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Abstract
In this paper, a new class of nonconvex vector optimization problems is considered. The
concepts of E-B-pseudoinvexity and E-B-quasiinvexity are introduced for E-differentiable
functions. Then, the sufficiency of the so-called E-Karush-Kuhn-Tucker optimality con-
ditions is established for the considered E-differentiable vector optimization problems
under (generalized) E-B-invexity. To illustrate the aforesaid results, an example of a
nonsmooth vector programming problem with E-differentiable functions is given. For
the E-differentiable vector optimization problem, the so-called vector Mond-Weir E-dual
problem is defined, and several E-dual theorems are established under (generalized) E-B-
invexity hypotheses.
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1. Introduction
The theory and applications of vector optimization problems have been closely tied

with convex analysis and calculus analysis. During the last few years, generalizations
of convexity related to optimality conditions and duality of nonlinear differentiable and
nondifferentiable multiobjective optimization problems have received great interest from
the authors in the areas of optimization theory and thus to explore the extent of opti-
mality conditions and duality applicability in mathematical programming problems (see,
for example, [1, 3, 7–9, 13, 16–20, 22–25], and others). One of such important generaliza-
tions of the convexity notion is the concept of invexity introduced by Hanson [15] in the
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case of differentiable scalar optimization problems. More precisely, Hanson established
Karush-Kuhn-Tucker sufficient optimality conditions and duality theorems for a differen-
tiable optimization problem involving an invex function. After that, Bector and Singh
[12] introduced the class of B-vex functions as a generalization of convex functions. Later,
Bector et al. [11] extended the concept of B-vexity of functions to B-invex functions.

Equally important in the optimization theory is the classes of nonconvex sets and
nonconvex functions, called E-convex sets and E-convex functions, respectively, were
introduced and studied by Youness [29]. These results inspired the authors to pro-
duce a great deal of subsequent research work in optimization theory (see, for example,
[2, 4–6, 10, 14, 21, 26–28, 30], and others). Abdulaleem [1] introduced the concept of E-
differentiable E-invexity in the case of (not necessarily) differentiable vector optimization
problems with E-differentiable functions. Recently, Abdulaleem [3] introduced a new con-
cept of generalized convexity as a generalization of several notions of generalized convexity
previously introduced in the literature. In the meanwhile, Abdulaleem defined the con-
cept of E-differentiable E-B-invexity in the case of (not necessarily) differentiable scalar
optimization problems with E-differentiable functions and used this concept in proving
sufficient optimality conditions for a new class of nonconvex E-differentiable scalar opti-
mization problems.

However, in this paper, a nonconvex vector optimization problem is considered. The
notions of E-B-pseudoinvexity and E-B-quasiinvexity are introduced for not necessarily
differentiable functions. The sufficiency of the so-called E-Karush-Kuhn-Tucker optimality
conditions is established for the considered E-differentiable vector optimization problems
under (generalized) E-B-invexity. The result is illustrated by the example of a noncon-
vex E-differentiable optimization problem in which the involved functions are E-B-invex.
Furthermore, for the considered E-differentiable vector optimization problem, its vector
E-dual problem in the sense of vector Mond-Weir E-duality is defined. Then, various du-
ality theorems between the considered E-differentiable vector optimization problem and
its vector Mond-Weir E-dual problem are established under (generalized) E-B-invexity
hypotheses.

2. Preliminaries
Throughout this paper, the following conventions vectors x = (x1, x2, ..., xn)T and y =

(y1, y2, ..., yn)T in Rn will be followed:
(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ..., n;
(iii) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(iv) x ≥ y if and only if xi = yi for all i = 1, 2, ..., n but x 6= y;
(v) x ≯ y is the negation of x > y.
Further, denote by Rn

+ = {y ∈ Rn : y = 0} and Rn
++ = {y ∈ Rn : y > 0} the nonnegative

orthant and interior of nonnegative orthant of Rn, respectively.

Definition 2.1. [1] Let E : Rn → Rn. A set M ⊆ Rn is said to be an E-invex set with
respect to η : M × M → Rn if and only if the relation

E (u) + λη (E (x) , E (u)) ∈ M

holds for all x, u ∈ M and any λ ∈ [0, 1].

Let M ⊆ Rn be a nonempty E-invex set with respect to η.

Definition 2.2. [27] Let E : Rn → Rn. A function f : M → R is said to be E-B-preinvex
on M with respect to η : M × M → Rn and b : M × M × [0, 1] → R+ if and only if the
following inequality

f (E (u) + λη (E (x) , E (u))) 5
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λb(E(x), E(u), λ)f (E (x)) + (1 − λb(E(x), E(u), λ))f (E (u))
holds for all x, u ∈ M and any λ ∈ [0, 1].

Definition 2.3. Let E : Rn → Rn. A function f : M → R is said to be strictly E-B-
preinvex on M with respect to η : M × M → Rn and b : M × M × [0, 1] → R+ if and only
if the following inequality

f (E (u) + λη (E (x) , E (u))) <

λb(E(x), E(u), λ)f (E (x)) + (1 − λb(E(x), E(u), λ))f (E (u))
holds for all x, u ∈ M , E(x) 6= E(u), and any λ ∈ [0, 1].

Now, we introduce new class of functions called E-B-prequasiinvex, E-B-prepseudoinvex
functions.

Definition 2.4. Let E : Rn → Rn. A function f : M → R is said to be E-B-prequasiinvex
on M with respect to η : M × M → Rn and b : M × M × [0, 1] → R+ if and only if the
following relation

f (E (x)) 5 f (E (u)) ⇒
b(E(x), E(u), λ) [f (E (u) + λη (E (x) , E (u))) − f (E (u))] 5 0

holds for all x, u ∈ M and any λ ∈ [0, 1].

