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ABSTRACT. This paper presents some results for conformal n-Ricci-Yamabe
solitons (CERYS) on invariant and anti-invariant submanifolds of a (£CS),,-
manifold admitting a quarter-symmetric metric connection (QSMC). In ad-
dition, we developed the characterization of CERYS on M-projectively flat,
Q-flat, and concircularly flat anti-invariant submanifolds of a (£CS),,-manifold
with respect to the aforementioned connection. Finally, we construct an ex-
tensive example that appoints some of our inferences.

1. BACKGROUND AND MOTIVATIONS

Conformal Ricci flow is defined in a Riemannian n-manifold (V, g) as a general-
isation of classical Ricci flow by [6]
% = —2(Ric+ %) —-pg, T(9)=-1,
where p is called the conformal pressure, g is the Riemannian metric; 7 and Ric
denote the scalar curvature and the Ricci tensor of V, respectively.
A conformal Ricci soliton on (V, g) is defined as follows [2]:

1

Lrg+2Ric = [ (pn+2) - 2ulg,
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where p € R (R is the set of real numbers) and £x denotes the Lie-derivative
operator along a smooth vector field F;

A Ricci-Yamabe flow of type (k,1), which is a scalar combination of Ricci and
Yamabe flows, is defined as follows [7]:

0 .

79(t) = 2rRic(g()) — Ir(t)g(t), 9(0) = go,
for some scalars x and [.
A Riemannian manifold is said to have a Ricci-Yamabe solitons of type (k, ) (briefly,
RYS) if [4l[29)

Lr 9+ 26Ric+ 2u—It)g =0,

where [, k, u € R.
In [30], Zhang et al. studied conformal Ricci-Yamabe soliton (briefly, CRYS), which
is defined on (V, g) by

1
Lr 9+ 26Ric+ [2p — It — ﬁ(pn +2)]g =0.

In this follow-up, the conformal 7-Ricci-Yamabe soliton (briefly, CERYS) on (V, g)
is defined by [28]

1

T—;(pn+2)]9+21/17®n:0, (1)
where I, k,u,v € R. If Fi=grad(f), then the Equation is called a gradient
conformal n-Ricci-Yamabe soliton (briefly, GCERYS) and given by

Lr 9+ 26Ric+ 2p—1

V2 f 4 kRic + [ — %T - %(er %)]9+1/n®n =0,
where V2f is said to be the Hessian of f. A CRYS (or GCRYS) is said to be
shrinking, steady or expanding if 4 < 0, = 0 or > 0, respectively. A CERYS (or
GCERYS) reduces to (i) CERSif k=1, 1 =0, (i) CEYSifx=0,l=1, and
(1) conformal n-Einstein soliton (briefly, CEES) if k =1, [ = —1.

Shaikh [22] introduced the concept of n-dimensional Lorentzian concircular struc-
ture manifold (briefly, (LCS), -manifold) and demonstrated its existence with sev-
eral examples [24], which generalises the concept of £LP-Sasakian manifolds intro-
duced in [13l14]. We refer to the works [1,10,23] for more extensive studies. Mantica
and Molinari [18] recently demonstrated that a (£CS), -manifold (n > 3) is equal
to the GRW spacetime. The authors also examined the applicability of (£CS), -
manifolds in general theory of relativity and cosmology in [3]. Thus the geometry
of submanifolds has grown in popularity in modern analysis due to its importance
in practical mathematics and theoretical physics.

A linear connection V on (V,g) is said to be a quarter-symmetric connection
(briefly, QSC) [8] if its torsion tensor T has the form

T(F1, o) =VrFr = Vi i — [F1, Fo] = AR (F1) — AF)Y (F2),  (2)
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where A is a 1-form and " is a (1,1) type tensor field. If a quarter-symmetric
linear connection V satisfies the condition
(v]:lg)(f27f3) =0,

for all Fy, Fa, F3 € x(V), then V is said to be a quarter-symmetric metric connec-
tion (briefly, QSMC). If a contact metric manifold admits a QSC, then we take A=n
and 9*=¢ and hence (2] takes the form T (Fy, F2) = n(Fa)d(F1) — n(F1)p(Fa).

The relation between the Levi-Civita connection V and a QSMC V on a contact
metric manifold is given by

Vi Fo = Vg Fo—n(F1)p(F).

Recently, the QSMC have been studied by many authors such as [9,[12}/19}31]
and many others.

2. PRELIMINARIES

Let V be an n-dimensional Lorentzian manifold admitting a unit time-like con-
circular vector field ¢. Then there is

g(C7<) =-L

Since ¢ is a unit concircular vector field, it follows that there exists a non-zero
1-form 7 such that for

9(F1,¢) =n(F1)
satisfies [25] B
(VEn)Fz = alg(F1, F2) + n(F)n(F2)], a #0,
V(= alF +n(F1)], a#0, (3)
for F1,F2 € XWNI), where V denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and « is a non-zero scalar function that satisfies

Vra=(Fia) = da(Fi) = pn(F1),

p being a certain scalar function given by p=-({«). Let us have a look

1~

¢]:1 = av}_1g7 (4)

then utilizing (3)) and (@) we acquire
¢F1 = F1+n(F1)¢,
9(9F1, F2) = g(F1, oF2).

