1)(α2 − ρ) + 1

2 (p+
2
n ),

(ii) CEYS if µ = ν + τ
2 + 1

2 (p+
2
n ),

(iii) CEES if µ = ν − (m− 1)(α2 − ρ)− τ
2 + 1

2 (p+
2
n ).

Corollary 1. An η-Yamabe soliton on an invariant submanifold N of an (LCS)n-
manifold Ṽ of type (0, 1), is contracting, stable or increasing accordingly as τ <
−2ν, τ = −2ν, or τ > −2ν, respectively.

Corollary 2. An η-Ricci soliton on an invariant submanifold N of an (LCS)n-
manifolds Ṽ of type (1, 0), is contracting, stable or increasing accordingly as ν <
(m− 1)(α2 − ρ), ν = (m− 1)(α2 − ρ) or ν > (m− 1)(α2 − ρ), provided α2 ̸= ρ.

Corollary 3. An η-Einstein soliton on an invariant submanifold N of an (LCS)n-
manifolds Ṽ of type (1,−1), is contracting, stable or increasing accordingly as τ >
2[ν − (m− 1)(α2 − ρ)], τ = 2[ν − (m− 1)(α2 − ρ)] or τ < 2[ν − (m− 1)(α2 − ρ)],
provided α2 ̸= ρ.

In particular, if N is an anti-invariant submanifold on Ṽ. Then for any F1 ∈ TN and
ϕF1 ∈ T⊥N, we get from (8) that ∇F1

ζ=0, ℏ(F1, ζ)=αϕF1. Thus, Lζg(F1,F2)=0,
that is, ζ is a Killing vector field (briefly, KVF) and in this case from (7), we have

Ric(F2,F3) = − 1

κ
[µ− lτ

2
− 1

2
(p+

2

n
)]g(F2,F3)−

ν

κ
η(F2)η(F3). (12)

This results in the following outcomes:

Theorem 3. If (g, ζ, µ, ν, κ, l) be a CERYS on an anti-invariant submanifold N of

an (LCS)n-manifolds Ṽ, then N is an η-Einstein and ζ is a KVF.

Again, for an anti-invariant submanifold N of Ṽ, we have R(F2,F3)ζ=0 and hence
Ric(F2, ζ)=0. Also, from (12) we obtain Ric(F2, ζ) = − 1

κ [µ − lτ
2 − 1

2 (p +
2
n ) −

ν]η(F1). So, we get µ = lτ
2 + 1

2 (p+
2
n ) + ν. Thus, we have finalized the result:

Corollary 4. A CERYS of type (κ, l) on an anti-invariant submanifold N of an

(LCS)n-manifold Ṽ is contracting, stable or increasing accordingly as τ < −1
l [2ν +

(p+ 2
n )], τ = −1

l [2ν + (p+ 2
n )] or τ >

−1
l [2ν + (p+ 2

n )].
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4. Cerys on Submanifolds of (LCS)n-Manifolds Admitting
¯̃∇

Assume that (g, ζ, µ, ν, κ, l) be a CERYS on a submanifold N of an (LCS)n-
manifold Ṽ in view of QSMC

¯̃∇. Then from (1) we obtain

L̄F1g(F2,F3) = −2κR̄ic(F2,F3)− [2µ− lτ̄ − 1

n
(pn+ 2)]g(F2,F3) (13)

−2νη(F2)η(F3) = 0.

In view of QSMC ∇̄, the second fundamental form ℏ̄ on N is given by

¯̃∇F1
F2 = ∇̄F1

F2 + ℏ̄(F1,F2). (14)

Using Lemma 2.1(i) and (5) in (14), we lead to

∇̄F1F2 + ℏ̄(F1,F2) = ∇F1F2 + ℏ(F1,F2) + η(F2)ϕF1 − g(ϕF1,F2)ξ. (15)

We suppose that N is invariant in Ṽ, then ϕF1, ξ ∈ TN. Thus from (15) we have

∇̄F1F2 = ∇F1F2 + η(F2)ϕF1 − g(ϕF1,F2)ζ, (16)

which means N admits QSME
¯̃∇. Also, in view of (9)(i), it follows that ∇̄F1

ζ=(α−
1)ϕF1 and hence

L̄F1
g(F2,F3) = 2(α− 1)[g(F2,F3) + η(F2)η(F3)]. (17)

Let R̄ be the curvature tensor of submanifold N with respect to the QSMC
¯̃∇.