Definition 2.5. Let E : Rn → Rn. A function f : M → R is said to be E-B-prepseudoinvex
on M with respect to η : M × M → Rn and b : M × M × [0, 1] → R+ if and only if the
following relation

f (E (x)) < f (E (u)) ⇒
b(E(x), E(u), λ) [f (E (u) + λη (E (x) , E (u))) − f (E (u))] 5 0

holds for all x, u ∈ M , E(x) 6= E(u), and any λ ∈ [0, 1].

Definition 2.6. [21] Let E : Rn → Rn and f : M → R be a (not necessarily) differentiable
function at a given point u ∈ M . It is said that f is an E-differentiable function at u if
and only if f ◦ E is a differentiable function at u (in the usual sense), that is,

(f ◦ E) (x) = (f ◦ E) (u) + ∇ (f ◦ E) (u) (x − u) + θ (u, x − u) ‖x − u‖
where θ (u, x − u) → 0 as x → u.

Definition 2.7. [3] Let E : Rn → Rn, f : M → R be an E-differentiable function at u
on M . It is said that f is (strictly) E-B-invex at u ∈ M with respect to η and b if, there
exist η : M × M → Rn and b : M × M → R+ such that, for all x ∈ M , the inequality

b(E(x), E(u)) [f(E(x)) − f(E(u))] = ∇f(E(u))η(E(x), E(u)) (>) (2.1)
holds. If inequality (2.1) holds for any u ∈ M (E(x) 6= E(u)), then f is (strictly) E-B-
invex with respect to η and b on M .

Now, we introduce various classes of generalized E-B-invex functions with respect to η
and b.

Definition 2.8. Let E : Rn → Rn, f : M → R be an E-differentiable function at u on
M . The function f is said to be E-B-pseudoinvex at u ∈ M on M with respect to η and
b if, there exist η : M × M → Rn and b : M × M → R+ such that, for all x ∈ M , the
following relation

∇ (f ◦ E) (u) η(E(x), E(u)) = 0 ⇒ b(E(x), E(u))f(E(x)) = b(E(x), E(u))f(E(u)) (2.2)
holds for all x ∈ M . If relation (2.2) holds for any u ∈ M , then f is E-B-pseudoinvex
with respect to η and b on M .

Remark 2.9. a) Every E-B-invex function with respect to η and b is E-B-pseudoinvex
with respect to η and b. However, the converse is not necessarily true.
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b) Every B-pseudoinvex function with respect to η and b is E-B-pseudoinvex with
respect to η and b. However, the converse is not necessarily true.

c) Every E-pseudoinvex function with respect to η is E-B-pseudoinvex with respect
to η and b. However, the converse is not necessarily true.

Definition 2.10. Let E : Rn → Rn, f : M → R be an E-differentiable function at u on
M . The function f is said to be strictly E-B-pseudoinvex at u ∈ M on M with respect
to η and b if, there exist η : M × M → Rn and b : M × M → R+ such that, for all x ∈ M
(x 6= u), the following relation

∇ (f ◦ E) (u) η(E(x), E(u)) = 0 ⇒ b(E(x), E(u))f(E(x)) > b(E(x), E(u))f(E(u)) (2.3)

holds for all x ∈ M (x 6= u). If relation (2.3) holds for any u ∈ M , then f is strictly
E-B-pseudoinvex with respect to η and b on M .

Definition 2.11. Let E : Rn → Rn, f : M → R be an E-differentiable function at u on
M . The function f is said to be E-B-quasiinvex at u ∈ M on M with respect to η and
b if, there exist η : M × M → Rn and b : M × M → R+ such that, for all x ∈ M , the
following relation

f(E(x)) 5 f(E(u)) ⇒ ∇ (f ◦ E) (u) b(E(x), E(u))η(E(x), E(u)) 5 0 (2.4)

holds for all x ∈ M . If relation (2.4) holds for any u ∈ M , then f is E-B-quasiinvex with
respect to η and b on M .

Remark 2.12. a) Every E-B-invex function with respect to η and b is E-B-quasiinvex
with respect to η and b. However, the converse is not necessarily true.

b) Every B-quasiinvex function with respect to η and b is E-B-quasiinvex with respect
to η and b. However, the converse is not necessarily true.

c) Every E-quasiinvex function with respect to η is E-B-quasiinvex with respect to
η and b. However, the converse is not necessarily true.

Figure 1. Relationships between E-differentiable E-B-invexity and different
types of E-differentiable generalized E-B-invexity.

Now, we present an example of such an E-B-pseudoinvex function with respect to η
and b which is not E-B-invex with respect to η and b, B-pseudoinvex with respect to η
and b or E-pseudoinvex with respect to η.
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Example 2.13. Let E : R → R and f : (0, π
2 ) → R be defined by

f(x) = sin( 3√x),
E(x) = x3,

η(x, u) =
{

3
√

x − 3
√

u if x > u

0 otherwise
,

b(x, u) =
{

1 if x > u

0 otherwise
.

Assume that ∇ (f ◦ E) (u) η(E(x), E(u)) = 0. Thus, we have (x − u) cos(x) = 0. This
implies that x = u for all x, u ∈ (0, π

2 ). Moreover, we have

b(E(x), E(u)) (f ◦ E) (x) = b(E(x), E(u)) (f ◦ E) (u)

for all x, u ∈ (0, π
2 ). Therefore, by Definition 2.8, f is E-B-pseudoinvex. Indeed, if we set

x = π
3 , u = π

6 , then we have

b(E(x), E(u)) [f(E(x)) − f(E(u))] < ∇f(E(u))η(E(x), E(u)).

Hence, by Definition 2.7, it follows that f is not E-B-invex with respect to η and b given
above. Further, f is not B-pseudoinvex with respect to η and b given above, if we set
x = π

6 , u = π
3 , then we have ∇f(u)η(x, u) = 0, but b(x, u)f (x) < b(x, u)f (u). Therefore,

by definition of B-pseudoinvex (see, Bector et. al [11], Suneja et. al [25]), f is not B-
pseudoinvex with respect to η and b given above. Also, f is not E-pseudoinvex with respect
to η given above, if we set x = π

6 , u = π
3 , then we have ∇f(E(u))η(E(x), E(u)) = 0, but

(f ◦ E) (x) < (f ◦ E) (u). Thus, by the definition of E-pseudoinvex (see, Abdulaleem [2]),
f is not E-pseudoinvex with respect to η given above.