Thus the Lorentzian manifold V admits the unit time-like concircular vector field
¢, its associated 1-form 7 and a (1,1) tensor field ¢ is said to be a Lorentzian
concircular structure manifold (briefly, (£CS),,-manifold) [17,22]. Especially, if we

take a=1, then we can obtain the £LP-Sasakian structure of Matsumoto [13].
In an (LCS),,-manifold, we have [22]:

77(0 = _17 ¢O< = 03 77(¢-F1) = 07 g(d)]:la(b]:Q) :g(]:h]:Q) "‘77(}-1)77(-7:2)7
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¢*F1 = F1+n(F1)¢,
N(R(F1, F2)Fs) = (a® — p)[g(F2, Fa)n(F1) — g(Fr, Fs)n(F)l,
R(F1. F2)¢ = (a2 = p)[n(F2) Fr = n(F1) Fal,
Ric(F1,¢) = (n—1)(a® = p)n(F1),
R(F1, Fo) Fs = ¢R(F1, Fa) Fs + (02 = p)lg(Fa, Fa)n(Fr) — g(Fr, Fa)n(F)IC,
(V7 8)F2) = alg(Fi, F2)C + 2n(Fu)n(F)¢ + n(Fa) Fil,

for all Fy, Fa, F3 € x(V).

Let N be an m-dimensional (m < n) submanifold of an (£CS),,-manifold V with
induced metric g. Also, let V be the induced connection on the tangent bundle TN
and V* be the induced connection on the normal bundle T+N of N, respectively.

Then the Gauss and Weingarten formulae are respectively given by

VrFe = Ve Fs+ h(Fi, Fo), (5)
and

Vflf?) = _'A]:gfl + V_J/":'I—F?n

for all Fy,F, € x(N) and F3 € x+(N), where h and Az, are second fundamental
form and the shape operator (corresponding to the normal vector field F3), respec-
tively for the immersion of N into V. The second fundamental form % and the shape
operator Az, are related by [206]

g(W(F1, F2), F3) = g(Ar, Fi, Fa),

for all F1, Fe € x(N) and F3 € x*(N). We note that i(F;, F2) is bilinear and since
V7 Fo=fV 5 F for any smooth function f on a manifold, then we have

R(fF1, Fa) = fh(F1, Fa).
A submanifold N of an (£CS), -manifold V is said to be totally umbilical if

h(th?):g(thQ)Ha (6)
where Fi1,F2 € TN and the mean curvature vector H on N is given by H =
% S B(vi,v;), where {vg, va, ..., U, } is & local orthonormal frame of vector fields

on N. Moreover, if h(Fy, F2)=0 for all F;,F, € TN, then N is said to be totally
geodesic and if H=0 then N is called minimal in '

A submanifold N of V is said to be invariant if the structure vector field ¢ is
tangent to N at every point of N and ¢F; is tangent to N for every vector field F;
tangent to N at every point of N, i.e., ¢(TN) C TN at every point of N. Whereas,
N is said to be anti-invariant if for any /7 tangent to N, ¢F; is normal to N, i.e.,
#(TN) C T+N at every point of N, where T+N is the normal bundle of N.

Now we recall the following results:
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Lemma 1. [11] On an (LCS), -manifold V with a QSMC %, we have
(i) VrF2=VrF+0(F)oF - g(6F1, F)C,

(i1) R(F1,Fo)Fs = R(F1,F2)Fs+ (20— 1)[g(¢F1, Fs)dFz — g(¢pFa, Fs)dFi]
+  an(Fe)F1 — n(F1) Fan(Fsz) + alg(Fa, F3)n(F1) — g(F1, F3)l¢,

(iii) Ric(Fa, Fs) = Ric(Fa, Fs)+ (o= 1)g(Fa, Fs) + (na — n(Fa)n(Fs)
—(2a — 1)eg(¢F2, F3),

where R, Ric are the curvature and the Ricci tensors of V with respect to V and
€ = trace¢.
3. CERYS ON SUBMANIFOLDS OF (LCS),-MANIFOLDS

Let (g, ¢, p, k,1) be a CERYS on submanifold N of an (£CS),,-manifold V. Then
in view of we obtain

Seq(FaFy) = —2uRic(Fo, F) — P~ 7 — —(on+2)lg(Fo, ) (1)
—2un(Fa)n(F3).
With the help of and one can get
a¢Fy = V5,¢ = Vr(+h(F, Q). (8)
If N is invariant in V, then ¢F;,¢ € TN. So from (8) we yields
(i) a¢F1r=Vr(, (i) WF1,()=0. (9)

Using (9)(¢) in (7)), we obtain

1
*#M*OK -5 %(anFQ)]Q(}—Qa}—s) -

where £cg(F2, F3) = 20g(Fa, F3) + n(F2)n(Fs3)].
Also, with the help of (9 (i), we get from (6) that n(€)H =0 = H = 0. So,
we obtain the result:

RiC(.FQ, .7'-3) =

. Vo) EnF), (10

Theorem 1. If (Q,C,,u, v,k, 1) be a CERYS on an invariant submanifold N~0f an
(LCS),,-manifold V, then N is an n-Einstein manifold and also minimal in V.

