Bartin University Journal of Faculty of Education i 1/9;62:3
ergipark.org.tr/buefa
B A R BUEFAD Volume 14, Issue 1 DOI: 10.14686/buefad. 1392156
Comparison of Different Bandwidth Determination
Methods in Kernel Equating

Vildan OZDEMIR ** Research Article
Received: 17.11.2023

Revised: 22.3.2024
Accepted: 04.4.2024

a Dr., Aksaray University, https://orcid.org/0000-0002-9051-8860 *vildanbagci@gmail.com

Abstract

The study aims to compare the Gaussian Kernel, Logistic Kernel, and Uniform Kernel methods for
determining the bandwidth parameter in the Kernel equating on TIMSS data. A bandwidth parameter needs to be
determined when Kernel equating is used to equate two test forms. The bandwidth parameters determine the
smoothness of the continuous score distributions, so their effect on equating results is critical. Gaussian Kernel,
Logistic Kernel, and Uniform Kernel methods were used for bandwidth selection, and the results were compared
according to the Percentage Relative Error (PRE), the Standard Error, and the Standard Error of Equating Difference
(SEED). The findings of the study show that the three different approaches to minimizing the penalty function have
similar results. Although the standard errors of the equated scores obtained with the uniform Kernel method were
slightly smaller, the results were almost the same as the other two approaches. When the three equating methods were
compared according to the percent relative error, the distribution obtained from Gaussian Kernel equating was more
consistent with the population distribution.
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Kernel Esitlemede Farkhh Bant Genisligi Se¢cimi Yontemlerinin
Karsilastirilmasi
Oz

Bu c¢alisma, Kernel esitleme yonteminde bant genisligi parametresinin belirlenmesi igin sunulan yontemleri
gercgek bir veri seti iizerinde karsilastirmay1 amaglamaktadir. Kernel esitlemenin siireklilestirme adiminda esitleme
yapabilmek igin bir bant genisligi parametresinin belirlenmesi gerekir. Bant genisligi parametresi, stirekli puan
dagilimlarinin diizgiinliigiini belirler, bu nedenle esitleme sonuglar1 izerindeki etkileri kaginilmazdir. Bant genisligi
seciminde Gauss Kernel, Lojistik Kernel ve Tek Bigimli Kernel yontemleri kullanilmigtir ve sonuglar bagil hata
yiizdesi, standart hata ve esitleme farkina ait standart hataya gore karsilagtirilmistir. Caligmanin bulgulari,
penalty/ceza fonksiyonunun minimize edilmesine yonelik ii¢ farkli yaklagimin benzer sonuglar verdigini
gostermektedir. Tek Bigimli Kernel yontemiyle elde edilen esitleme puanlarinin standart hatalar1 biraz daha kiigiik
olsa da sonuglar diger iki yaklasimla neredeyse aymdir. Ug esitleme yontemi bagil hata yiizdelerine gore
kargilagtirildiginda ise Gauss Kernel esitlemesinden elde edilen dagilimin evren dagilimiyla daha tutarli oldugu
goriilmektedir.

Anahtar Sozciikler: Kernel esitleme, bant genigligi parametresi se¢imi, siireklilestirme
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INTRODUCTION

In the process of ensuring the fairness of a test administered at different times or different versions of the
same standardized test for test takers, test equating studies have emerged. Test equating is a statistical process that
involves adjusting test scores to allow different test forms to be used interchangeably. The equating function has
five important properties (Dorans & Holland, 2000):

The Same Construct: The tests being equated should measure the same construct,
The Equity: For test takers, it makes no difference whether they take any of the tests to be equated,

The Equal Reliability: Two tests cannot be equated if they measure the same construct but have different
reliability,

The Symmetry: The inverse of the equating function equating scores in form X to scores in form Y should
equate scores in form Y to scores in form X,

Population invariance: There should be no difference between the selection of sub-populations for X and
Y tests, in other words, for the equating function equating X scores to Y scores, the populations of these forms
should be invariant.