Then we get

R̄(F1,F2),F3 = R̃(F1,F2)F3 + (2α− 1)[g(ϕF1,F3)ϕF2 − g(ϕF2,F3)ϕF1)]

+α[η(F2)F1 − η(F1)F2]η(F3) (18)

+α[g(F2,F3)η(F1)− g(F1,F3)η(F2)]ζ,

where R̄(F1,F2)F3=
¯̃∇F1

¯̃∇F2
F3 −

¯̃∇F2

¯̃∇F1
F3 −

¯̃∇[F1,F2]F3.
On contracting (18), we obtain

R̄ic(F2,F3) = R̃ic(F2,F3) + [α(1− 2ε) + ε]g(F2,F3) (19)

+[α(m− 2ε) + ε− 1]η(F2)η(F3).

In view of (17) and (19), equation (13) reduces to

R̃ic(F2,F3) = − 1

κ

[
µ− lτ̄

2
− 1

2n
(pn+ 2) + (α− 1) + κ{α(1− 2ε) + ε}

]
g(F2,F3)

−
[
κ{α(m− 2ε) + ε− 1}+ α− 1 + ν

]
η(F2)η(F3).

Thus, we state:

Theorem 4. Let (g, ζ, µ, ν, κ, l) be a CERYS on an invariant submanifold N of an

(LCS)n-manifold Ṽ with respect to QSMC
¯̃∇. If ∇̄ be the induced connection on N

from the connection
¯̃∇, then N is an η-Einstein manifold.
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Next, if N is anti-invariant submanifold on Ṽ as per
¯̃∇, then from (15), we get

∇̄F1ζ=0 and hence we find L̄ζg(F2,F3)=0. So from (13) we leads to the outcome:

Theorem 5. Let (g, ζ, µ, ν, κ, l) be a CERYS on an anti-invariant submanifold N
of an (LCS)n-manifold Ṽ admits QSMC

¯̃∇. Then N is η-Einstein with respect to
induced Riemannian connection.

Corollary 5. There does not exist a CEYS on an invariant (or, anti− invariant)

submanifold N of an (LCS)n-manifold Ṽ with respect to the QSMC
¯̃∇.

5. Cerys on M-Projectively Flat Anti-Invariant Submanifolds
Admitting

¯̃∇

The M-projective curvature tensor M♭ of rank three on (Nn, g) is given by [5,20]

M♭(F1,F2)F3 = R(F1,F2)F3 −
1

2(n− 1)
[Ric(F2,F3)F1 −Ric(F1,F3)F2]

− 1

2(n− 1)
[g(F2,F3)QF1 − g(F1,F3)QF2] (20)

for all smooth vectors fields F1,F2,F3 ∈ χ(N), where Q is the Ricci operator.

We suppose that, N isM-projectively flat with respect to QSMC
¯̃∇, i.e.,M♭(E ,F)G =

0, then from (20) we have

R̄(F1,F2)F3 =
1

2(n− 1)
[R̄ic(F2,F3)F1 − R̄ic(F1,F3)F2]

+
1

2(n− 1)
[g(F2,F3)Q̄F1 − g(F1,F3)Q̄F2],

which implies that

R̄ic(F2,F3) =
τ̄

n
g(F2,F3). (21)

With the help of (21) and Lemma 2.1 (iii), we obtain

R̃ic(F2,F3) = [
τ̄

n
+ ε(2α− 1) + (1− α)]g(F2,F3)

+ [ε(2α− 1)− (nα− 1)]η(F2)η(F3). (22)

Putting F3=ζ in (22) and then multiplying both sides by 2κ, we get

2κR̃ic(F2, ζ) = [
2κτ̄

n
+ 2κα(n− 1)]η(F2). (23)

Next, let (g, ζ, µ, ν, κ, l) be a CERYS on N and N is anti-invariant, then from (1),
we lead to

2κR̃ic(F2,F3) = −[2µ− lτ − 1

n
(pn+ 2)]g(F2,F3)− 2νη(F2)η(F3). (24)
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Again setting F3=ζ in (24), we have

2κR̃ic(F2, ζ) = [−2µ+ lτ +
1

n
(pn+ 2) + 2ν]η(F2). (25)

Equating (23) and (25), we get

µ = −κτ̄
n

− κα(n− 1) +
lτ

2
+

1

2n
(pn+ 2) + ν. (26)

We assert the outcome:

Theorem 6. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is M-

projectively flat with respect to QSMC
¯̃∇, then the CERYS of type (κ, l) on N is

contracting, stable or increasing accordingly as

−κτ̄
n

− κα(n− 1) +
lτ

2
+

1

2n
(pn+ 2) + ν ⪋ 0.