Also, we have
R(F2, F3)¢ = VEVr( = VEVEC = Vg Fm)C = (@ = p)n(Fa)Fo — n(Fa)Fs,
which by using (9 (i), we lead to

Ric(Fa,¢) = (m —1)(a® — p)n(Fe), for all Fs. (11)
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By fixing F3=( in and using (11]), we get

It 1 2
—v—nm—1)2—p)+—+ —(p+ ).
p=v—rm=1)*=p)+ 5 +5p+-)
As consequence, we can make the following claim:

Theorem 2. If (9,¢, p, v, k,1) be a CERYS on an invariant submanifold N of an
(LCS),,-manifold V, then the CERYS reduces to

(i) CERS if p=v —(m 1)(a —p)+%(p+%),

(ii) CEYS if u=v+Z +3(p+ 2),

(iii) (JEESz'fu:u—( —1)(a -p)—F+3(p+2).

Corollary 1. An n-Yamabe soliton on an invariant submanifold N of an (LCS),, -

manifold Y of type (0,1), is contracting, stable or increasing accordingly as T <
—2v, T = —2v, or T > —2v, respectively.

Corollary 2. An n-Ricci soliton on an invariant submanifold N of an (LCS),, -
manifolds V of type (1,0), is contracting, stable or increasing accordingly as v <

(m—1)(a?—p), v=(m—1)(a®—p) orv>(m—1)(a® - p), provided o* # p.

Corollary 3. An n-FEinstein soliton on an invariant submanifold N of an (LCS),,-

manifolds \% of type (1,—1), is contracting, stable or increasing accordingly as T >

2l — (m — 1)(a® — )], 7 = 2lv — (m — 1)(a® — p)] or 7 < 2l — (m ~1)(a? - p)],
provided o # p.

In particular, if N is an anti-invariant submanifold on V. Then for any F1 € TN and

¢F, € TN, we get from that V£, (=0, i(F1, {)=a¢F1. Thus, £cg9(F1,F2)=0,

that is, ¢ is a Killing vector field (briefly, KVF) and in this case from @, we have
1 Ir 1 2

Rie(Fo, F3) = = (1= 5 = 50+ Dlg(Fa. Fo) = “n(Fan(Fa).  (12)

This results in the following outcomes:

Theorem 3. If (9,(, pu, v, k,1) be a CERYS on an anti-invariant submanifold N of
n (LCS),,-manifolds V, then N is an n-Einstein and ¢ is a KVF.

Again, for an anti-invariant submanifold N of WNL we have R(F2, F3)¢=0 and hence
Ric(Fa,¢)=0. Also, from we obtain Ric(F2,() = —Ljp— 2 —L(p+ 2) -
vin(F1). So, we get u = ll + = (p + 2) 4+ v. Thus, we have finalized the result:

Corollary 4. A CERYS of type (k,l) on an anti-invariant submanifold N of an
(LCS),,-manifold V is contracting, stable or mcreasmg accordingly as T < = [21/ +
(P2 7=FRv+ @+ orm>F2v+(p+ 7))
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4. CERYS ON SUBMANIFOLDS OF (LCS), -MANIFOLDS ADMITTING V

Assume that (g,(,u,v,k,1) be a CERYS on a submanifold N of an (£CS),,-
manifold V in view of QSMC V. Then from we obtain

Crg(FoFs) = ~26RiclFa Fs) — 2~ 17—~ (pn + Dlg(Fo, F)  (13)
—2vn(F2)n(Fs) = 0.
In view of QSMC V, the second fundamental form A on N is given by
Vs Fo = Vi Fo+ h(F1, F). (14)
Using Lemma 2.1(i) and in (14)), we lead to
V£ Fo+ WF1, Fo) = Vg Fo+ b(Fi, Fa) + n(Fo)oF1 — g(pF1, F2)E. (15)
We suppose that N is invariant in V, then ¢F1,& € TN. Thus from we have
VrFo = Ve Fo+n(F2)oF1 — g(6F1, F2)C, (16)

which means N admits QSME V. Also, in view of (9 (i), it follows that Vx (=(a—
1)¢F1 and hence

Lr.9(F2, F3) = 2(a — 1)[g(F2, Fs) + n(F2)n(F3)]- (17)