All these properties are to ensure that the test scores to be equated are used interchangeably. Checking these
five properties is important for us to decide whether the equating is appropriate or not. On the other hand, meeting
these five properties alone is not sufficient for test equating. This decision also depends on the purpose for which
the test will be administered (Kolen & Brennan, 2014). For example, some tests are administered once a year and
students are ranked based on the goals of the institution. If the test is administered to identify the highest-
performing student, then test equating is not necessary. On the other hand, if several test forms are administered
for a common purpose and the differences between the relative item difficulties of these test forms are not intended
to affect student assessment, test equating should be used. However, Dorans and Holland (2000) stated that instead
of taking these features as a theoretical basis for test equating, we should focus on the question of whether two
tests can be equated.

In order to equate test scores, firstly it is necessary to select the appropriate test equating design and test
equating method. One of these test equating methods is the Kernel equating described by Holland and Thayer
(1989) and later developed by von Davier et al. (2004). Kernel equating differs from other traditional equating
methods in that it uses different smoothing approaches to continuousize discrete score distributions.

Kernel equating is a family of equipercentile equating functions and a special case of the linear equating
function, so it is a combined test equating approach. This method is so named because of the Kernel function used
in nonparametric density estimation (Silverman, 1986; Tapia & Thompson, 1978). Kernel equating involves five
steps (von Davier et al., 2004): pre-smoothing, estimation of score probabilities, continuizing the discrete score
distributions, equating, and computing the standard error of the equating. In the continuousization step, it is aimed
to continuousize the discrete test score distribution. For this, bandwidth parameters need to be chosen. Gaussian
Kernel, logistic Kernel or uniform Kernel approaches can be used to continuousize the discrete functions (von
Davier et al., 2004).

There are many studies in the literature comparing Kernel equating with other equating methods. In one of
these studies, Livingston (1993) compared Kernel equating with other traditional equating methods and found that
Kernel equating gives more precise results in terms of standard errors and is more effective than other equating
methods with its explicit formula for standard error calculation. In another study comparing Kernel and other
observed score equating methods in a real data set, it was found that the difference between Kernel and other
traditional equating methods was very small in the equivalent groups design, and in the common-item non-
equivalent groups (CINEG) design, Kernel equating gave similar results with equipercentile equating excluding
low score ranges (Mao, et al., 2006). In another study conducted with SAT data, Kernel equating results were quite
similar to other equating methods (Liu & Low, 2008). However, when the anchor score distributions of the two
populations in different forms were similar, it was observed that even the equating methods with different
assumptions gave the same or very similar results. In the study examining loglinear presmoothing in terms of
equating bias, chained and post-stratification equating methods and Kernel equating were evaluated according to
sample sizes, and it was concluded that presmoothing methods with fewer parameters were more biased and
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standard error estimation was more precise and accurate in large samples (Moses & Holland, 2007). In the study
investigating the effect of atypical extremes on test equating, Kernel estimation yielded more accurate results than
traditional equating methods at the ends of the distribution (Cid & von Davier, 2015). There are many studies
comparing Kernel equating with other equating methods. In general, Kernel equating has shown similar results
with other equating methods. In addition to studies comparing the Kernel equating method with traditional
equating methods, there are also studies on the continuization step of Kernel equating.

Liou, et al. (1996) examined the function of simplified formulas to calculate the standard error of the
smoothed score distributions that are continuousized using Uniform and Gaussian Kernel functions. The simplified
formulas gave good results for equating both observed and smoothed scores. In another study, Lee, and von Davier
(2008) examined the impact of different Kernel functions on equating results. Using an equivalent group design,
the results show that the characteristics of the tail function of Kernel functions have a large impact on the
continuized score distributions. On the other hand, the equated scores obtained using different Kernel functions
do not vary much except for the outliers. In another study evaluating the performance of various functions for
Kernel density estimation, it was found that uniform Kernel estimation gave poor results compared to other Kernel
methods (Soh, et al., 2013). In addition, bandwidth analysis shows that the performance deteriorates as the
bandwidth increases.