It is clear, from (26) that, if κ = 0, then µ = lτ
2 + 1

2n (pn+2)+ ν and if l = 0, then

µ = −κτ̄
2 − κα(n− 1) + 1

2n (np+ 2) + ν. Thus, we state:

Corollary 6. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is M-

projectively flat with respect to QSMC
¯̃∇, then the CEYS of type (0, 1) on N is

contracting, stable or increasing accordingly as τ < − 1
n [n(p+2ν)+2], τ = − 1

n [n(p+

2ν) + 2], or τ > − 1
n [n(p+ 2ν) + 2], respectively.

Corollary 7. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is M-

projective flat with respect to QSMC
¯̃∇, then the CERS of type (1, 0) on N is

contracting, stable or increasing accordingly as

− τ̄
2
− α(n− 1) +

1

2n
(np+ 2) + ν ⪋ 0.

Again taking F2=F3=υi, i (1 ≤ i ≤ n) in (1) and using (21), we have

L̄F1
g(υi, υi) +

{
2κτ̄

n
+ 2µ− lτ − 1

n
(pn+ 2)

}
g(υi, υi) + 2νη(υi)η(υi) = 0,

which leads to

div(F1) +

{
κτ̄ + nµ− lnτ

2
− 1

2
(pn+ 2)

}
− ν = 0. (27)

If F1 is solenoidal, then div(F1)=0 and hence (27) reduces to

µ = (
p

2
+

1

n
) +

lτ

2
− κτ̄

2
+
ν

n
.

Again, if F1=grad(f), then the equation (27) becomes

∇2f = −κτ̄ − nµ+
lnτ

2
+

1

2
(pn+ 2) + ν. (28)

As a result, we may state:



620 S. K. YADAV, A. HASEEB, A. YILDIZ

Theorem 7. Let the metric g of an M-projectively flat anti-invariant submanifold

N of an (LCS)n-manifold Ṽ with respect to QSMC
¯̃∇ be a CERYS of type (κ, l),

where F1=grad(f) then (28) holds.

Corollary 8. Let the metric g of an M-projectively flat anti-invariant submanifold

N of an (LCS)n-manifold Ṽ with respect to QSMC
¯̃∇ be a CERYS of type (κ, l).

Then the vector field F1 is solenoidal iff

µ =
1

2
(p+

2

n
) +

lτ

2
− κτ̄

n
+
ν

n
.

6. Cerys on Pseudo-Projectıvely Flat Anti-Invariant Submanifolds
Admitting

¯̃∇

The pseudo-projective curvature tensor P̃ of rank three on (Nn, g) is given by [21]

P̃(F1,F2)F3 = σR(F1,F2)F3 + ς[Ric(F2,F3)F1 −Ric(F1,F3)F2] (29)

+ϱτ [g(F2,F3)F1 − g(F1,F3)F2],

for all smooth vectors fields F1,F2,F3 ∈ χ(N), where σ, ς, ϱ are non-zero constants
related by ϱ = − 1

n (
σ

n−1 + ς).

Let (Nn, g) is pseudo-projectively flat with respect to QSMC
¯̃∇, then from (29), we

yields

σR̄(F1,F2)F3 = −ς[R̄ic(F2,F3)F1 − R̄ic(F1,F3)F2]

− ϱτ̄ [g(F2,F3)F1 − g(F1,F3)F2],

which is equivalent to

[σ + ς(n− 1)]R̄ic(F2,F3) = −ϱτ̄(n− 1)g(F2,F3). (30)

Using (30) in Lemma 2.1-(iii), we obtain

R̃ic(F2,F3) =
[ −ϱτ̄(n− 1)

{σ + ς(n− 1)}
+ ε(2α− 1)− (α− 1)

]
g(F2,F3) (31)

−[(nα− 1)− ε(2α− 1)]η(F2)η(F3).