Let R be the curvature tensor of submanifold N with respect to the QSMC 6
Then we get
R(F1, Fa)s Fs = R(F1,Fo)Fs + (20— 1)[g(¢F1, Fa)pFa — g(6Fs, F3) o F1)]
+an(F2)F1 — n(F1)Faln(Fs) (18)
+alg(F2, F3)n(F1) — g(F1, Fa)n(F2)IC,

where R(F1, Fo) Fa=V 5, V£, Fs — V£V r Fs — Vi, 5 Fs.
On contracting (L8)), we obtain
Ric(Fy, Fs) = Ric(Fa, Fs)+ [a(l — 2¢) + elg(Fa, F3) (19)
+Ha(m —2¢) + & — 1n(Fa)n(F3)-

In view of and 7 equation reduces to
T

_% [u— > %(WH‘ 2) + (o — 1) 4+ r{a(l — 2¢) + }] g(F2, F3)

—[s{a(m —2¢) + £ = 1} + a — 1+ v|n(Fa)n(Fs).

'ﬁ,ic(}—g, ]:3) =

Thus, we state:

Theorem 4. Let (g,(, p, v, k,1) be a CERYS on an invariant submanifold N of an
(LCS),,-manifold v with respect to QSMC V. If V be the induced connection on N

from the connection %, then N is an n-FEinstein manifold.
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Next, if N is anti-invariant submanifold on V as per 6, then from , we get
V 7, (=0 and hence we find £¢g(F2, F3)=0. So from we leads to the outcome:

Theorem 5. Let (g,(, it,v, k,1) be a CERYS on an anti-invariant submanifold N

of an (LCS),,-manifold V admits QSMC V. Then N is n-Einstein with respect to
induced Riemannian connection.

Corollary 5. There does not exist a CEYS on an invariant (or, anti — invariant)
submanifold N of an (LCS),,-manifold V with respect to the QSMC V.

5. CERYS ON M-PROJECTIVELY FLAT ANTI-INVARIANT SUBMANIFOLDS
ADMITTING V

The M-projective curvature tensor M’ of rank three on (N, g) is given by [5}20]

M (F1, Fo)Fs = R(Fi1,Fo)Fs —
1
for all smooth vectors fields Fi, Fa, F3 € x(N), where Q is the Ricci operator.

We suppose that, N is M-projectively flat with respect to QSMC V, i.e., M*(&, F)G =
0, then from we have

1 . .
m [RZC(]:Q, .Fg)fl — Rlc(fl, .7'-3);2]

Fo, F3)QF1 — g(F1, F3) QFo] (20)

R(Fla ]:2)]:3 m[ﬁic(]‘—g, ]:3)]:1 — ’ﬁ,ic(}'h ]-'3)].‘2]
1 - _
o IV T — 91 F) QT
which implies that
Ric(Fo, F3) = %g(}"z,]-"g). (21)

With the help of and Lemma 2.1 (iii), we obtain
Ric(Fa, F3) = [~ +e(2a—1)+ (1 — a)lg(Fa, F3)
+ [EQa—1) = (na = D)]n(F2)n(Fs). (22)
Putting F3=( in and then multiplying both sides by 2k, we get

3|

2kRic(Fa, () = [2%% + 2ka(n — 1)n(F2). (23)

Next, let (g,¢, u, v, k,1) be a CERYS on N and N is anti-invariant, then from ,
we lead to

26Ric(Fy, F3) = —[2p— I7 — %(pn +2)9(F2, Fs) = 2vn(Fo)n(Fs).  (24)
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Again setting F3=( in (24), we have

~ 1
2kRic(Fa,C) = [—2pu+ 17 + ﬁ(pn +2) + 2v]n(Fa). (25)
Equating (23) and (25]), we get
KT I 1
u——?—ma(n—1)+§+%(pn+2)+u. (26)

‘We assert the outcome:

Theorem 6. If an anti-invariant submanifold N of an (LCS),,-manifold V is M-

projectively flat with respect to QSMC %, then the CERYS of type (k,1) on N is
contracting, stable or increasing accordingly as

It is clef%r, from that, if K = 0, then u = % + i(pn—l— 2)+v and if I = 0, then
p=—5 —rka(n —1) + 3-(np+ 2) + v. Thus, we state:

Corollary 6. If an anti-invariant submanifold N of an (LCS), -manifold V is M-

projectively flat with respect to QSMC %, then the CEYS of type (0,1) on N is
contracting, stable or increasing accordingly as T < —[n(p+2v)+2], 7 = —L[n(p+
2v) +2], or 7> —L[n(p+2v) + 2], respectively.

Corollary 7. If an anti-invariant submanifold N of an (LCS),,-manifold V is M-

projective flat with respect to QSMC %, then the CERS of type (1,0) on N is
contracting, stable or increasing accordingly as

1
—%—a(n—1)+%(np+2)+uéo.

