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Virtual Reality (VR) systems have become widespread for a decade with the mass 

production of VR headsets. Advancement in the VR industry benefits both 

biomedical and computer gaming fields to create better Human-Computer Interface 

(HCI) applications. In this study, Electrooculogram (EOG) signals are studied on a 

calibrated A4 paper to simulate reading and tracking eye movement in different 

regions for VR user interface applications. For that reason, eye activity features from 

EOG are used to identify relative 2D spatial coordinates and classified with the fuzzy 

k-Nearest Neighbor (fuzzy k-NN) method. Within the experimental setup, different 

behaviors such as blinking and depth focus change signals are recorded with constant 

depth regional borders are analyzed on an A4 paper with reading eye movement 

recordings. In experimental results, fuzzy k-NN classification results are obtained 

from observed regional eye movement. The study shows that the fuzzy k-NN method 

to detect regions at a reading distance is feasible for user interface applications in 

VR. So, by setting rendering focus at the detected regional area, eye strain can be 

reduced during prolonged VR sessions especially when reading and/or on user 

interfaces. 

 
1. Introduction 

 

With commercial expansion and improvements 

in Virtual Reality (VR) systems, a wide variety 

of sensors are used for tracking and navigating in 

VR headsets. Eye-tracking sensor usage is 

believed to be part of major VR devices in the 

near future [1]. Therefore, biomedical 

technologies and solutions will become useful 

for such devices. Using currently available VR 

headsets, controlling and navigating of virtual 

applications is possible by tracing eye 

movement. Electrooculogram (EOG) data allows 

the construction of a suitable non-invasive way 

to detect movement and behavior of user 

intention on applications. 

 

Controlling interfaces and applications, and 

detecting regions of interest could give new 

opportunities in both healthcare and user-

oriented daily life usage in VR systems. Reading 

a paper, following news, web surfing using eye 

movement navigation, and focusing to get related 

news could help new opportunities to emerge. 

Current VR headsets heavily rely on different 

types of controllers rather than EOG sensors for 

application control.  

 

There are eye movement detection systems for 

foveated rendering such as Pico Neo brands and 

HTC Vive Pro Eye with Tobii. On HTC Vive eye 

tracking is detected by cameras while in the Pico 

Neo series eye tracking is done by sensors in 

front of the lens. As foveated rendering could 

reduce eye strain, EOG signals can also be used 

to track regional eye focus. 

 

The need for health monitoring in VR devices 

also becomes apparent. Without EOG sensors 

eye strain and unhealthy light exposure on eyes 

are not directly monitored in the daily usage of 

such devices. So EOG sensors can be used to 
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detect healthy conditions as well as increasing 

navigational ability with region of interest 

detection for applications. 

 

Currently, many applications heavily rely on 

handheld controllers or keyboard/mouse for 

navigation in VR environments. Also, web 

surfing or reading activities only need simple 

actions without complicated input levels. 

Navigating between different sections in user 

interfaces or focusing at one point could be able 

to be recognized or user-defined actions could be 

carried with EOG sensors. Handheld devices 

come with hand gesture touch sensors or in 

personal computers mouse hardware comes with 

programmable buttons and predefined selective 

options for users to be able to control computers 

more easily. In that aspect, the same factors could 

be applied to VR headsets and systems to carry 

commands using EOG sensors so that basic 

navigation could be carried much more easily. In 

this study, for the same purpose navigational 

detection for real-life reading and VR 

counterpart is tested at a fixed distance so users 

can navigate more naturally and comfortably in 

VR applications. 

 

In literature, many wearable devices and Human-

Computer Interface (HCI) systems have been 

developed. For example, the brain-computer 

interface can be used to control the robotic arm 

using facial expressions [2]. With wearable 

Forehead EOG sensors, wheelchair control using 

a virtual keyboard is studied by Heo et.al. [3]. In 

their work, a user could drive a wheelchair 

through the 8-shaped course without collusion. 

Another application is mobile phone-based HCI 

usage for assistive healthcare where an Android 

app helps the users to emulate mouse behavior 

using eye or facial movements [4]. Sleep onset 

latency could be reduced using in VR 

environment with a sleep assistant when EOG 

sensors are combined with a VR headset [5]. 