Now, we present an example of such an E-B-quasiinvex function with respect to η and
b which is not E-B-invex, B-quasiinvex or E-quasiinvex with respect to η.

Example 2.14. Let E : R → R and f : [0, π
2 ] → R be defined by

f(x) = 3
4 sin( 3√x) − 1

4 sin(3 3√x),

E(x) = x3,

η(x, u) = cos( 3√u)(sin( 3√u) − sin( 3√x)),

b(x, u) =
{

3
√

xu if x > u

0 otherwise
.

Then, f is an E-B-quasiinvex function with respect to η and b given above. However, f
is not E-B-invex with respect to η and b as can be seen by taking x = π

6 , u = π
3 , the

following inequality

b(E(x), E(u)) [f(E(x)) − f(E(u))] < ∇f(E(u))η(E(x), E(u))

holds. Hence, by Definition 2.7, it follows that f is not E-B-invex with respect to η and
b given above. Further, f is not an E-quasiinvex function with respect to η as can be
seen by taking x = π

6 , u = π
4 , we have f(E(x)) < f(E(u)), but ∇f(E(u))η(E(x), E(u)) >

0. Hence, by Definition of E-quasiinvex function (see, Abdulaleem [2]), f is not an E-
quasiinvex function with respect to η given above. Moreover, f is only E-differentiable
and it is not differentiable at u = 0. Therefore, for this reason, f is not B-quasiinvex or
quasiinvex with with respect to η given above.
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3. E-differentiable multiobjective programming
Consider the following (not necessarily differentiable) multiobjective programming prob-

lem (VP):
minimize f(x) = (f1 (x) , ..., fq (x))

subject to gt(x) 5 0, t ∈ T := {1, ..., m}
(VP)

where fi : Rn → R, i ∈ I := {1, ..., q} and gt : Rn → R, t ∈ T are real-valued E-
differentiable functions defined on Rn. We shall write g := (g1, ..., gm) : Rn → Rm for
convenience. Let

Ω := {x ∈ Rn : gt(x) 5 0, t ∈ T}
be the set of all feasible solutions of (VP). Further, by T (x), the set of inequality constraint
indices that are active at a feasible solution x, that is, T (x) = {t ∈ T : gt(x) = 0}.

Definition 3.1. A feasible point x is said to be a weak Pareto (weakly efficient) solution
for (VP) if and only if there exists no feasible point x such that

f(x) < f(x).

Definition 3.2. A feasible point x is said to be a Pareto (efficient) solution for (VP) if
and only if there exists no feasible point x such that

f(x) ≤ f(x).

Now, for the considered multiobjective programming problem (VP), we define its asso-
ciated differentiable vector optimization problem as follows:

minimize (f ◦ E) (x) = ((f1 ◦ E) (x) , ..., (fq ◦ E) (x))
subject to (gt ◦ E) (x) 5 0, t ∈ T = {1, ..., m} .

(VPE)

Let
ΩE := {x ∈ Rn : (gt ◦ E) (x) 5 0, t ∈ T}

be the set of all feasible solutions of (VPE). We call the problem (VPE) an E-vector
optimization problem.

Lemma 3.3. [10] Let E : Rn → Rn be a one-to-one and onto. Then E (ΩE) = Ω.

Lemma 3.4. [10] Let x ∈ Ω be a Pareto solution (a weak Pareto solution) of (VP). Then,
there exists z ∈ ΩE such that x = E (z) and z is a Pareto (a weak Pareto) solution of
(VPE).

Theorem 3.5. [1] (E-Karush-Kuhn-Tucker necessary optimality conditions). Let x ∈ ΩE

be a weak Pareto solution of the E-vector optimization problem (VPE) (and, thus, E (x) be
a weak E-Pareto solution of the considered problem (VP)). Further, f , g be E-differentiable
at x and the E-Guignard constraint qualification [1] be satisfied at x. Then there exist
Lagrange multipliers λ ∈ Rq, µ ∈ Rm such that

q∑
i=1

λi∇fi (E(x)) +
m∑

t=1
µt∇gt (E(x)) = 0, (3.1)

µtgt (E(x)) = 0, t = 1, ..., m, (3.2)

λ ≥ 0, µ = 0. (3.3)

Definition 3.6. It is said that (x, λ, µ) ∈ ΩE ×Rq×Rm is a Karush-Kuhn-Tucker point for
the E-vector optimization problem (VPE) if the Karush-Kuhn-Tucker necessary optimality
conditions (3.1)-(3.3) are satisfied at x with Lagrange multiplier λ, µ.
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Now, we prove the sufficient optimality conditions for the vector optimization prob-
lem (VP) under (generalized) E-B-invexity hypotheses that the functions constituting it
are nondifferentiable (generalized) E-B-invex at a feasible point satisfying the E-Karush-
Kuhn-Tucker necessary optimality conditions (3.1)-(3.3).

Theorem 3.7. Let (x, λ, µ) ∈ ΩE × Rq × Rm be a Karush-Kuhn-Tucker point for the E-
vector optimization problem (VPE). Further, assume the following hypotheses are fulfilled:

a) each objective function fi, i ∈ I is E-Bfi
-invex function with respect to η and bfi

at x on ΩE,
b) each inequality constraint gt, t ∈ TE (x), is an E-Bgt-invex function with respect

to η and bgt at x on ΩE.
Then x is a weak Pareto solution of the problem (VPE) and, thus, E(x) is a weak E-Pareto
solution of the problem (VP).