It has been stated that the choice of the appropriate bandwidth parameter is important in the step of
continuousizing the discrete score distribution. The continuousization step, which is considered the most important
step of Kernel equating, is very important in terms of ensuring the similarity of the continuized discrete score
distribution to the population distribution. Therefore, it is not surprising that studies focused on these issues.

Holland and Thayer (1987) stated that choosing the appropriate bandwidth for the data minimizes the sum
of squares of the difference between the continuous distribution and the observed distribution. Moreover,
Héaggstrom and Wiberg (2014) emphasized that the choice of band is important because it has a direct impact on
the equated scores. It was emphasized that the choice of bandwidth has more influence, especially for extreme
scores. Livingston (1993) showed empirically that the bandwidth is not affected by bias in equating for small
values. When the sample size is larger than 1000, the standard error formula works quite efficiently. Although the
increase in the bandwidth increases the accuracy of the standard error estimation, it is notable that standard error
estimations with large bandwidths may be biased in distributions whose score distributions are smoothed using a
log-linear model. In another study, a data-adaptive bandwidth tended to be unstable in small samples by
minimizing the square of the difference between the observed and continuous distributions (Liou et al., 1996). In
this case, an extremely small bandwidth (B = 0.007, and N_X = 100) can be chosen for equating highly scattered
distributions.

The bandwidth variable is mathematically complicated as it involves many calculations. In practice, a fixed
bandwidth seems to be appropriate for minimizing the square of the differences, but it is clearly still in need of
further investigation based on the results of the research. For this purpose, in this study different approaches to
selecting the bandwidth parameter used to minimize the penalty function are discussed and presented. In this
context, the comparison of three different bandwidth selection approaches (Gaussian, Logistic and Uniform) is
considered to be useful in evaluating the accuracy of the continuization step. It is also thought to contribute to the
field of "optimal bandwidth selection", which continues to be discussed in the literature. Thus, the research
problem is "What is the effect of Uniform, Logistic and Gaussian bandwidth selection approaches on equating
results in kernel equating?”

The fact that Kernel equating provides a clear formula for the standard error by using the information in
the presmoothing step and allows comparison using the standard error of the difference between the two equating
functions gives it an advantage over other equating methods. In this context, the study examined how the equating
results of the scores obtained from equivalent test forms according to the Kernel equating method change according
to different bandwidths.

METHOD
Equating Design

In the data collection process of the study, a CINEG design was used for test equating. This design is
commonly used in exams where only one test form can be administered. For this design, different test forms called
old form () and new form (X), with a common set of items (anchor / A) are administered to each of the individuals
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of two groups (G,, G,) from different populations (P, Q) as shown in Table 1. The common set of items should be
as similar as possible to the test forms in terms of both statistical and content characteristics (Kolen & Brennan,
2014).

Table 1. Common-Item Non-Equivalent Groups Design

Population Sample X A Y
P G, v v
Q G, v v

Note. P and Q represent different universe, A: anchor items, X : new form, Y : old form

In the study, since the eighth and ninth booklets of the TIMSS 2011 eighth grade mathematics subtest,
which had 19 common items, were taken by the whole study group and these common items were included in the
scoring together with the other items, a CINEG design with internal common items was used.

Study Group and Data Collection Tools

In the study, the eighth and ninth booklets of the TIMSS 2011 eighth grade mathematics subtest, which
have 19 common items, were used. Accordingly, 494 students taking the eighth booklet and 502 students taking
the ninth booklet, totally 996 students, constituted the study group. The eighth and ninth booklets of the TIMSS
2011 eighth grade mathematics subtest consisting of 34 multiple-choice questions were used as data collection
tools.

Data Analysis

The data were analysed in three stages. In the first stage, moments were obtained by calculating the
descriptive statistics of the old form (), new form (X) and anchor items (A) used in the study.

Distributions and Moments for the forms of X, Y and A

In this study, Form X scores were equated to Form Y scores. Table 2 shows the descriptive statistics of
Forms X and Y, which consist of 19 common items.