With the use of EOG sensors, it is also possible 

to use eye movement detection and gaze 

estimation to control an asynchronous virtual 

keyboard with high accuracy [6]. Another 

application field for EOG usage as an input 

device is playing a game after taking sensor data 

using microprocessors [7]. EOG can also be used 

as an input device and controller for studies that 

have more advanced applications such as 

sculpting in virtual reality [8]. There is also a 

social aspect when using HCI systems and EOG 

sensors could be socially intrusive, based on a 

social point of view wireless EOG electrode 

usage is also studied [9]. 

 

Classifying and analyzing sensor data is a 

requirement to define the correct response for 

any application. For example, Dursun et al find 

EOG artifacts in sleep Electroencephalogram 

(EEG) signals and automatically eliminate them 

using regression methods so that their clinical 

utility increases [10]. Vidal et al studied EOG 

data to discriminate saccades, smooth pursuits, 

and vestibulo-ocular reflexive movements and 

identify them using EOG data from 19 different 

people [11]. EOG data classification is also 

tested using Dempster Shafer theory and k-

Nearest Neighbor (k-NN) classifier with their 

accuracies in literature [12].  

 

The k-NN algorithm is used in the biomedical 

field where sleep stages are distinguished with 

the usage of three different distance metrics [13]. 

Aside from k-NN, a Support Vector Machine 

(SVM) is also used to classify feature data [14]. 

As different types of signals have, noise and 

unwanted data are also present in data taken from 

EOG, so the removal of EOG and EMG data 

artifacts are studied to represent muscular signals 

better using the k-NN algorithm [15]. There are 

studies to improve signal analysis such as the 

usage of multi-resolution representation of EOG 

signals using wavelet decompositions [16]. In 

eye movement; blinking, saccades, and fixations 

are important behaviors where these actions are 

needed to be identified and should be processed 

according to the objective of the data process. So 

Toivanen et al studied this area and obtained high 

accuracy in detecting these behaviors by 

calculating temporal parameters and 

probabilistic method where uncertainty of 

detected events is considered [17]. 

 

In this paper, regional eye movement detection is 

studied with A4 paper reading at a 45cm distance 

in real life and its counterpart movement 

response in a computer. Distance of 45 cm from 

the observer's eye is used for many daily 

activities, such as reading or using a computer, 

making it a relevant distance for assessing visual 

abilities in daily life and sports [18]. 45cm 
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distance has another importance which is 

recommended in Head Mounted Display (HMD) 

devices for the user against 40 cm due to the 

increased vergence-accommodation conflict 

[19]. In HCI devices, a 45 cm distance allows for 

controlled comparisons between different 

display types and provides insights into the 

impact of viewing distance on user experience 

and task performance [20]. 

 

Acquired data is classified using fuzzy k-NN to 

find which regions the user is focused on in the 

duration of experiments. So, with experiments 

calibrated real-life and computer counterpart 

signals are read and classified based on defined 

spatial regions. 

 

In the study, a framework is constructed to be 

used in VR headsets in which EOG data 

responses could be used for computer interaction 

in both reading and web surfing with intended 

actions. 

 

2. Materials and Methods 

 

In this study, eye movement signals taken from 

Electrooculography are studied to identify A4 

paper border regions in the real world to simulate 

paper reading in a computer interface to identify 

regional detection on a computer application. 

Instead of neural network-based approaches to 

define regions, fuzzy k-NN is used which is not 

based on learning and therefore easily modified 

and applied. The classic k-NN algorithm suffers 

from various limitations that lower classification 

success. The limitations that affect performance 

can be counted as being unbiased to all its 

classification-dependent neighbors, lack of 

distance calculation features between data points, 

and taking into account unnecessary dataset 

features [21].  

 

For better classification fuzzy k-NN algorithm is 

selected which uses “membership” values for 

each class to define regions. For k-NN and 

variant algorithm performances, the study of 

Uddin S. et al. shows performance comparisons 

in disease prediction problems [22]. 

 

 
Figure 1. HMD device for virtual reality 

applications and its structure [23] 

 

When reading a web page or a paper at a fixed 

distance, our eye movement captures and focuses 

on specific regions. So, to identify and detect 

reading in both virtual and real environments 

calibrated environment is created for testing 

purposes. A4 paper is used to create a 2D plane 

at a fixed depth in a 3D environment. So, the 

experiments measured regional eye movement at 

a reading distance. With these tests, real-life 

reading behavior can be measured with its 

application in a virtual environment. User 

interface navigation can be implemented with 

reading detection using EOG signals. 
 