Proof. By assumption, (x, λ, µ) ∈ ΩE × Rq × Rm is a Karush-Kuhn-Tucker point for the
E-vector optimization problem (VPE). Then, by Definition 3.6, the Karush-Kuhn-Tucker
necessary optimality conditions (3.1)-(3.3) are satisfied at x with Lagrange multiplier λ, µ.
We proceed by contradiction. Suppose, contrary to the result, that x is not a weak Pareto
solution of the problem (VPE). Hence, by Definition 3.1, there exists another x̂ ∈ ΩE

such that
fi(E (x̂)) < fi (E (x)) , i ∈ I. (3.4)

Using hypotheses a)-b), by Definition 2.7, the following inequalities
bfi

(E (x̂) , E (x)) [fi (E (x̂)) − fi (E (x))] = ∇fi (E (x)) η (E (x̂) , E (x)) (3.5)

for i ∈ I, and
bgt (E (x̂) , E (x)) [gt(E (x̂)) − gt(E (x))] = ∇gt (E (x)) η (E (x̂) , E (x)) (3.6)

for t ∈ T (E (x)) hold, respectively. Multiplying inequalities (3.5) and (3.6) by the corre-
sponding Lagrange multipliers, respectively, we obtain

λibfi
(E (x̂) , E (x)) [fi (E (x̂)) − fi (E (x))] =

λi∇fi (E (x)) η (E (x̂) , E (x)) , i ∈ I,
(3.7)

µtbgt (E (x̂) , E (x)) [gt(E (x̂)) − gt(E (x))] =
µt∇gt (E (x)) η (E (x̂) , E (x)) , t ∈ T (x) .

(3.8)

Since, λi ≥ 0, bfi
(E (x̂) , E (x)) > 0, i ∈ I for all x̂ ∈ ΩE . Combining (3.4) and (3.7), we

get
λi∇ (fi ◦ E) (x) η (E (x̂) , E (x)) < 0, i ∈ I.

Thus,
q∑

i=1
λi∇fi (E(x)) η (E (x̂) , E (x)) < 0. (3.9)

Using the E-Karush-Kuhn-Tucker necessary optimality condition (3.2) together with x̂ ∈
ΩE and x ∈ ΩE , µt = 0, bgt (E (x̂) , E (x)) > 0, t ∈ T (E (x)) , we have

µt∇gt (E (x)) η (E (x̂) , E (x)) 5 0, t ∈ T (E (x)) .
Thus,

m∑
t=1

µt∇gt (E (x)) η (E (x̂) , E (x)) 5 0. (3.10)

Combining (3.9) and (3.10), we obtain that the following inequality[ q∑
i=1

λi∇fi (E(x)) +
m∑

t=1
µt∇gt (E (x))

]
η (E (x̂) , E (x)) < 0
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holds, which is a contradiction to the the E-Karush-Kuhn-Tucker necessary optimality
condition (3.1). By assumption, E : Rn → Rn is an one-to-one and onto operator. Since x
is a weak Pareto solution of the problem (VPE), by Lemma 3.4, E (x) is a weak E-Pareto
solution of the problem (VP). Thus, the proof of this theorem is completed. �

Theorem 3.8. Let (x, λ, µ) ∈ ΩE × Rq × Rm be a Karush-Kuhn-Tucker point for the E-
vector optimization problem (VPE). Further, assume the following hypotheses are fulfilled:

a) each objective function fi, i ∈ I is strictly E-Bfi
-invex function with respect to η

and bfi
at x on ΩE,

b) each inequality constraint gt, t ∈ TE (x), is an E-Bgt-invex function with respect
to η and bgt at x on ΩE.

Then x is a Pareto solution of the problem (VPE) and, thus, E(x) is a E-Pareto solution
of the problem (VP).

Now, under the concepts of generalized E-B-invexity, we prove the sufficient optimality
conditions for a feasible solution to be a weak E-Pareto solution of problem (VP).

Theorem 3.9. Let (x, λ, µ) ∈ ΩE × Rq × Rm be a Karush-Kuhn-Tucker point for the E-
vector optimization problem (VPE). Further, assume the following hypotheses are fulfilled:

a) each objective function fi, i ∈ I is E-Bfi
-pseudoinvex function with respect to η

and bfi
at x on ΩE,

b) each inequality constraint gt, t ∈ TE (x), is an E-Bgt-quasiinvex function with
respect to η and bgt at x on ΩE.

Then x is a weak Pareto solution of the problem (VPE) and, thus, E(x) is a weak E-Pareto
solution of the problem (VP).

Proof. By assumption, (x, λ, µ) ∈ ΩE × Rq × Rm is a Karush-Kuhn-Tucker point for the
E-vector optimization problem (VPE). Then, by Definition 3.6, the Karush-Kuhn-Tucker
necessary optimality conditions (3.1)-(3.3) are satisfied at x with Lagrange multiplier λ, µ.
We proceed by contradiction. Suppose, contrary to the result, that x is not a weak Pareto
solution of the problem (VPE). Hence, by Definition 3.1, there exists another x̂ ∈ ΩE

such that
fi(E(x̂)) < fi (E (x)) , i ∈ I.