Again taking Fo=F5=0v;, (1 <i<n)in and using , we have

_ 26T 1
Lr,9(vi,v;) + {I:LT +2p— I — ﬁ(pn + 2)} g(vi,vi) + 2vn(vi)n(vs) = 0,

which leads to

l 1
div(}'l)—i—{/w—i—n,u—7;—2(pn+2)}—u:0. (27)
If F; is solenoidal, then div(F;)=0 and hence reduces to

A

n=GrI T

Again, if Fi=grad(f), then the equation becomes

l 1

V2f:—n%—nu+g+§(pn+2)+u. (28)

As a result, we may state:
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Theorem 7. Let the metric g of an M-projectively flat anti-invariant submanifold
N of an (LCS),,-manifold V with respect to QSMC V be a CERYS of type (k,1),
where Fy=grad(f) then holds.

Corollary 8. Let the metric g of an M-projectively flat anti-invariant submanifold

N of an (LCS), -manifold V with respect to QSMC V be a CERYS of type (k,l).
Then the vector field F1 is solenoidal iff

_1( +2)+l’7' m"_'_u

p=aoWwry 2 n n

6. CERYS ON PSEUDO-PROJECTIVELY FLAT A:NTI-INVARIANT SUBMANIFOLDS
ADMITTING V

The pseudo-projective curvature tensor P of rank three on (N™, g) is given by [21]

'P(]:l, fg)fg = UR(]:l, ]:2)]:3 + §[Ri0(f2, ]:3)]:1 — Ric(fhfg)]:g] (29)
+otlg(F2, F3)F1 — g(F1, F3) F2),

for all smooth vectors fields Fi, Fa, F3 € x(N), where o, ¢, ¢ are non-zero constants

related by o = —1 (-2 +¢).

n—1 _
Let (N™, g) is pseudo-projectively flat with respect to QSMC 6, then from , we
yields
0'7%(]:17]:2)]:3 = —C[’RZ’C(]‘-% fg)f1 — ﬁiC(fl, ]:3)]:2]
o7[g(Fa, F3)F1 — g(F1, F3)Fal,

which is equivalent to
[0+ c(n — 1)|Ric(Fo, F3) = —o7(n — 1)g(Fz, F3). (30)
Using in Lemma 2.1-(iii), we obtain

—ot(n—1)
{o+¢(n—1)}
—[(na — 1) — e(2a — 1)|n(Fo)n(Fs)-

By fixing G = € in and then multiplying both sides by 2k, we have

Ric(Fo, F3) = | +ea—1) — (a—1)]g(Fo, F3)  (31)

—2K0T(n — 1)

{o+c(n-1)}
In view of and 7 we get

_ koT(n—1) Ir p

P oy T2 TG

Accordingly, as the Section 5, we claim:

26 Ric(Fa, €) = [ + 2ak(n — 1)]n(Fa). (32)

1
—&—E)—i—an(l—n)—l—u.
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Theorem 8. If an anti-invariant submanifold N of an (LCS),,-manifold V s

pseudo-projectively flat with respect to QSMC %, then the CERYS of type (k,l)
on N 1is contracting, stable or increasing accordingly as

koT(n —1) Ir p
m‘f’@ﬁ(l—n)—f—?“r(i

Corollary 9. If an anti-invariant submanifold N of an (LCS),,-manifold V is

pseudo-projectively flat admits QSMC %, then the CEYS of type (0,1) on N is con-
tracting, stable or increasing accordingly as T < —[(p+ %) +2v], 7 = —[(p+ %) +2v]
or7>—[(p+ 2)+2v].

1
+-)+v=0.
n

VIIA

Corollary 10. If an anti-invariant submanifold N of an (LCS), -manifold V s

pseudo-projectively flat admits QSMC 6, then the CERYS of type (1,0) on N s
contracting, stable or increasing accordingly as

o7(n—1) p 1 -
_otnm ) L - P hyivso.
{J_g(l_n)}+a( n)+(2+n)+l/>
Next, we replace Fo=F3=v; i(1 <4 < n) in (1)) we have
— 2k0T(n — 1 1
Ergwv) = {2 aa(l - 22) 4 <) — 2 - i7 = ~(on+ D) f (o500

— [2v —2x{a(m —2¢) + & — 1}n(vi)n(vi),
which implies that

; _ [rmerln=1) _ L
div(F1) = {cr—|—§(n— 0 +ne{a(l —2e) + e} — {nu 5 2(pn—|—2)}
— [v—r{a(m—2¢)+e—1}]. (33)
If F; is solenoidal, then div(F;)=0 and hence equation reduces to
B kor(n—1) It 1 B
uo= L’ FpE— t5 s, (pn +2) + r{a(l — 2e) + ¢} (34)
1
- E[V—m{a(m—%)—i—s—l}].
Again, if Fi=grad(f), then the equation becomes
9 nko7(n — 1) nlt 1
— DReT\NT ) 1-2 . Lkl 2
Vef a—g(n—1)+7m{a( g)+e}—np+ 5 +2(pn+ )
— [v—r{a(m—2¢) +ec—1}]. (35)

Thus, we assert:

Theorem 9. Let the metric g of a pseudo-projectively flat anti-invariant subman-

ifold N of an (LCS), -manifold V with respect to QSMC V be a CERYS of type
(k,1), where Fy=grad(f), then holds.
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Corollary 11. Let the metric g of a pseudo-projectively flat anti-invariant sub-

manifold N of an (LCS), -manifold V with respect to QSMC V be a CERYS of type
(K, 1), then the vector field Fy is solenoidal iff the relation holds.