Table 2. Descriptive Statistics for Forms X and Y

Form Mean S.D. Skewness Kurtosis Min Max. N
X 11.051 7.546 0.981 0.008 0 33 494
Y 12.092 8.394 0.843 -0.414 0 34 502

According to the means in the Table 2, it can be said that Form X is more difficult than Form Y. However,
according to the skewness and kurtosis values, it was seen that the distributions of the different groups of students
who took both forms did not differ much from the normal distribution. When the standard deviation values of the
forms X and Y were analysed, it was seen that the variance in Form Y was larger. This table is important in terms
of comparing the moments of the score distributions after presmoothing and equating.

In the second stage, Kernel equating was used to obtain equated scores for different bandwidth selection
approaches. These bandwidth approaches used in the research were described briefly.

The Gaussian Kernel Method.

This approach requires using a Gaussian Kernel function to continuousize the discrete score distribution in
the third step of Kernel equating.

Define f (x;) as a smoothed frequency distribution for the discrete score variable and ® as the ordinate of
a standard normal distribution. The continuous distribution of the random variable x* in the form in R(x;, x*)
associated with the difference between x; and x* is as follows:

1
constant

f:o f(xi)q)[ R (x;, x7)]

fkernel(x*) =
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At each discrete score point, the Kernel equating method uses a normally distributed Kernel to spread the
score distribution over the range -co, +co. The wider the band parameter, the more intense the distribution at each
discrete score point. Although the primary purpose of using a Gaussian Kernel is to make the distribution of scores
continuous, it also provides a more uniform distribution of scores. The final distribution of the random variable of
x* is a continuous probability distribution for scores in the range -oo to +oo. These continuous scores have the same
mean and standard deviation as the distribution of discrete smoothed scores. However, scores may differ in
kurtosis, skewness, and higher-order moments (Kolen & Brennan, 2014).

The Logistic Kernel Method.

The Logistic Kernel approach uses a logistic function in the third step of Kernel equating, which is the
continuization of the discrete score distribution. The following logistic function is used to minimise the penalty
function in this step (von Davier, 2010):

£ 1) =—

5 Yirik(Rix())[1 - 2K(Rix(x))].

s(ax

The denser extremes and peaks of the logistic distribution led to larger cumulants than the normal
distribution.

Uniform Kernel Method.

The Uniform Kernel approach requires the use of the uniform function in the third step of Kernel equating,
which is the continuization of the discrete score distribution. For the optimal bandwidth parameter in the uniform
Kernel, the distance between two consecutive possible scores (2bh,) should be close to 1 (von Davier, 2010).

In the last stage of the data analysis, the standard errors of the equated scores were calculated, and the
results obtained were compared. Kernel equating has a standard error computation method is provided based on
the estimation of standard errors for score probabilities obtained using log-linear models (Anderson et al., 2013).
This equation allows to calculate the standard error of the equating for all equating designs: SEEy(X) =

JVAR (&, (x)).

Another criterion used to compare different equating methods is the Percentage Relative Error (PRE) (von
Davier, et al., 2004). PRE is a measure of equating bias. This value, which is obtained by calculating the difference
between the moments of the distribution, is an indicator of the distance of the distribution of equated scores from
the population distribution (Cid & von Davier, 2015). Before the PRE equation, the moments of Y and e, (X) are:

Wy (Y) = X ()PSk and py(ey (X)) = X;(ey (%)) )prf. Accordingly, PRE 4, for the pth moment is calculated as

Up (eY(X))_llp )

follows: PRE ;)= 100 ey

SPSS (version 21) and RStudio Desktop (version 1.4.1106) “kequate™ package (Andersson et al., 2013)
were used to analyze the data.

FINDINGS

In the pre-smoothing step, bivariate observed frequency distributions consisting of test scores and anchor
item scores were obtained in accordance with the CINEG design, and both Form X and Form Y raw scores were
smoothed according to these frequencies. The distribution of score probabilities was estimated according to the
log-linear model. Models were evaluated according to the deviation of goodness-of-fit indices and AIC.