Since, bfi
(E (x̂) , E (x)) > 0, i ∈ I, thus,

bfi
(E (x̂) , E (x)) fi(E(x̂)) < bfi

(E (x̂) , E (x)) fi (E (x)) , i ∈ I.
By hypothesis (a), each objective function fi, i ∈ I is E-Bfi

-pseudoinvex at x on ΩE with
respect to η and bfi

. Then, Definition 2.8, gives
∇ (fi ◦ E) (x) η (E (x̂) , E (x)) < 0, i ∈ I. (3.11)

By the E-Karush-Kuhn-Tucker necessary optimality condition (3.3), inequality (3.11)
yields [ q∑

i=1
λi∇fi(E (x))

]
η (E (x̂) , E (x)) < 0. (3.12)

Since x̂ ∈ ΩE , therefore, the E-Karush-Kuhn-Tucker necessary optimality conditions (3.2)
and (3.3) imply

gt(E (x̂)) − gt(E (x)) 5 0, t ∈ T (E (x)) .
From the assumption, each inequality constraint gj , j ∈ J , is an E-Bgt-quasiinvex function
with respect to η and bgt at x on ΩE . Then, by Definition 2.11, we get

∇gt (E (x)) bgt (E (x̂) , E (x)) η (E (x̂) , E (x)) 5 0, t ∈ T (E (x)) .
Since, bgt (E (x̂) , E (x)) > 0, t ∈ T (E (x)), we get

∇gt (E (x)) η (E (x̂) , E (x)) 5 0, t ∈ T (E (x)) . (3.13)
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Thus, by the E-Karush-Kuhn-Tucker necessary optimality condition (3.3), (3.13) gives∑
t∈T (E(x))

µt∇gt (E (x)) η (E (x̂) , E (x)) 5 0.

Hence, taking into account µt = 0, t /∈ T (E (x)), we have
m∑

t=1
µt∇gt (E (x)) η (E (x̂) , E (x)) 5 0. (3.14)

Combining (3.12) and (3.14), we get that the following inequality[ q∑
i=1

λi∇fi(E (x)) +
m∑

t=1
µt∇gt (E (x))

]
η (E (x̂) , E (x)) < 0,

which is a contradiction to the E-Karush-Kuhn-Tucker necessary optimality condition
(3.1). The result that E(x) is a weak E-Pareto solution follows directly from Lemma 3.4.
Thus, the proof of this theorem is completed. �

In order to illustrate the sufficient optimality conditions established in the paper, we
now present an example of an E-differentiable vector optimization problem in which the
involved functions are (generalized) E-B-invex.

Example 3.10. Consider the following nondifferentiable vector optimization problem

f(x) = (f1(x), f2(x)) =
(

3
√

x1 + 3
√

x2 + 1, 3
√

x2
1 + 3

√
x2 − 4

)
→ V - min

g1(x) = sin 3
√

x1 − 4 sin 3
√

x2 5 0,

g2(x) = 2 3
√

x2
1 + 2 3

√
x2

2 − 9 5 0,

g3(x) = − sin 3
√

x1 5 0,

g4(x) = − sin 3
√

x2 5 0.

(VP1)

Note that the set of all feasible solutions of (VP1) is

Ω ={(x1, x2) ∈ R2 : sin 3
√

x1 − 4 sin 3
√

x2 5 0, 2 3
√

x2
1 + 2 3

√
x2

2 − 9 5 0,

− sin 3
√

x1 5 0, − sin 3
√

x2 5 0}.

Note that the functions constituting problem (VP1) are nondifferentiable at (0, 0). Let

η(x, x) = (sin 3
√

x1 − sin x1, sin 3
√

x2 − sin x2),

bf1(x, x) =
sin 3

√
x1 + sin 3

√
x2 − sin x1 − sin x2

3
√

x1 + 3
√

x2
,

bf2(x, x) =
sin 3

√
x1 + 2 sin 3

√
x2 − sin x1 − 2 sin x2

3
√

x1 + 3
√

x2
,

bg1(x, x) = bg3(x, x) = bg4(x, x) = 1,

bg2(x, x) = 3
√

x2
1 + 3

√
x2

2 − x2
1,

and E : R2 → R2 be defined as follows

E (x1, x2) =
(
x3

1, x3
2
)

.
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Now, for the considered E-differentiable multiobjective programming problem (VP1), we
define its associated E-vector optimization problem (VP1E) as follows

f(E(x)) = (f1(E(x)), f2(E(x))) = (x1 + x2 + 1, x1 + x2 − 4) → V - min
g1(E(x)) = sin x1 − 4 sin x2 5 0,

g2(E(x)) = 2x2
1 + 2x2

2 − 9 5 0,

g3(E(x)) = − sin x1 5 0,

g4(E(x)) = − sin x2 5 0.

(VP1E)

Note that the set of all feasible solutions of the considered E-vector optimization problem
(VP1E) is ΩE = {(x1, x2) ∈ R2 : sin x1 − 4 sin x2 5 0, 2x2

1 + 2x2
2 − 9 5 0, − sin x1 5

0, − sin x2 5 0}, (see, Figure 2). Further, it is not hard to see that all functions con-
stituting the problem (VP1E) are differentiable at (0, 0). Then, it can also be shown
that the E-Karush-Kuhn-Tucker necessary optimality conditions (3.1)-(3.3) are fulfilled
at (0, 0). Moreover, all hypotheses of Theorem 3.9 are fulfilled, it can be proved that each
objective function fi, i = 1, 2, is an E-Bfi

-pseudoinvex function with respect to η and bfi

given above at x on ΩE , each inequality constraint gt, t = 1, 2, 3, 4, is an E-Bgt-quasiinvex
function with respect to η and bgt given above at x on ΩE . Hence, x = (0, 0) is a Pareto
solution of the E-vector optimization problem (VP1E) (see Fig. 2). Furthermore, that the
sufficient optimality conditions under E-differentiable E-invexity are not applicable since
not all functions constituting problem (VP1) are E-invex with respect to η given above.

Figure 2. The set of all feasible solutions of (VP1E) in example 3.10.



Sufficiency and duality for E-differentiable vector optimization problems 135

4. Mond-Weir E-duality
Let E : Rn → Rn be a given one-to-one and onto operator, for the differentiable vector

E-optimization problem (VPE), we define its dual problem in the sense of vector Mond-
Weir duality as follows:

(f ◦ E)(y) = (f1(E(y)), ..., fq(E(y))) → V − max
s.t.

∑q
i=1 λi∇ (fi ◦ E) (y) +

∑m
t=1 µt∇ (gt ◦ E) (y) = 0,∑m

t=1 µt (gt ◦ E) (y) = 0,

λ ∈ Rq, λ ≥ 0 , µ ∈ Rm, µ = 0.