By fixing G = ξ in (31) and then multiplying both sides by 2κ, we have

2κR̃ic(F2, ζ) = [
−2κϱτ̄(n− 1)

{σ + ς(n− 1)}
+ 2ακ(n− 1)]η(F2). (32)

In view of (25) and (32), we get

µ =
κϱτ̄(n− 1)

{σ − ς(1− n)}
+
lτ

2
+ (

p

2
+

1

n
) + ακ(1− n) + ν.

Accordingly, as the Section 5, we claim:
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Theorem 8. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is

pseudo-projectively flat with respect to QSMC
¯̃∇, then the CERYS of type (κ, l)

on N is contracting, stable or increasing accordingly as

κϱτ̄(n− 1)

{σ − ς(1− n)}
+ ακ(1− n) +

lτ

2
+ (

p

2
+

1

n
) + ν ⪋ 0.

Corollary 9. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is

pseudo-projectively flat admits QSMC
¯̃∇, then the CEYS of type (0, 1) on N is con-

tracting, stable or increasing accordingly as τ < −[(p+ 2
n )+2ν], τ = −[(p+ 2

n )+2ν]

or τ > −[(p+ 2
n ) + 2ν].

Corollary 10. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is

pseudo-projectively flat admits QSMC
¯̃∇, then the CERYS of type (1, 0) on N is

contracting, stable or increasing accordingly as

ϱτ̄(n− 1)

{σ − ς(1− n)}
+ α(1− n) + (

p

2
+

1

n
) + ν ⪋ 0.

Next, we replace F2=F3=υi i(1 ≤ i ≤ n) in (1) we have

L̄F1
g(υi, υi) =

{
2κϱτ̄(n− 1)

σ + ς(n− 1)
+ 2κ{α(1− 2ε) + ε} − {2µ− lτ − 1

n
(pn+ 2)}

}
g(υi, υi)

− [2ν − 2κ{α(m− 2ε) + ε− 1}]η(υi)η(υi),
which implies that

div(F1) =

{
nκϱτ̄(n− 1)

σ + ς(n− 1)
+ nκ{α(1− 2ε) + ε} − {nµ− nlτ

2
− 1

2
(pn+ 2)}

}
− [ν − κ{α(m− 2ε) + ε− 1}]. (33)

If F1 is solenoidal, then div(F1)=0 and hence equation (33) reduces to

µ =

[
κϱτ̄(n− 1)

σ + ς(n− 1)
+
lτ

2
+

1

2n
(pn+ 2) + κ{α(1− 2ε) + ε}

]
(34)

− 1

n
[ν − κ{α(m− 2ε) + ε− 1}].

Again, if F1=grad(f), then the equation (33) becomes

∇2f =
nκϱτ̄(n− 1)

σ − ς(n− 1)
+ nκ{α(1− 2ε) + ε} − nµ+

nlτ

2
+

1

2
(pn+ 2)

− [ν − κ{α(m− 2ε) + ε− 1}]. (35)

Thus, we assert:

Theorem 9. Let the metric g of a pseudo-projectively flat anti-invariant subman-

ifold N of an (LCS)n-manifold Ṽ with respect to QSMC
¯̃∇ be a CERYS of type

(κ, l), where F1=grad(f), then (35) holds.
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Corollary 11. Let the metric g of a pseudo-projectively flat anti-invariant sub-

manifold N of an (LCS)n-manifold Ṽ with respect to QSMC
¯̃∇ be a CERYS of type

(κ, l), then the vector field F1 is solenoidal iff the relation (34) holds.

7. Cerys on Q Flat Anti-Invariant Submanifolds Admitting
¯̃∇

A curvature tensor of type (1, 3) on (Nn, g)(n > 2) is denoted by Z and defined
by

Z(F1,F2)F3 = R(F1,F2)F3 −
ψ

n− 1
[g(F2,F3)F1 − g(F1,F3)F2], (36)

where ψ can be any scalar function. This type of tensor Z is known as aQ-curvature
tensor [15, 16]. If ψ= τ

n , then the Q curvature tensor is reduced to the concircular
curvature tensor.
Let the submanifold N be Q-flat with respect to

¯̃∇, i.e., Z̄(F1,F2)F3 = 0. Then
from (36), we have

R̄(F1,F2)F3 =
ψ

n− 1
[g(F2,F3)F1 − g(F1,F3)F2],

which implies that

R̄ic(F2,F3) = ψg(F2,F3). (37)

With the help of (9) and Lemma 2.1-(iii), we obtain

R̃ic(F2,F3) = [ψ + ε(2α− 1) + (1− α)]g(F2,F3) (38)

−[nα− 1 + ε(1− 2α)]η(F2)η(F3).