Table 3. Descriptive Statistics and Correlation Values of X, Y and Anchor Tests

P Q
Test Scores n Mean S.D.  Test Scores n Mean S.D.
X 494 11.051 7.546 Y 502 12.092 8.394
A 494 5.988 4.750 A 502 6.436 5.039
Correlation Form X Anchor

200



Form X 1 0.968

FormY 0.969

Accordingly, Form X and Form Y showed adequate fit to the observed distribution for the P and Q
populations based on the chi-squared values (p>0.05) at the points of X, X2, X3, X* A, A2, A3, A* XA, X%2A? and
Y, Y2, A%, A3, A*, YA, Y2A, YA?, respectively.

The score probabilities were estimated by setting the weighting coefficients as w = 0.5. For the estimated
distributions, bandwidths were determined according to Gaussian, Uniform and Logistic Kernel methods in the
continuization step. The values that minimize the penalty function for the bandwidths were calculated. The values
of h, = 0,538, h,= 0,557 for Gaussian; h, = 1,0, hy, = 1,0 for uniform; and h, = 0,395, h,,= 0,418 for logistic

Kernel approach.
In the next step, the findings regarding the equated scores according to Gaussian, Uniform and Logistic

Kernel equating methods were presented respectively. Figure 1 shows the relationship between the scores equated
with the Gaussian Kernel equating method and the raw scores, as well as the difference in the standard error of

equating in the CINEG design.

Equated values
SEEFormXto Y

Score values Score values

Figure 1. Raw scores and equated scores according to Gaussian Kernel equating method.

According to Figure 1, it can be said that the equated scores with Gaussian Kernel equating method are
quite similar to the raw scores based on the linear relationship between them. When the standard error values in
the next figure are examined, it is seen that the standard error is large at the lower values of the scale; however, it
reaches maximum at the upper end. This indicates that the number of students who had very high scores on the
test and those who had low scores may be small.

In the next step, the results were obtained according to the Uniform Kernel equating method. Figure 4
shows the relationship between the scores equated using the Uniform Kernel equating method and the raw scores
and the difference in the standard error of the equating in the common-item non-equivalent groups design.

-

Equated values
SEEFormXto Y

Score values Score values

Figure 2. Raw scores and equated scores according to Uniform Kernel equating method.

The relationship in Figure 2 showed that the scores equated using the uniform Kernel equating method and
the raw scores were quite similar. In addition, when the standard errors of the equated scores were examined based
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on their distribution, it is seen that the standard errors were large in the range of 0-5 and 30-34 scores. In the range
of 5-30, the standard error tends to increase.

Finally, equating results were obtained according to the Logistic Kernel equating method. Figure 5 shows
the relationship between the scores equated using the Logistic Kernel equating method and the raw scores and the
difference in the standard error of the equating in the CINEG design.

Equated values
SEEFormXto Y

Score values Score values

Figure 3. Raw scores and equated scores according to Logistic Kernel equating method.

The relationship between the scores obtained by logistic Kernel equating and the raw scores was linear, as
shown in Figure 3, and thus the scores were quite similar. When the standard error of the logistic Kernel equating
was examined, it was seen that the standard error is large at the lower and especially at the upper endpoints.

In the last step of Kernel equating, the standard error of the equating function can be estimated, as well as
the standard error of the equating difference (SEED), which allows the comparison of different equating results.
SEED values, which allow pairwise comparison of equating results, were compared in the following order:
Logistic-Gaussian, Uniform-Gaussian, Uniform-Logistic.
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Figure 4. The difference between Gaussian Kernel and Logistic Kernel in relation to SEED for each score
range.
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Figure 5. The difference between Gaussian Kernel and Uniform Kernel in relation to SEED for each score
range.
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Figure 6. The difference between Logistic Kernel and Uniform Kernel in relation to SEED for each score
range.

Figure 4, Figure 6 and Figure 6 showed that for each pairwise comparison, most of the difference between
the equated values did not exceed the intervals of +2 and -2 standard error band. In this case, it was seen that there
is a high level of consistency between the scores equated according to all three Kernel equating approaches. This
is also clearly observed in Figure 7. Additionally, the equated scores obtained according to all three methods and
standard errors of equated scores can be examined in Appendix 1 and Appendix 2.
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Figure 7. Equated scores and standard errors for the three Kernel approaches

The first graph in Figure 7 showed that the three different Kernel approaches in this study give almost the
same result. However, according to the second graph, the standard errors differ for low and high values. While the
Logistic and Gaussian Kernel approaches were more in line with each other in terms of standard error values, the
standard error of the Uniform Kernel approach tended to be higher at low scores and lower than the other
approaches at high scores.