(MWDE)

Let

ΓE =
{

(y, λ, µ) ∈ Rn × Rq × Rm :
∑q

i=1 λi∇ (fi ◦ E) (y) +
∑m

t=1 µt∇(gt ◦ E)(y) = 0,

∑m
t=1 µt (gt ◦ E) (y) = 0, λ ≥ 0, µ = 0

}
be the set of all feasible solutions of the problem (MWDE). Let us denote, YE = {y ∈
Rn : (y, λ, µ) ∈ ΓE}.

Now, under E-B-invexity hypotheses, we prove duality results between (VPE) and
(MWDE) and, thus, E-duality results between (VP) and (MWDE).

Theorem 4.1. (Mond-Weir weak duality between (VPE) and (MWDE)). Let x and
(y, λ, µ) be any feasible solutions of the problems (VPE) and (MWDE), respectively. Fur-
ther, assume that at least one of the following hypotheses is fulfilled:

A) each objective function fi, i ∈ I is E-Bfi
-invex with respect to η and bfi

at y on
ΩE ∪ YE, each constraint function gt, t ∈ T , is E-Bgt-invex with respect to η and
bgt at y on ΩE ∪ YE.

B) λifi, i ∈ I is E-Bfi
-pseudoinvex with respect to η and bfi

at y on ΩE ∪ YE,
µtgt, t ∈ T is E-Bgt-quasiinvex with respect to η and bgt at y on ΩE ∪ YE.

Then
(f ◦ E) (x) ≮ (f ◦ E) (y).

Proof. Let x and (y, λ, µ) be any feasible solutions of problems (VPE) and (VMDE),
respectively. We, first, consider the case that under hypothesis A) is satisfied. If x = y,
then the weak duality trivially holds. Now, we prove the weak duality theorem when
x 6= y. We proceed by contradiction. Suppose, contrary to the result, that the inequality

(f ◦ E) (x) < (f ◦ E) (y) (4.1)

holds. By the feasibility of (y, λ, µ) in problem (MWDE), the above inequality yields
q∑

i=1
λifi(E(x)) <

q∑
i=1

λifi(E((y)). (4.2)

By assumption, x and (y, λ, µ) are feasible solutions for problems (VPE) and (MWDE),
respectively. Since each function fi, i ∈ I is E-Bfi

-invex with respect to η and bfi
at y on

ΩE ∪ YE , each constraint function gt, t ∈ T , is E-Bgt-invex with respect to η and bgt at y
on ΩE ∪ YE , by Definition 2.7, the following inequalities hold

bfi
(E (x) , E (y)) [fi (E (x)) − fi (E (y))] = ∇fi (E (y)) η (E (x) , E (y)) (4.3)

for all i ∈ I, and

bgt (E (x) , E (y)) [gt (E (x)) − gt (E (y))] = ∇gt (E (y)) η (E (x) , E (y)) (4.4)
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for all t ∈ T (E(y)), respectively. Multiplying inequalities (4.3)-(4.4) by the corresponding
Lagrange multiplier, respectively, we obtain the inequalities

λibfi
(E (x) , E (y)) [fi (E (x)) − fi (E (y))] = λi∇fi (E (y)) η (E (x) , E (y)) (4.5)

for all i ∈ I, and

µtbgt (E (x) , E (y)) [gt (E (x)) − gt (E (y))] = µt∇gt (E (y)) η (E (x) , E (y)) (4.6)

for all t ∈ T (E(y)). Since, λi ≥ 0, bfi
(E (x) , E (y)) > 0, i ∈ I for all x ∈ ΩE . Combining

(4.2) and (4.5), we get

λi∇ (fi ◦ E) (y) η (E (x) , E (y)) < 0, i ∈ I.

Thus,
q∑

i=1
λi∇fi (E(y)) η (E (x) , E (y)) < 0. (4.7)

Using the E-Karush-Kuhn-Tucker necessary optimality condition (3.2) together with x ∈
ΩE , (4.6) and y ∈ ΩE , µt = 0, bgt (E (x) , E (y)) > 0, t ∈ T (E (y)) , we have

µt∇gt (E (y)) η (E (x) , E (y)) 5 0, t ∈ T (E (y)) .

Thus,
m∑

t=1
µt∇gt (E (y)) η (E (x) , E (y)) 5 0. (4.8)

Combining (4.7) and (4.8), we obtain that the following inequality[ q∑
i=1

λi∇fi (E(y)) +
m∑

t=1
µt∇gt (E (y))

]
η (E (x) , E (y)) < 0

holds. This is a contradiction to the first constraint of the vector Mond-Weir E-dual
problem (MWDE) which means that the proof of the Mond-Weir weak duality theorem
between the E-vector optimization problems (VPE) and (MWDE) is completed under
hypothesis A).

The proof of this theorem under hypothesis B). We proceed by contradiction. Suppose,
contrary to the result, that (4.1) holds. Since λifi, i ∈ I is E-Bfi

-pseudoinvex with respect
to η and bfi

at y on ΩE ∪ YE , by Definition 2.8, the inequality
q∑

i=1
λi∇ (fi ◦ E) (y)η (E (x) , E (y)) < 0 (4.9)

holds. Since µtgt is E-Bgt-quasiinvex with respect to η and bgt at y on ΩE∪YE , b (E (x) , E (y)) >
0, Definition 2.11 implies that the inequality

m∑
t=1

µt∇ (gt ◦ E) (y)η (E (x) , E (y)) 5 0 (4.10)

holds. Combining (4.9) and (4.10), it follows that the inequality[ q∑
i=1

λi∇fi(E (y)) +
m∑

t=1
µt∇gt(E (y))

]
η (E (x) , E (y)) < 0

holds. This contradicts with the first constraint of the vector Mond-Weir E-dual problem
(MWDE). This means that the proof of the Mond-Weir weak duality theorem between
the E-vector optimization problems (VPE) and (MWDE) is completed under hypothesis
B). �
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Theorem 4.2. (Mond-Weir weak E-duality between (VP) and (MWDE)). Let E (x) and
(y, λ, µ) be a feasible solutions of the problems (VP) and (MWDE), respectively. Further,
assume that all hypotheses of Theorem 4.1 are fulfilled. Then, Mond-Weir weak E-duality
between (VP) and (MWDE) holds, that is,

(f ◦ E) (x) ≮ (f ◦ E) (y).