7. CERYS ON Q FLAT ANTI-INVARIANT SUBMANIFOLDS ADMITTING %
A curvature tensor of type (1,3) on (N, g)(n > 2) is denoted by Z and defined
by

Z(F1,F2)Fs = R(F1, F2)Fz — %[9(}—2,}—3)}-1 — 9(F1, F3) 2], (36)

where v can be any scalar function. This type of tensor Z is known as a Q-curvature
tensor [15,/16]. If 1p=T, then the Q curvature tensor is reduced to the concircular
curvature tensor.

Let the submanifold N be Q-flat with respect to %, i.e., Z(F1,F2)F3 = 0. Then
from , we have

R(F Fa)Fy = (oo, F) i — o(Fi, Fo) ),

which implies that
Ric(Fa, F3) = g(Fa, F3). (37)
With the help of (9) and Lemma 2.1-(iii), we obtain
Ric(Fo, Fs) = [ +e2a—1)+ (1 - a)lg(Fs, F) (38)
—[na —1+e(1 —2a)n(Fo)n(Fs).
After taking F3=( in and then multiplying both sides by 2x we lead to

26 Ric(Fa, €) = 261 + a(n — 1)]n(Fa). (39)
Equating and , we find
1 2 l
p=5+ )+ 5 sl +am—1]+r. (40)

Thus, likewise section 6 we bring the outcome:

Theorem 10. If an anti-invariant submanifold N of an (LCS),,-manifold V is O-
flat with respect to QSMC 6, then the CERYS of type (k,l) on N is contracting,
stable or increasing accordingly as

1 2 I
5+ )+ 5 Kl am -]+ 0.

As a result of the aforementioned theorem, we have the following result:
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Corollary 12. If an anti-invariant submanifold N of an (LCS),,-manifold V is

concircularly flat with respect to QSMC 6, then the CERYS of type (k,l) on N is
contracting, stable or increasing accordingly as

= 1 [
= (nl — 2k)

Also, from , if k =0,1=1, then u=5 + %(p—l— %) +v,and if l =0, xk = 1 ,then
p=1(p+ 2) — [ — a(l — n)] + v. Thus, we state the results:

Corollary 13. If an anti-invariant submanifold N of an (LCS),,-manifold V is
concircularly flat with respect to QSMC %, then the CEYS of type (0,1) on N is
contracting, stable or increasing accordingly as T < —[(p + %) +2v],7=—[(p+
2)+20] or 7> —[(p+ 2) + 2v], respectively.

Corollary 14. If an anti-invariant submanifold N of an (LCS),,-manifold V s

concircularly flat with respect to QSMC 6, then the CERS of type (1,0) on N is
contracting, stable or increasing accordingly as

2kan(n — 1) — (np + 2) — 2nv].

1
(g-kﬁ)—/i[z/}—a(l—n)]—kugo.
Finally, using in and replacing Fo=F3=v;,i(1 <i <n), we get

Lrg(vi,v) = — {Q,u —Ir — %(pn +2) 4+ 2k — 2k{a(l — 2¢) + s}}} g(vi,v;)

~ (20 — 2n{a(m — 2) + £ — WHn(odn(v),
it leads to the conclusion that
div(F1) = —[nu— % — %(pn +2) +nky —nr{a(l —2) +e}]  (41)
—[v —k{a(m —2¢) + e —1}].

If 7, is solenoidal, then div(F;)=0 and hence reduces to

l 1 1
= % + %(pn+2) — ¢k + r{a(l—2¢e) +e} — E[an{a(mf%) +e—1}]. (42)
Again, if Fi=grad(f), then the equation becomes
l 1
Vi = [—nu+ "2—7 +5(n+2) —nwp +nnfa(l = 2) )] (43)

—[v—r{a(m —2¢) +e—1}].
Theorem 11. If the metric g of a Q-flat anti-invariant submanifold N of an
(LCS),,-manifold V with respect to QSMC % be a CERYS of type (k,l), where
Fr=grad(f), then holds.
Corollary 15. Let the metric g of a Q-flat anti-invariant submanifold N of an

(LCS),,-manifold V with respect to QSMC V be a CERYS of type (k,1). Then the
vector field F1 is solenoidal iff the relation holds.
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8. HARMONIC ASPECT OF CERYS ON ANTI-INVARIANT SUBMANIFOLDS
ADMITTING V

Taking a look at a function f:N — R. We say that f harmonic if V?f=0,
where V? is the Lalplacian operator on N [27]. Since, (=grad(f). Then, utilizing
Theorems [7 [0 and [II} we convey the following outcomes:

Theorem 12. If the metric g of an M-projectively flat anti-invariant submanifold
N of an (LCS),,-manifold V admits a CERYS of type (1, 1) with respect to QSMC V
and Fr=grad(f). If f is a harmonic function on N, then the soliton is increasing,
stable, or contracting

() 7> 257~ L(pn+2) ]

(it) 7> Z[k7 — 3(pn+2) — v, or

(iii) T > Z[kT — $(pn +2) — v], respectively.