Between the score range of 5 and 30, the standard errors of the equated scores according to all three
approaches are almost the same. For extreme values, peaks were observed in the standard error values. In this case,
it can be said that the number of individuals scoring in this range is low.

In the study, percentage relative error (PRE) was also calculated to compare the moments of distribution of
the scores equated according to different Kernel approaches with the moments of distribution of the Y-form scores
in the target population.

Table 4. Percentage Relative Error (PRE) of the Equated Score Distribution

Equating Methods

Gaussian Logistic Uniform
PRE (Y,) PRE (Y,) PRE (Y,)
1 0.003 0.006 -0.010
2 0.002 0.005 -0.077
3 0.016 0.023 -0.099
4 0.030 0.042 -0.120
5 0.044 0.061 -0.152
6 0.060 0.084 -0.194
7 0.079 0.115 -0.244
8 0.106 0.157 -0.300
9 0.140 0.212 -0.359
10 0.183 0.283 -0.420

The PRE values in Table 4 are close to each other for all three Kernel equating approaches. This supports
the graphs in Figure 9. The deviation percentages of the first 10 moments from the target population vary between
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0.002-0.183 for Gaussian Kernel equating, 0.005-0.283 for Logistic Kernel equating and 0.009-0.420 for Uniform
Kernel equating. Considering the PRE values, it can be concluded that the equating results obtained from the
bandwidth selected according to the Gaussian Kernel approach show a better fit to the distribution in the
population.

DISCUSSION AND CONCLUSION

In this study, using a real data set, the equated scores according to different bandwidth selection strategies
in the continuization step of Kernel equating are comparatively examined. Gaussian, Logistic and Uniform Kernel
bandwidth selection approaches were used. PRE, Standard Error and SEED were used as criteria for comparing
the equated results.

It was observed that the scores obtained with three different Kernel equating under the CINEG design with
common items were quite similar to the raw score distribution in all three methods. When all three equating
approaches were compared according to standard errors, it was observed that the error distributions were quite
similar to each other, but the Logistic and Gaussian Kernel approaches gave closer results. However, as in Lee and
von Davier (2008), these methods differed only at the endpoints. Higgstrom and Wiberg's study (2014) also
emphasized that the choice of bandwidth has more impact, especially for endpoints. When the three equating
approaches are compared according to the percentage relative error, it is seen that although the PRE values are
close to each other, the Gaussian Kernel equating has a relatively lower PRE value.

The results of the study show that Gaussian Kernel equating has a lower percentage relative error, but in
terms of standard errors, the standard error distributions obtained using Gaussian Kernel and Logistic Kernel
equating are quite similar. This finding is also supported by von Davier (2011) who compared the results of
Gaussian, Logistic and Uniform Kernel equating. In addition, another study by Liu et al. (1996) found no
difference between Uniform and Gaussian Kernel methods, while Soh et al. (2013) found that Uniform Kernel
estimation gives poor results compared to other Kernel methods.

According to the results of the study, it can be said that the effect of different bandwidths selected according
to Gaussian Kernel, Logistic Kernel and Uniform Kernel approaches on the equating results is almost similar. As
mentioned in many studies (Andersson, 2014; Liang & von Davier, 2014; Wang, 2008) where bandwidth selection
approaches are developed, the choice of this parameter aims to minimize the penalty function in the continuization
step and keep the fit distribution quite close to the distribution in the target population. In this respect, the choice
of the bandwidth parameter is important for the continuization step of Kernel equating. In this context, in line with
the findings of this study, researchers may be advised to use Gaussian Kernel or Logistic Kernel approach, which
are less affected by the score distribution, in selecting the bandwidth parameter. However, bandwidth selection
can also be determined based on cross validation techniques. In studies comparing Gaussian, Logistic and Uniform
Kernel approaches based on minimizing the penalty function with techniques based on cross-validation, the results
are similar with minor differences (Andersson & von Davier, 2014; Haggstrom & Wiberg, 2014; Wallin et al.,
2021).