Proof. Let E (x) and (y, λ, µ) be any feasible solutions of the problems (VP) and (MWDE),
respectively. Then, by Lemma 3.3, it follows that x is any feasible solution of (VPE). Since
all hypotheses of Theorem 4.1 are fulfilled, the Mond-Weir weak E-duality theorem be-
tween the problems (VP) and (MWDE) follows directly from Theorem 4.1. �

If some stronger E-B-invexity hypotheses are imposed on the functions constituting
the considered E-differentiable multiobjective programming problem, then the following
stronger result is true.

Theorem 4.3. (Mond-Weir weak duality between (VPE) and (MWDE)). Let x and
(y, λ, µ) be any feasible solutions of the problems (VPE) and (MWDE), respectively. Fur-
ther, assume that at least one of the following hypotheses is fulfilled:

A) each objective function fi, i ∈ I is strictly E-Bfi
-invex with respect to η and bfi

at
y on ΩE ∪ YE, each constraint function gt, t ∈ T , is E-Bgt-invex with respect to η
and bgt at y on ΩE ∪ YE.

B) λifi, i ∈ I is strictly E-Bfi
-pseudoinvex with respect to η and bfi

at y on ΩE ∪ YE,
µtgt, t ∈ T is E-Bgt-quasiinvex with respect to η and bgt at y on ΩE ∪ YE.

Then
(f ◦ E) (x) � (f ◦ E) (y).

Theorem 4.4. (Mond-Weir weak E-duality between (VP) and (MWDE)). Let E (x)
and (y, λ, µ) be any feasible solutions of the problems (VP) and (MWDE), respectively.
Further, assume that all hypotheses of Theorem 4.3 are fulfilled. Then, weak E-duality
between (VP) and (VMDE) holds, that is,

(f ◦ E) (x) � (f ◦ E) (y).

Theorem 4.5. (Mond-Weir strong duality between (VPE) and (MWDE) and also Mond-
Weir strong E-duality between (VP) and (MWDE)). Let x ∈ ΩE be a weak Pareto solution
(a Pareto solution) of the E-vector optimization problem (VPE) (and, thus, E(x) be a weak
E-Pareto solution (an E-Pareto solution) of the E-vector optimization problem (MOP)).
Further, assume that the E-Guignard constraint qualification proposed in [1] be satisfied at
x. Then, there exist λ ∈ Rq, µ ∈ Rm, µ = 0 such that

(
x, λ, µ

)
is feasible for the problem

(MWDE) and the objective functions of (VPE) and (MWDE) are equal at these points.
If also all hypotheses of the Mond-Weir weak duality (Theorem 4.1 (Theorem 4.3)) are
satisfied, then

(
x, λ, µ

)
is a weak efficient (an efficient) solution of a maximum type in

the problem (MWDE).
In other words, if E(x) ∈ Ω is a (weak) E-Pareto solution of the multiobjective program-
ming problem (VP), then

(
x, λ, µ

)
is a (weak) efficient solution of a maximum type in

the dual problem (MWDE) in the sense of Mond-Weir. This means that the Mond-Weir
strong E-duality holds between the problems (VP) and (MWDE).

Proof. Since x ∈ ΩE is a (weak) Pareto solution of the problem (VPE) and the E-
Guignard constraint qualification be satisfied at x, by Theorem 3.5, there exist λ ∈ Rq,
µ ∈ Rm, µ = 0 such that

(
x, λ, µ

)
is a feasible solution of problem (MWDE). This means

that the objective functions of (VPE) and (MWDE) are equal. If we assume that all
hypotheses of the Mond-Weir weak duality (Theorem 4.1 (Theorem 4.3)) are fulfilled, then
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(
x, λ, µ

)
is a (weak) efficient solution of a maximum type in the dual problem (MWDE)

in the sense of Mond-Weir.
Moreover, we have, by Lemma 3.3, that E (x) ∈ Ω. Since x ∈ ΩE is a weak Pareto

solution of the problem (VPE), by Lemma 3.4, it follows that E (x) is a weak E-Pareto
solution in the problem (VP). Then, by the Mond-Weir strong duality between (VPE)
and (MWDE), we conclude that also the Mond-Weir strong E-duality holds between the
problems (VP) and (MWDE). This means that if E (x) ∈ Ω is a weak E-Pareto solution
of the problem (VP), there exist λ ∈ Rq, µ ∈ Rm, µ = 0 such that

(
x, λ, µ

)
is a weakly

efficient solution of a maximum type in the Mond-Weir dual problem (MWDE). �

Theorem 4.6. (Mond-Weir converse duality between (VPE) and (MWDE)). Let
(
x, λ, µ

)
be a (weakly) efficient solution of a maximum type in Mond-Weir dual problem (MWDE)
such that x ∈ ΩE. Moreover, assume that at least one of the following hypotheses is
fulfilled:

A) each objective function fi, i ∈ I is (strictly) E-Bfi
-invex with respect to η and bfi

at x on ΩE ∪ YE, each constraint function gt, t ∈ T , is E-Bgt-invex with respect
to η and bgt at x on ΩE ∪ YE.

B) λifi, i ∈ I is E-Bfi
-pseudoinvex with respect to η and bfi

at x on ΩE ∪ YE,
µtgt t ∈ T is E-Bgt-quasiinvex with respect to η and bgt at x on ΩE ∪ YE.

Then x is a (weak) Pareto solution of the problem (VPE).