In VR applications, devices that help to create 

human-machine interfaces are widely used as in 

Figure 1. Currently, many HMD devices use 

controllers or standard keyboard and mouse 

devices to control web surfing or user interface 

navigation. Keyboard and mouse usage limits the 

user to a fixed position and viewing angle, 

whereas controller usage to navigate through the 

content takes more time as the cursor needs to 

have motion if the navigation sections are not 

bound to the buttons.  

 

So, without any hand motion requirement, 

reading and navigation using EOG signals in VR 

applications helps to navigate more naturally and 

also creates a possibility to use more inputs when 

controlling the device. Therefore, in this paper, 

gazing at different sections and reading is 

measured when looking at A4 paper and its 

machine counterpart VR application within 

Unity 3D is studied. 

 

2.1. Experimental setup 

 

In the experimental setup, to acquire eye 

movement EOG signal data BIOPAC Systems 
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MP36 device from Sakarya University 

Electrical-Electronics Engineering Department 

Lab is used as can be seen in Figure 2, and two-

channel input is calibrated through the computer. 

 

Hardware supports up to 4-channel inputs for 

EOG data. Also, electrode placement is done 

before the calibration session which can be seen 

in Figure 2(c). A vertical channel is placed 

around the right eye and a horizontal channel 

encompasses both eyes. Ground electrodes were 

placed on the forehead near the vertical electrode 

‘Vin+’ side. 
 

 
Figure 1. (a) BIOPAC Systems MP36 device for 

getting signals, (b) Shielded electrode adapter and 

color definitions [24], (c) Electrode placement for 

EOG data acquisition 

 

As can be seen in Figure 2(b), in Figure 2(c) red-

colored electrode represents the ‘Vin+’ 

electrode, white-colored electrodes represent the 

‘Vin-’, whereas black-colored electrodes are 

ground for vertical and horizontal channels each. 

 

Reading A4 paper is measured at a 45cm distance 

with a 2.1 cm horizontal length for both virtual 

and physical interface. Calibrated A4 paper can 

be seen in Figure 3. 

 

In the study, two calibration steps were required 

to record the signals on the computer. In the first 

phase, MP36 device software is used to calibrate 

both vertical and horizontal signal accuracy. The 

second calibration phase is conducted for both 

resolution and eye movement change at 45 cm 

depth. 

 

 
Figure 3. Reference A4 paper at 45cm to define 

regions and test eye movement differences 

 

As higher depth means more content at a given 

window of view, accuracy reduces as the 

measured distance increases. So same eye 

movement means different amounts of content 

reading (or view) at different depths. In the 

virtual environment, different Z-axis positions 

mean different objects or content focus. 

Therefore, second calibration measurements are 

carried out to identify virtual and physical world 

differences in captured data. 

 

In the experiments, signals are recorded with 100 

MHz frequency. After initial setup, experiments 

reached 115 different observations where focus 

and different depth gazing were included.  For 

VR applications focus change and blinking are 

recorded for analysis. 

 

2.2. Methodology 

 

Several steps are needed to be taken into account 

to represent a methodology that turns signal data 

into recognition of user action. First, signals are 

sampled and related features with statistical 

properties are analyzed. Signal sampling can be 

seen in Figure 4 where outliers are also taken into 

account in the sampling procedure. Also, Figure 

4 shows full A4 paper content reading line by line 

under page-in boundaries. 

 

In experiments, when gazing from the page 

center to different regions muscular activity is 

observed to last around 1-2 seconds from starting 

until it comes to the resting condition. 
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Figure 4. EOG signal with sampling results (red 

overlay) from horizontal (up) and vertical (below) 

channels 

 

As for blinking and depth changes, these 

activities are transferred as more rapid responses 

in signal data. To measure eye movement 

changes correctly, overlapping tests are 

conducted starting from the page center to 

different directions.  Horizontal eye movement 

data can be seen in Figure 5(a) with muscular 

activity falling after the target point is reached. 

The resting phase and eye movement sections 

give necessary cues to construct depth-eye 

activity resolution information with the help of 

calibrated A4 measurement. 

 

 

 
Figure 5. Sampled signal with original data (up), 

horizontal eye movement base within a frame 

according to maximum change (below) 

 

According to the recorded data, the MP36 device 

stores 100 samples for every second. Re-

sampling which is represented by red points in 

Figure 5(up) has a sampling frequency lowered 

by 4 times. According to the tests, to measure eye 

movement changes at 45cm depth, down-

sampling by 4 retains the necessary information 

to analyze eye movement. In methodology, both 

original input signal and re-sampled data are used 

in conjunction for blinking, focus change, and 

eye movement analysis. On the other hand, if 

focused depth increases, the sampling frequency 

and accuracy of sensors need to be more sensitive 

to the changes because, between two points, the 

eye needs less movement. So, the amplitude of 

the signal will be lower than the values seen in 

Figure 5(up). Therefore at higher depths, system 

detection of movement becomes more 

susceptible to the noise. 