After taking F3=ζ in (38) and then multiplying both sides by 2κ we lead to

2κR̃ic(F2, ζ) = 2κ[ψ + α(n− 1)]η(F2). (39)

Equating (25) and (39), we find

µ =
1

2
(p+

2

n
) +

lτ

2
− κ[ψ + α(n− 1)] + ν. (40)

Thus, likewise section 6 we bring the outcome:

Theorem 10. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is Q-

flat with respect to QSMC
¯̃∇, then the CERYS of type (κ, l) on N is contracting,

stable or increasing accordingly as

1

2
(p+

2

n
) +

lτ

2
− κ[ψ + α(n− 1)] + ν ⪋ 0.

As a result of the aforementioned theorem, we have the following result:
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Corollary 12. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is

concircularly flat with respect to QSMC
¯̃∇, then the CERYS of type (κ, l) on N is

contracting, stable or increasing accordingly as

τ ⪋
1

(nl − 2κ)
[2καn(n− 1)− (np+ 2)− 2nν].

Also, from (40), if κ = 0, l = 1, then µ= τ
2 + 1

2 (p+
2
n ) + ν, and if l = 0, κ = 1 ,then

µ= 1
2 (p+

2
n )− [ψ − α(1− n)] + ν. Thus, we state the results:

Corollary 13. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is

concircularly flat with respect to QSMC
¯̃∇, then the CEYS of type (0, 1) on N is

contracting, stable or increasing accordingly as τ < −[(p + 2
n ) + 2ν], τ = −[(p +

2
n ) + 2ν] or τ > −[(p+ 2

n ) + 2ν], respectively.

Corollary 14. If an anti-invariant submanifold N of an (LCS)n-manifold Ṽ is

concircularly flat with respect to QSMC
¯̃∇, then the CERS of type (1, 0) on N is

contracting, stable or increasing accordingly as

(
p

2
+

1

n
)− κ[ψ − α(1− n)] + ν ⪋ 0.

Finally, using (37) in (1) and replacing F2=F3=υi, i(1 ≤ i ≤ n), we get

L̄F1
g(υi, υi) = −

{
2µ− lτ − 1

n
(pn+ 2) + 2κψ − 2κ{α(1− 2ε) + ε}}

}
g(υi, υi)

−[2ν − 2κ{α(m− 2ε) + ε− 1}]η(υi)η(υi),
it leads to the conclusion that

div(F1) = −[nµ− nlτ

2
− 1

2
(pn+ 2) + nκψ − nκ{α(1− 2ε) + ε}] (41)

−[ν − κ{α(m− 2ε) + ε− 1}].
If F1 is solenoidal, then div(F1)=0 and hence (41) reduces to

µ =
lτ

2
+

1

2n
(pn+2)−ψκ+κ{α(1− 2ε)+ ε}− 1

n
[ν−κ{α(m− 2ε)+ ε− 1}]. (42)

Again, if F1=grad(f), then the equation (41) becomes

∇2f = [−nµ+
nlτ

2
+

1

2
(pn+ 2)− nκψ + nκ{α(1− 2ε) + ε}] (43)

−[ν − κ{α(m− 2ε) + ε− 1}].
Theorem 11. If the metric g of a Q-flat anti-invariant submanifold N of an

(LCS)n-manifold Ṽ with respect to QSMC
¯̃∇ be a CERYS of type (κ, l), where

F1=grad(f), then (43) holds.