Proof. Let
(
x, λ, µ

)
be a (weakly) efficient solution of a maximum type in Mond-Weir

dual problem (MWDE) such that x ∈ ΩE . By means of contradiction, we suppose that
there exists x̂ ∈ ΩE such that the inequalty

(f ◦ E) (x̂) < (f ◦ E) (x) (4.11)

holds. By assumption
(
x, λ, µ

)
is a (weakly) efficient solution of a maximum type in the

problem (MWDE), the above inequality yields
q∑

i=1
λifi(E(x̂)) <

q∑
i=1

λifi(E((x)). (4.12)

Since functions fi, i ∈ I are E-Bfi
-invex with respect to η and bfi

at x on ΩE ∪ YE , each
constraint function gt, t ∈ T , is E-Bgt-invex with respect to η and bgt at x on ΩE ∪ YE ,
by Definition 2.7, the following inequalities hold

bfi
(E (x̂) , E (x)) [fi (E (x̂)) − fi (E (x))] = ∇fi (E (x)) η (E (x̂) , E (x)) (4.13)

for all i ∈ I, and

bgt (E (x̂) , E (x)) [gt (E (x̂)) − gt (E (x))] = ∇gt (E (x)) η (E (x̂) , E (x)) (4.14)

for all t ∈ T (E(x)), respectively. Multiplying inequalities (4.13)-(4.14) by the correspond-
ing Lagrange multiplier, respectively, we obtain that the inequality

λibfi
(E (x̂) , E (x)) [fi (E (x̂)) − fi (E (x))] = λi∇fi (E (x)) η (E (x̂) , E (x)) (4.15)

for all i ∈ I, and

µtbgt (E (x̂) , E (x)) [gt (E (x̂)) − gt (E (x))] = µt∇gt (E (x)) η (E (x̂) , E (x))

for all t ∈ T (E(x)). Since, λi > 0, bfi
(E (x̂) , E (x)) > 0, i ∈ I for all x̂ ∈ ΩE . Combining

(4.12) and (4.15), we get
q∑

i=1
λi∇fi (E(x)) η (E (x̂) , E (x)) < 0. (4.16)
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Using the E-Karush-Kuhn-Tucker necessary optimality condition (3.2) together with x̂ ∈
ΩE , (4.6) and x ∈ ΩE , µt > 0, bgt (E (x̂) , E (x)) > 0, t ∈ T (E (x)) , we have

µt∇gt (E (x)) η (E (x̂) , E (x)) 5 0, t ∈ T (E (x)) .

Thus,
m∑

t=1
µt∇gt (E (x)) η (E (x̂) , E (x)) 5 0. (4.17)

Combining (4.16) and (4.17), we obtain the following inequality[ q∑
i=1

λi∇fi (E(x)) +
m∑

t=1
µt∇gt (E (x))

]
η (E (x̂) , E (x)) < 0.

This contradicts with the (weakly) efficient solution of a maximum type of
(
x, λ, µ

)
in

(MWDE). This means that the proof of the converse duality theorem between the E-vector
optimization problems (VPE) and (MWDE) is completed under hypothesis A).

The proof of this theorem under hypothesis B). We proceed by contradiction. Suppose,
contrary to the result, that (4.11) holds. Since λifi, i ∈ I is E-Bfi

-pseudoinvex with
respect to η and bfi

at x on ΩE ∪ YE , by Definition 2.8, the inequality
q∑

i=1
λi∇ (fi ◦ E) (x)η (E (x̂) , E (x)) < 0 (4.18)

holds. Since µtgt is E-Bgt-quasiinvex with respect to η and bgt at x on ΩE ∪YE , Definition
2.11 implies that the inequality

m∑
t=1

µt∇ (gt ◦ E) (x)bgt (E (x̂) , E (x)) η (E (x̂) , E (x)) 5 0

holds. Since bgt (E (x̂) , E (x)) > 0, we obtain
m∑

t=1
µt∇ (gt ◦ E) (x)η (E (x̂) , E (x)) 5 0. (4.19)

Combining (4.18) and (4.19), it follows that the inequality[ q∑
i=1

λi∇fi(E (x)) +
m∑

t=1
µt∇gt(E (x))

]
η (E (x̂) , E (x)) < 0

holds. This contradicts with the first constraint of the vector Mond-Weir E-dual problem
(MWDE). This means that the proof of the converse duality theorem between the E-vector
optimization problems (VPE) and (MWDE) is completed under hypothesis B). �

Theorem 4.7. (Mond-Weir converse E-duality between (VP) and (MWDE)). Let
(
x, λ, µ

)
be a (weakly) efficient solution of a maximum type in Mond-Weir dual problem (MWDE).
Further, assume that all hypotheses of Theorem 4.6 are fulfilled. Then E(x) ∈ Ω is a
(weak) E-Pareto solution of the problem (VP).

Proof. The proof of this theorem follows directly from Lemma 3.4 and Theorem 4.6. �

5. Conclusion
In this paper, new classes of generalized E-B-invex functions called E-B-pseudoinvexity

and E-B-quasiinvexity with respect to η and b are introduced. These classes of functions
are defined by relaxing the definitions of the classes of E-pseudo-invex and E-quasi-invex
functions (with respect to η) defined by Abdulaleem [1], and the classes of B-pseudo-invex
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and B-quasi-invex functions (with respect to η and b) defined by Bector et al. [11]. Sev-
eral sufficient optimality conditions have been derived for E-differentiable vector optimiza-
tion problems under (generalized) E-B-invexity hypotheses. Further, the so-called vector
Mond-Weir E-duality problem has been investigated for the considered E-differentiable
vector optimization problem. Various duality theorems between the E-differentiable vec-
tor optimization problem and its vector Mond-Weir E-dual problem have been proved
under (generalized) E-B-invexity hypotheses.

However, some interesting topics for further research remain. It would be of interest to
investigate whether it is possible to prove similar results for other classes of E-differentiable
vector optimization problems. We shall investigate these questions in subsequent papers.
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