Proof. With the help of , We may just accomplish the needed results. [

Theorem 13. If the metric g ofva pseudo-projectively flat anti-invariant subman-
ifold N of an (LCS),-manifold V admits a CERYS of type (k,l) with respect to

QSMC V and Fi =grad(f). If f is a harmonic on N, then the soliton is growing,

stable, or collapsing
2kp7(n—1)

(’L) T > 7T1 [m+2ﬂ{a(l—2€)+€}+(p+%)—%[V—H{a(m—2€)+5—1}:|,
(i) = =t [%+2n{a(1—26)+6}+(p+%) - %[an{a(m72€)+sfl}},
or

(iid) T < - [%4—2&{@(1 —2)+el+(p+2) = 2[v— k{a(m —2¢) + ¢ - 1}},
respectively.

Proof. We arrive at our conclusions using the equation . (I

Theorem 14. If the metric g of a Q-flat anti-invariant submanifold N of an
(LCS),,-manifold V admits a CERYS of type (k,1) with respect to QSMC V and
Fi=grad(f). If f is a harmonic on N, then the soliton is growing, stable, or col-
lapsing

() 7> ~2[L(p+2) -kt + w{a(l - 26) + ¢} — L[ - w{a(m - 2¢) — 1}]],

(i) 7==2[3(p+ 2) — v + k{a(l — 26) + e} — L[v — k{a(m — 2¢) — 1}]],

(iii) T < —2[2(p+2)—rp+r{a(l1-2¢)+e}— L [v—r{a(m—2¢e)—1}]], respectively.

Proof. By virtue of equation we may simply obtain the desired outcome. [

9. EXAMPLE

We define @5:{@, s, t,u,v) € RO 1 u # 0}, where {v1,v2,v3,v4,v5} being stan-
dard coordinates of linearly independent vector fields of V® given by

0 0 0 w0 0
—, U3 =—=(, va=—+e'v—, vs = —.
0Os

ot ou ot’ Ov

0
v =e%'— +e%s—, vy =

or ot’
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Also, the metric g of V5 has the following relations
g(v1,v1) = g(v2,v2) = g(v3,v3) = g(va,va) = g(vs,v5) =1, ,g(v3,v3) = —1.
Let the 1-form 7 is given by n(F;)=g(F1,vs), ¥V Fi € V® and the (1,1)-tensor field
¢ of V° as follows
Ppu1 = V2, puz =1, QU3 =0, Pus = V5, QU5 = V4.
Utilizing the linearity qualities of ¢ and g dictates how they interact.
" v; = v; +n(vi)¢, n(vs) = —1,
hold for i=1,2,3,4,5 and (=v3. Also, for {=wvs3, V5 satisfies g(vi,v3)=n(v;),
9(dvi,vj)=g(vi, ¢v;) and g(dv;, pvj)=g(vs, vj)+n(vi)n(v;), wherei, j = 1,2,3,4,5.
Now, we can compute
—e%vg, ifi=1,75=2,
ey, ifi=1,j =4,
[Ui,’U]’] = P .
—etvgy, ifi=4,j=05,
0, otherwise.

We may use Koszul’s formula for getting

u u
~ ~ ~ e ~ ~
Vo, v1 =0, Vy,v2= 5 U3 Vo, v3 = —5 V2 Vo, v4 =0, Vy,v5 =0,
VU1 = — 5 Vs V2 =0, V,,v3= —5 V,v4 =0, Vy,v5 =0,
~ u — u — — u ~ u
VU3U1 = ——5 Vg, V1)3’1)2 = — U1, VU3U3 = 07 VU3U4 = ——5 Us, VU3U5 = — 5 Uy,
2 2 2 2
— — — u ~ —~ eu
V1)47)1 =0, VU4U2 =0, vv4v3 = _?UEH v1)4”4 =0, vv4UE> = _?U&

u u

VU5U1 = O, §U5U2 = 07 VU5U3 = —3’1)47 Vv5v4 = —?Ug, VU5U5 =0.

Thus for v3=C and a=-% we verified that V,(=a¢F; for all F; € TV, where

Fi=F1v1 + Fovg + Favs + Fava + Fsvs. So, the manifold V5 equipped with the
structure (¢, ¢,7,9) is an (LCS);-manifold with az—% and o*=-F,a.