 

To detect relative changes, windows in one-

second intervals are analyzed using a given 

signal. When the eye moves from the center of 

the paper to the off-page region, after the initial 

amplitude jump, amplitude values have a more 

gradual change. This event spread over a longer 

time frame until rest condition was achieved 

which is different from rapid blinking and focus 

changes. As eye movement gives different 

responses in signal, the maximum changes in 

each second interval are detected for the 

categorization of an event in EOG. 

 

As can be seen in Figure 5(below), maximum 

change is related to eye movement direction. So, 

to detect the vector of eye movement relatively, 

the maximum change in a second time frame is 

calculated. After that eye resting condition level 

before the event is approximated to find the 

movement vector. Using the maximum change 

index, 'before change level' determined by 

average prior values in the frame if there is no 

other event is present. After the event, the area 

above the resting condition is measured. This 

area represents a positive relative change in right-

side eye movement. 

 

After signals are processed according to 

movement changes, change vectors are 

determined. According to the relative movement 

in time, change vectors are mapped in 2D 

coordinates. In the study, eye movements within 

page or off-page regions are taken and classified 

for region detection application. In classification 

tests, eye movements starting from the page 

center were used to measure the difference in real 

life and the corresponding action on the 2D map 

in the virtual environment. 

 

𝑢𝑖(𝑥) =
∑ 𝑢𝑖𝑗(1/|𝑥−𝑧𝑗|2/(𝑚−1))𝐾

𝑗=1

∑ (1/|𝑥−𝑧𝑗|2/(𝑚−1))𝐾
𝑗=1

)    (1) 
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To classify eye movements, a well-known fuzzy 

k-NN algorithm is adopted and used as shown in 

Equation 1 above [25]. In the equation, ui(x) 

means fuzzy membership of sample x in class i. 

Also, uij represents the membership of the j 

sample in class i. So the closest K-nearest 

neighbor defines fuzzy membership of the 

sample x. The parameter m is called the fuzzifier, 

which is given a value of 2, where membership 

values are proportional to the inverse of the 

square. The distance of x to each class sample is 

calculated using |x-zj|. 

 

Parameter-independent algorithms for fuzzy k-

NN can also be used which would eliminate the 

need for a neighbor count parameter. So, the 

Parameter Independent Fuzzy class-specific 

Feature Weighted k-Nearest Neighbor (PIFW k-

NN) classifier become another alternative for 

more adaptable solutions [26]. 

 

3. Virtual Reality Projection Results 

 

In the experimental phase of the study, a total of 

155 different eye movements were carried out. 

Within the data, the first 42 signal records consist 

of eye movement at 45cm depth where their 

starting point is on the center of A4 paper. In 

experiment data 43, eye actions when reading A4 

paper content are recorded. So, eyes always were 

in the boundary of A4 paper for this data. Also in 

experiments 44-115, signals have eye focus shift. 

In these recordings, random focus locations are 

examined in experiment 68-77 data. All recorded 

signals contain vertical and horizontal eye 

movements separately. Furthermore, 

experimental data in this study is available online 

at GitHub [27]. 

 

 
Figure 6. Original EOG signal with IQR Outliers 

(red samples) 

 

2D tests where A4 paper is present were 

conducted mainly for algorithm implementation 

on the detection of regional movements. So, 

when eye movement is out of the A4 paper 

boundary, an action can be bound to the 

application to perform certain tasks according to 

the regional section. 

 

To observe statistical changes in signal sampling, 

the Inter Quartile Range (IQR) Outlier is 

calculated. Blinking and other spikes can be 

caught by an outlier filter. Both IQR outlier and 

sampling effects can be seen in Figure 6. For 

uncategorized EOG signals, Symlet wavelet 

becomes useful for blinking event elimination on 

signals [28]. There is a neural correlation of eye 

blinking as the medial frontal gyrus is 

responsible for spontaneous eye blinking [29]. So 

aside from signal processing, detection of 

specific brain regions can also be used for 

accurate blinking removal. 