Corollary 15. Let the metric g of a Q-flat anti-invariant submanifold N of an

(LCS)n-manifold Ṽ with respect to QSMC
¯̃∇ be a CERYS of type (κ, l). Then the

vector field F1 is solenoidal iff the relation (42) holds.
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8. Harmonic Aspect of Cerys on Anti-Invariant Submanifolds
Admitting

¯̃∇

Taking a look at a function f :N → ℜ. We say that f harmonic if ∇2f=0,
where ∇2 is the Lalplacian operator on N [27]. Since, ζ=grad(f). Then, utilizing
Theorems 7, 9, and 11, we convey the following outcomes:

Theorem 12. If the metric g of an M-projectively flat anti-invariant submanifold

N of an (LCS)n-manifold Ṽ admits a CERYS of type (κ, l) with respect to QSMC
¯̃∇

and F1=grad(f). If f is a harmonic function on N, then the soliton is increasing,
stable, or contracting
(i) τ > 2

nl [κτ̄ −
1
2 (pn+ 2)− ν],

(ii) τ > 2
nl [κτ̄ −

1
2 (pn+ 2)− ν], or

(iii) τ > 2
nl [κτ̄ −

1
2 (pn+ 2)− ν], respectively.

Proof. With the help of (28), We may just accomplish the needed results. □

Theorem 13. If the metric g of a pseudo-projectively flat anti-invariant subman-

ifold N of an (LCS)n-manifold Ṽ admits a CERYS of type (κ, l) with respect to

QSMC
¯̃∇ and F1=grad(f). If f is a harmonic on N, then the soliton is growing,

stable, or collapsing

(i) τ > −1
l

[
2κϱτ̄(n−1)
(σ+ς(n−1)) + 2κ{α(1− 2ε) + ε}+ (p+ 2

n )−
2
n [ν − κ{α(m− 2ε) + ε− 1}

]
,

(ii) τ = −1
l

[
2κϱτ̄(n−1)
(σ+ς(n−1)) + 2κ{α(1− 2ε) + ε}+ (p+ 2

n )−
2
n [ν − κ{α(m− 2ε) + ε− 1}

]
,

or

(iii) τ < −1
l

[
2κϱτ̄(n−1)
(σ+ς(n−1)) + 2κ{α(1− 2ε) + ε}+ (p+ 2

n )−
2
n [ν − κ{α(m− 2ε) + ε− 1}

]
,

respectively.

Proof. We arrive at our conclusions using the equation (35). □

Theorem 14. If the metric g of a Q-flat anti-invariant submanifold N of an

(LCS)n-manifold Ṽ admits a CERYS of type (κ, l) with respect to QSMC
¯̃∇ and

F1=grad(f). If f is a harmonic on N, then the soliton is growing, stable, or col-
lapsing
(i) τ > − 2

l [
1
2 (p+

2
n )− κψ + κ{α(1− 2ε) + ε} − 1

n [ν − κ{α(m− 2ε)− 1}]],
(ii) τ = − 2

l [
1
2 (p+

2
n )− κψ + κ{α(1− 2ε) + ε} − 1

n [ν − κ{α(m− 2ε)− 1}]],
(iii) τ < − 2

l [
1
2 (p+

2
n )−κψ+κ{α(1−2ε)+ε}− 1

n [ν−κ{α(m−2ε)−1}]], respectively.

Proof. By virtue of equation (43) we may simply obtain the desired outcome. □

9. Example

We define Ṽ5={(r, s, t, u, v) ∈ ℜ5 : u ̸= 0}, where {υ1, υ2, υ3, υ4, υ5} being stan-

dard coordinates of linearly independent vector fields of Ṽ5 given by

υ1 = eu
∂

∂r
+ eus

∂

∂t
, υ2 =

∂

∂s
, υ3 =

∂

∂t
= ζ, υ4 =

∂

∂u
+ euv

∂

∂t
, υ5 =

∂

∂v
.
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Also, the metric g of Ṽ5 has the following relations

g(υ1, υ1) = g(υ2, υ2) = g(υ3, υ3) = g(υ4, υ4) = g(υ5, υ5) = 1, , g(υ3, υ3) = −1.

Let the 1-form η is given by η(F1)=g(F1, υ3), ∀ F1 ∈ Ṽ5 and the (1, 1)-tensor field

ϕ of Ṽ5 as follows

ϕυ1 = υ2, ϕυ2 = υ1, ϕυ3 = 0, ϕυ4 = υ5, ϕυ5 = υ4.

Utilizing the linearity qualities of ϕ and g dictates how they interact.