One of the limitations of this study is the use of PRE, Standard Error, and SEED as criteria for comparing
bandwidth selection methods. It has been stated that PRE does not provide much information about bandwidth
selection (Haggstrom & Wiberg, 2014). The criteria should be enhanced with mean squared error and other bias
indicators so that the basis for selecting the appropriate bandwidth becomes stronger.

The bandwidth selection approaches in this study are based mainly on minimizing the penalty function.
Due to the complexity of minimizing the penalty function, researchers have proposed simplified methods derived
from the modified standard errors of equating (Andersson & von Davier, 2014) and cross-validation techniques
(Liang & von Davier, 2014). These different approaches can be compared with approaches based on minimizing
the penalty function.

In this study, the effects of three different approaches were examined under a CINEG design; studies
comparing these methods under different designs can be conducted. In addition, different bandwidth selection
methods can be compared with simulation data to examine the effect of sample size and score distributions in
Kernel equating. Furthermore, how bandwidth selection methods perform at different test lengths could be
examined.
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APPENDIX

Appendix 1. Results of Kernel Equating According to Different Bandwidth Selection Approaches

Raw Scores Uniform Logistic Gaussian
0 -0.332 -0.527 -0.474
1 0.431 0.386 0.377
2 1.504 1.468 1.453
3 2.648 2.641 2.633
4 3.829 3.829 3.826
5 5.005 5.002 5.003
6 6.156 6.150 6.154
7 7.275 7.270 7.274
8 8.361 8.361 8.365
9 9.416 9.424 9.426
10 10.447 10.461 10.462
11 11.458 11.476 11.476
12 12.455 12.475 12.473
13 13.443 13.463 13.460
14 14.429 14.446 14.443
15 15.417 15.432 15.429
16 16.413 16.426 16.423
17 17.422 17.433 17.430
18 18.447 18.456 18.454
19 19.489 19.496 19.494
20 20.547 20.552 20.550
21 21.618 21.622 21.620
22 22.699 22.702 22.701
23 23.787 23.790 23.789
24 24.880 24.882 24.882
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25 25.976 25.977 25.978

26 27.074 27.074 27.075
27 28.169 28.170 28.171
28 29.260 29.263 29.265
29 30.341 30.350 30.352
30 31.403 31.419 31.423
31 32.424 32.444 32.451
32 33.350 33.365 33.368
33 34.068 34.132 34.094
34 34.402 34.842 34.691

Appendix 2. Standard Errors of Equated Scores According to Different Bandwidth Selection Approaches

Raw Scores Uniform Gaussian  Logistic
0 0.066 0.141 0.167
1 0.292 0.216 0.218
2 0.322 0.244 0.239
3 0.201 0.223 0.220
4 0.185 0.191 0.189
5 0.169 0.168 0.167
6 0.161 0.161 0.160
7 0.162 0.164 0.163
8 0.167 0.173 0.172
9 0.174 0.183 0.183
10 0.181 0.194 0.193
11 0.189 0.204 0.203
12 0.200 0.216 0.215
13 0.213 0.229 0.228
14 0.228 0.243 0.243
15 0.245 0.259 0.259
16 0.263 0.275 0.275
17 0.281 0.291 0.291
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18 0.299 0.306 0.306
19 0.316 0.321 0.321
20 0.334 0.333 0.333
21 0.343 0.343 0.343
22 0.349 0.350 0.348
23 0.354 0.353 0.351
24 0.356 0.355 0.352
25 0.359 0.357 0.355
26 0.367 0.367 0.366
27 0.385 0.391 0.390
28 0.416 0.431 0.431
29 0.455 0.486 0.485
30 0.487 0.539 0.535
31 0.487 0.557 0.551
32 0.431 0.494 0.499
33 0.308 0.367 0.396
34 0.078 0.270 0.364
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