 

 

 
Figure 7. Fast (0-12 sec.) and normal repeated 

blinking (12-40 sec.) times (Up), eye focus change 

over 10 cm to 3 meters (Bottom) 

 

In experimental data, it is observed that 

frequency responses for blinking and eye depth 

change create similar structures where low-pass 

filtering eliminates both information. The 

similarity of blinking and focus change on 

vertical EOG signal can be seen in Figure 7. Non-

sequential blinking and focus change therefore 

are fairly similar. That means the elimination of 

blinking also removes focus change information, 

especially on vertical channels. On the other 

hand, focus change can have differences in 

amplitude based on depth information. Two-

dimensional gazing at a certain depth changes the 

recorded amplitude differences where far-away 

locations need minimal effort. So, depth also 

affects the vertical and horizontal reading 

resolution of a signal. 

 

As for eye movement either in content reading or 

regional movement starting from page-center is 

converted to two-dimensional position values by 
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detecting amplitude changes of the signal in both 

horizontal and vertical readings. After positional 

changes are calculated, samples are processed 

using the fuzzy k-NN classification. As relative 

positioning is important, from page center to 

region eye movements are taken as class samples 

in conducted tests for the virtual environment. In 

Figure 8(a), positive ‘+’ labeled fields show the 

A4 paper field where reading content resides. 

Text reading data was acquired to represent 

content-based eye movement. Regions outside of 

the border of the A4 paper are divided into 4 

regions. Based on the regional classification, 

action could be changed according to the defined 

application purpose. 

 

In conversion from signals to 2D positions, 

signals are processed according to time and 

amplitude changes. The input signal at a time t is 

defined as a s(t). Every action starting from the 

page center (origin) represents an eye movement 

vector. These vectors are defined as 𝐴 vectors 

according to the equation below. Vector 

magnitude is calculated by taking an integral of 

eye movement action from the start of movement 

until the rest condition is achieved. 

 

𝐴 = [(𝑑𝑥. 𝑎𝑥)(𝑑𝑦. 𝑎𝑦)]𝑇      (2) 

 

𝑎𝑥,𝑦 =  |∫ 𝑠(𝑡)𝑑𝑡
𝑡𝑟𝑒𝑠𝑡

𝑡= 𝑡𝑠𝑡𝑎𝑟𝑡
|     (3) 

 

In vector 𝐴, the length of vertical and horizontal 

vector components are calculated by finding an 

area of action and multiplied by the direction (dx 

and dy) of the signal so four quadrants can be 

mapped in the Cartesian coordinate system. 2D 

representation of class and test signals are 

mapped in Figure 8 where each point represents 

movement with respect to origin using vector 𝐴i 

where i is an action (experiment number) 

recorded in EOG data. 

 

Pre-defined samples at defined regions in Figure 

8(a) are taken from experiment measurements in 

real life and their corresponding values are 

entered in the Unity 3D application. Within 

defined regions, EOG recordings for testing are 

added as shown in Figure 8(b) using a filled 

circle. As experimental EOG observation data 

are not focused on equally distributed spatial 

experiments, pre-defined samples, and test 

samples are given to test the performance of the 

fuzzy k-NN algorithm. So, classification is tested 

on different density regions in terms of samples. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Region classes with pre-defined samples 

(a) and test samples with filled circles (b), 

classification test results with overlay shape on test 

samples (c) 

 

Experimental test sample prediction starts from 

page content region with experiment numbers 68, 

69, 70, 99, 100, 101, and 102, the right side starts 

with 78, 79, also the left region is represented by 

81, and the bottom 83. Unknown locations in the 

experiment numbered 103, 104, 105, 106, 108, 

109, 110.  So, in Figure 8(c), 7 known test 

samples are classified for verification along 11 

uncategorized regions. 
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(a) 

 
(b) 

 
(c) 

Figure 9. Fuzzy k-NN (a), crisp k-NN (b), crisp k-

NN differences (red rectangles) with respect to fuzzy 

k-NN (c) 

 

In Figure 8 (c), classification results on given test 

samples can be seen with overlay class shapes. 

As fuzziness is introduced in the classification 

method, it helps to eliminate errors as the number 

of class samples increases in the processed 

neighbors shown in Figure 9. 

 

Differences caused by crisp k-NN are seen in 

Figure 9(c). The differences between fuzzy k-NN 

and crisp k-NN are observed mostly in boundary 

lines. In fuzzy k-NN, since the distances affect 

the weights, the points in the regions where the 

sample classes are dense belong to that class, 

whereas in crisp k-NN, after taking k number of 

samples according to the distance, there is no 

distinction and difference between the samples. 