ϕ2υi = υi + η(υi)ζ, η(υ3) = −1,

hold for i=1, 2, 3, 4, 5 and ζ=υ3. Also, for ζ=υ3, Ṽ5 satisfies g(υi, υ3)=η(υi),
g(ϕυi, υj)=g(υi, ϕυj) and g(ϕυi, ϕυj)=g(υi, υj)+η(υi)η(υj), where i, j = 1, 2, 3, 4, 5.
Now, we can compute

[υi, υj ] =


−euυ3, if i = 1, j = 2,

−euυ1, if i = 1, j = 4,

−euυ3, if i = 4, j = 5,

0, otherwise.

We may use Koszul’s formula for getting

∇̃υ1
υ1 = 0, ∇̃υ1

υ2 =
eu

2
υ3, ∇̃υ1

υ3 = −e
u

2
υ2, ∇̃υ1

υ4 = 0, ∇̃υ1
υ5 = 0,

∇̃υ2υ1 = −e
u

2
υ3, ∇̃υ2υ2 = 0, ∇̃υ2υ3 = −e

u

2
υ1 ∇̃υ2υ4 = 0, ∇̃υ2υ5 = 0,

∇̃υ3
υ1 = −e

u

2
υ2, ∇̃υ3

υ2 = −e
u

2
υ1, ∇̃υ3

υ3 = 0, ∇̃υ3
υ4 = −e

u

2
υ5, ∇̃υ3

υ5 = −e
u

2
υ4,

∇̃υ4
υ1 = 0, ∇̃υ4

υ2 = 0, ∇̃υ4
υ3 = −e

u

2
υ5, ∇̃υ4

υ4 = 0, ∇̃υ4
υ5 = −e

u

2
υ3,

∇̃υ5
υ1 = 0, ∇̃υ5

υ2 = 0, ∇̃υ5
υ3 = −e

u

2
υ4, ∇̃υ5

υ4 = −e
u

2
υ3, ∇̃υ5

υ5 = 0.

Thus for υ3=ζ and α=- e
u

2 we verified that ∇̃F1
ζ=αϕF1 for all F1 ∈ T Ṽ5, where

F1=F1υ1 + F2υ2 + F3υ3 + F4υ4 + F5υ5. So, the manifold Ṽ5 equipped with the
structure (ϕ, ζ, η, g) is an (LCS)5-manifold with α=- e

u

2 and ϱ⋆=-F4α.

Let π̃ : N → Ṽ and given by π̃(r, s, t)=(r, s, u, 0, 0). Then we define N={(r, s, u) ∈
ℜ3 : u ̸= 0}, where (r, s, u) are the standard coordinates in ℜ3. Let {υ1, υ2, υ3} on
N given by

υ1 = eu
∂

∂r
+ eus

∂

∂u
, υ2 =

∂

∂s
, υ3 =

∂

∂u
.

g(υ1, υ1) = g(υ2, υ2) = 1, g(υ3, υ3) = −1.

Also, the (1, 1)-tensor field ϕ of N3 is given by

ϕυ1 = υ2, ϕυ2 = υ1, ϕυ3 = 0.
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Utilizing the linearity qualities of ϕ and g dictates how they interact

ϕ2υi = υi + η(υi)ζ, η(ζ) = −1,

for i=1, 2, 3 and ζ=υ3. Again, for ζ=υ3, N3 satisfies

g(ϕυi, ϕυj) = g(υi, υj) + η(υi)η(υj),

where i, j=1, 2, 3. Next, one can easily obtain

[υ1, υ2] = −euυ3, [e1, υ3] = −euυ1, [υ2, υ3] = 0.

We acquire assuming Koszul’s formula

∇υ1υ1 = 0, ∇υ1υ2 =
eu

2
υ3, ∇υ1υ3 = −e

u

2
υ2, ∇υ2e1 = −e

u

2
υ3, ∇υ2υ2 = 0,

∇υ2
υ3 = −e

u

2
υ1, ∇υ3

υ1 = −e
u

2
υ2, ∇υ3

υ2 = −e
u

2
υ1, ∇υ3

υ3 = 0.