Let 7 : N — V and given by 7(r, s,£)=(r, s,u,0,0). Then we define N={(r, s,u) €
R3 : u £ 0}, where (r,s,u) are the standard coordinates in %3. Let {v1,vs,v3} on
N given by
o w0 _ 0 0
v =¢€ 5—"—6 s%, ’Ug—%, ’U3—%.
g(v1,v1) = g(va,v2) =1, g(vs,vz) = —1.

Also, the (1,1)-tensor field ¢ of N3 is given by

Pu1 = va, Qv =1, ¢u3 =0.
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Utilizing the linearity qualities of ¢ and g dictates how they interact
¢*v; = vi +n(v:)¢, n(¢) = -1,
for i=1,2,3 and (=v3. Again, for (=vs, N3 satisfies
9(pvi, gu;) = g(vi, v;) + n(vi)n(v;),
where ¢, j=1, 2, 3. Next, one can easily obtain
[1,v2] = —e"vs, [e1,v3] = —e"v1, [ve,v3] =0.

. . .
We acquire assuming Koszul’s formula

e e e
vulvl =0, Vvlvz = 5037 VU1U3 = —?UQ, vael = _?U?n VU2U2 =0,
u u u
V,v3 = — UL VU1 = — 5V VU2 = — UL Vv3 = 0.

Thus the data (¢, ¢, 7, g) is an (£CS);-structure on N. Consequently, if N® equipped
with the structure (¢,(,7,g) is (£CS); manifold with a:—% and o*=-F3a. We
define the tangent space TN of N? as follows

TN=DoD'o < (>,

where D=< v >, D+=< vy >. Since PU1=vy € D+, for v1 € D and pva=vy € D,
for vy € D+. Then, N3 is an invariant submanifold of V5. Also, from we have
h(vs,v;)=V,v; — Va,v;. Using the values of V,,v; and V,,v;, we notice that
fi(vi,v;)=0, Vi, j =1,2,3. i.e, N? is totally geodesic. So, Theorem [1]is verified.
Now, using we get the QSMC V on N as follows

= e" 42 = = e —2
VUIUS—{ }U2, Vo, v1 =0, vvl'UQ—{ 5 }037

2
szvgz—{e ;_ }Ul, va’l)g:—%’l}l, VU2U1:—{6 ;— }’Ug,
%US’Ug = 0, %UZUQ == 0, %Ugvl =0.
By using the preceding relations, one can get R.
_ e +2)? _ 3e?v — 4 _ e“(e* +2
R(vi,v2)v1 = %Uz, R(vi,v2)v = —%Uh R(vz,v3)ve = (f)v&
Also, the Ric and 7 have the value
_ 3 2u —4 _ _ U LU 2
Ric(vi,v1) = —(?f), Ric(va,v2) =0, Ric(vs,vs) = %,
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Since, N in invariant on V. Therefore, from the equations (] and we obtain

_ 1
2kRic(vi,v;) + [2(a — 1)+ 2p — 17 — E(pn + 2)]g(v4,v5) (44)
+2[a = 1+ vn(vi)n(vi) = 0,
for all i € {1,2,3}. From the equation 7 we can easily calculate

uo= é[(3p+2)—(3l—2n)7‘+21/—4(a—1)]. (45)
v o= —é(3p+2)—%u+%+u—l; (46)

With help of equations , and the value of 7, we obtain
(Bp+2) (2 —2+e%) k(32 —4)

= — — 1.
6 1 + 3 o+

Thus the data (g, F1, u, v, &, 1) is a CERYS of type (k,[) with respect to QSMC Y
on (N3, g). Now, we conclude that:

Case(a):

For k =1 and [ = 0, (N3, g) also admits the CERS, which is

(i) expanding if p > —3€* 4 20 — 2,
Y 3 — 3 ,2u 5

(i) steady if p = —3e®* +2a — 3,

(i47) shrinking if p < —3€** 4 20 — 2.

Case(b):

For k =0 and [ = 1, then (N, g) admits the CEYS, which is

(i) expanding if p > e"(e" + 1) + 2a — &1,

(i1) steady if p = e*(e" + ) + 20 — L,

(iii) shrinking if p < e*(e" + 3) + 200 — 4.

Case(c):

For k =1 and [ = —1, (N3, g) admits the CEES, which is

(i) expanding if p > — 4 (Te* +2) — 2 + 2a,

(ii)steady if p = —% 7@3 +2) — 2 + 20,

(iii) shrinking if p < — < (Te" +2) — 2 + 20

10. CONCLUSION

The investigation of a CERYS on Riemannian (or pseudo-Riemannian) mani-
folds is crucial in differential geometry, relativity theory and physics. RY flow is
the most visible representative of modern physics. In addition to differential geom-
etry, the CERYS is a new idea that works with geometric and physical applications.
We characterized the submanifolds of a (LCS),,-manifold that admits the CERYS
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with a QSMC in our study.
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