For this reason, in crisp k-NN, even if the class 

samples are far apart, as long as the majority 

belong to the distant region, the test sample will 

be identified as that distant class. 

 

In Unity 3D environment EOG results are created 

in real-time with basic 2D shapes using vertices 

at the start of the scene to show the results of 

classification. A4 paper is defined according to 

the real-world size of 210mm x 297mm in Unity 

3D. However, it should be noted that perspective 

and orthographic projection will give different 

results if sample geometry objects are not drawn 

at the correct depth. So, camera properties and 

depth information of objects need to be taken into 

account in real-life to virtual environment 

conversion. You can see the results in a stereo-

view (side-by-side) 3D environment in Figure 

10. 

 

  
Figure 10. Stereoscopic (side-by-side) view of 

classification test results on Unity 3D application 

 

The transformation from the 2D mapping of a 

signal to a VR environment is done by using the 

linear transformation matrix defined in the 

equation4. In transformation for a VR 

environment at a 45 cm depth, coefficients cx and 

cy give the best results when set at 0.036 units. 

Paper and the origin point of vectors defined as 

1.84 units in height with other axes are zero. In 

Unity 3D version 2019.3.0f1, to be able to get a 

2D view of all samples in Figure 10 side-by-side, 

the camera is located 8 units before the origin in 

the Z-axis. 

 

�⃗⃗�𝑖 = [
𝑐𝑥 0
0 𝑐𝑦

].[𝐴𝑖 ]      (4) 

 

Stereo separation is defined as 0.064 units as 

human interpupillary distance changes from 

person to person [30]. Normally eye 
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automatically converges according to when the 

object is focused. As the stereographic camera 

has a fixed convergence it is set to 10 units in the 

system. 

 

Aside from signal-related errors, errors can be 

caused by the user view (camera in VR) vector 

which is assumed to be aligned in the z-axis. 

However, in real life head orientation and view 

vector changes frequently. Results may be 

affected by the view vector changes because 

there was no user head orientation movement 

sensing hardware at the time of experiments. 

Another point to be considered is that when the 

depth value increases eye travels less and the 

related vector 𝐴 changes by it. So, either the 

transformation matrix needs to be changed based 

on depth information or depth information 

should be approximated by the change of voltage 

when the focus change section is detected. 

 

There are also shortcomings in the fuzzy k-NN 

method, it is important to have more samples 

near boundary sections to get better estimations 

as distances become important. For low sample 

count cases, users can give inputs in the 

calibration phase for VR applications. So 

necessary sample input can be fed into the 

system. Also defining a buffer zone for each 

region can prevent changing regions quickly 

without any action because of noise and other 

errors. 

 

4. Conclusion 

 

HCI systems make life easier especially in the 

field of biomedical engineering. With the 

development of technology, HCI systems have 

become affordable for daily life use, thanks to 

higher quality and lower pricing. In the market 

where VR-based applications are increasing, it is 

possible to create more interactive systems with 

the use of EOG sensors. Users can navigate in 

VR applications using natural eye gestures if 

EOG is implemented in headsets. For these 

applications, defining regions and gestures 

becomes an important part of the multi-motion 

input systems. Multi-motion input systems can 

help convert human behavior into an application 

input. So, the usage of EOG signals can be a 

section for the multi-motion input systems. 

 

In the study, the regional data was measured in a 

real environment using calibrated A4 paper 

processed with the help of EOG signals and 

classified with the fuzzy k-NN algorithm in 

virtual reality. As the nature of user interfaces in 

VR applications, content reading should start at a 

certain depth. With the usage of EOG sensor 

reading, controlling applications can become 

much more natural and easier. Application 

results show that the fuzzy k-NN method to 

detect regions at a reading distance is feasible for 

user interface applications in VR. Also, 

experiments show that focus depth and user view 

vector are important parameters that affect the 

definition of eye behavior in virtual reality 

applications. Another important factor is a virtual 

camera implementation which can limit natural 

eye movement feeling. So, aside from supported 

stereographic methods, virtual multi-camera 

implementations are advised to be able to set 

more specific camera properties. 

 

In the tests and implementation, only distinct 

actions are selected and analyzed. However, live 

data processing has more importance in terms of 

applicability. So, for the next step, it is planned 

to acquire a live data stream from an embedded 

system to be able to view directly from a mobile 

VR application using the experimental and 

constructed basis discussed in this paper. The 

next step after that may also have an Augmented 

Reality (AR) side so that VR differences can be 

compared with real-world segments and 

boundaries. 
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