Thus the data (ϕ, ζ, η, g) is an (LCS)3-structure on N. Consequently, if N3 equipped

with the structure (ϕ, ζ, η, g) is (LCS)3 manifold with α=- e
u

2 and ϱ⋆=-F3α. We

define the tangent space T N of N3 as follows

T N = D ⊕D⊥⊕ < ζ >,

where D=< υ1 >, D⊥=< υ2 >. Since ϕυ1=υ2 ∈ D⊥, for υ1 ∈ D and ϕυ2=υ1 ∈ D,

for υ2 ∈ D⊥. Then, N3 is an invariant submanifold of Ṽ5. Also, from (5) we have

ℏ(υi, υj)=∇̃υi
υj − ∇υi

υj . Using the values of ∇̃υi
υj and ∇υi

υj , we notice that
ℏ(υi, υj)=0, ∀ i, j = 1, 2, 3. i.e., N3 is totally geodesic. So, Theorem 1 is verified.

Now, using (16) we get the QSMC
¯̃∇ on N as follows

¯̃∇υ1υ3 = −
{
eu + 2

2

}
υ2,

¯̃∇υ1
υ1 = 0,

¯̃∇υ1
υ2 =

{
eu − 2

2

}
υ3,

¯̃∇υ2
υ3 = −

{
eu + 2

2

}
υ1,

¯̃∇υ3
υ2 = −e

u

2
υ1,

¯̃∇υ2
υ1 = −

{
eu + 2

2

}
υ3,

¯̃∇υ3
υ3 = 0,

¯̃∇υ2
υ2 = 0,

¯̃∇υ3
υ1 = 0.

By using the preceding relations, one can get R̄.

R̄(υ1, υ2)υ1 =
(eu + 2)2

4
υ2, R̄(υ1, υ2)υ2 = − (3e2u − 4)

4
υ1, R̄(υ2, υ3)υ2 =

eu(eu + 2)

4
υ3.

Also, the R̄ic and τ̄ have the value

R̄ic(υ1, υ1) = − (3e2u − 4)

4
, R̄ic(υ2, υ2) = 0, R̄ic(υ3, υ3) =

eu(eu + 2)

4
,

τ̄ = −[(e2u − 1) +
eu

2
].
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Since, N in invariant on Ṽ. Therefore, from the equations (1) and (17) we obtain

2κR̄ic(υi, υi) + [2(α− 1) + 2µ− lτ̄ − 1

n
(pn+ 2)]g(υi, υi) (44)

+2[α− 1 + ν]η(υi)η(υi) = 0,

for all i ∈ {1, 2, 3}. From the equation (44), we can easily calculate

µ =
1

6
[(3p+ 2)− (3l − 2κ)τ̄ + 2ν − 4(α− 1)]. (45)

ν = −1

6
(3p+ 2)− κeu(eu + 2)

4
+ µ− lτ̄

2
. (46)

With help of equations (45), (46) and the value of τ̄ , we obtain

µ =
(3p+ 2)

6
− l(2e2u − 2 + eu)

4
+
κ(3e2u − 4)

8
− α+ 1.

Thus the data (g,F1, µ, ν, κ, l) is a CERYS of type (κ, l) with respect to QSMC
¯̃∇

on (N3, g). Now, we conclude that:

Case(a):
For κ = 1 and l = 0, (N3, g) also admits the CERS, which is
(i) expanding if p > − 3

4e
2u + 2α− 5

3 ,

(ii) steady if p = − 3
4e

2u + 2α− 5
3 ,

(iii) shrinking if p < − 3
4e

2u + 2α− 5
3 .

Case(b):
For κ = 0 and l = 1, then (N3, g) admits the CEYS, which is
(i) expanding if p > eu(eu + 1

2 ) + 2α− 11
3 ,

(ii) steady if p = eu(eu + 1
2 ) + 2α− 11

3 ,

(iii) shrinking if p < eu(eu + 1
2 ) + 2α− 11

3 .

Case(c):
For κ = 1 and l = −1, (N3, g) admits the CEES, which is

(i) expanding if p > − eu

4 (7eu + 2)− 2
3 + 2α,

(ii)steady if p = − eu

4 (7eu + 2)− 2
3 + 2α,

(iii) shrinking if p < − eu

4 (7eu + 2)− 2
3 + 2α.

10. Conclusion

The investigation of a CERYS on Riemannian (or pseudo-Riemannian) mani-
folds is crucial in differential geometry, relativity theory and physics. RY flow is
the most visible representative of modern physics. In addition to differential geom-
etry, the CERYS is a new idea that works with geometric and physical applications.
We characterized the submanifolds of a (LCS)n-manifold that admits the CERYS



628 S. K. YADAV, A. HASEEB, A. YILDIZ

with a QSMC in our study.
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