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Abstract
The spectral characteristics of the operator L are studied where L is defined within the
Hilbert space L2(R+,CV ) given by a finite system of Klein-Gordon type differential equa-
tions and boundary condition depends on spectral parameter. The research of the Klein-
Gordon type operator continues to be an important topic for researchers due to the range
of applicability of them in numerous branches of mathematics and quantum physics. Con-
trary to the previous works, we take the potential as complex valued and generalize the
problem to the matrix Klein-Gordon operator case. The spectrum is derived by deter-
mining the Jost function and resolvent operator of the prescribed operator. Further, we
provide the conditions that must be met for the certain quantitative properties of the
spectrum.
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1. Introduction
Discoveries in quantum physics have a remarkable role on the understanding the sub-

atomic particles. This theory was among the most powerful physics theories in history
when special relativity was integrated to it. In relativistic particle physics, the Klein–
Gordon (KG) equations are the most generally utilized wave equations for modeling par-
ticle movements. Therefore, the equation has gotten enormous interest in the various
investigation fields of physics and mathematics like solutions and wavelet theory, nonlin-
ear wave equations, as well as studies of numerical methods developed for the solutions of
KG equations [13,14,20,21].

Take into consideration the differential operator Lo, defined in the complete inner prod-
uct space (Hilbert space) L2(R+) for x ∈ R+ := [0, ∞),

lo(z) = −z
′′ + q(x)z, (1.1)
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with the initial condition z
′(0) − hz(0) = 0. Also, assume that the potential function q

takes complex values and the constant h is also complex constant. Clearly, Lo is a non-
selfadjoint operator due to the complex valued potential. Naimark [19] was the first to
realize the apperance of an extraordinary set of spectrum that is the spectral singularities
embedded in the continuous spectrum. Later, Schwartz [22] characterized the spectral
singularities as points where the resolvent of a non-selfadjoint operator has a pole however
it is not the operator’s eigenvalue.

In addition to these developments, Naimark also determined significant qualitative fea-
tures of the operator Lo’s spectrum. In particular, if the complex valued potential yields∫ ∞

0
eεx |q(x)| dx < ∞, ε > 0,

then the operator’s discrete spectrum may contain only finite number of elements. In
a similar manner, this condition also guarantees that there exists finitely many spectral
singularities. Lyance expanded upon the influence of spectral singularities on spectral
expansion by means of the spectral expansion’s principal functions of Lo in [16],[17].

These developments pushed researches to investigate under what conditions imposed on
the potential the operators may have finitely many of eigenvalues and spectral singularities.
Also, the structure of the obtained conditions have became an interesting question, too.
For instance, to what extend we can strict the conditions so that quantitative properties
still remains finite. To solve these problems for a novel type of non-hermitian operators,
boundary uniqueness theorems of analytic functions served as a great tool. For instance,
quadratic pencil of Schrödinger type equations, Dirac and Klein-Gordon type operators
for both in differential and difference operator versions including complex valued potential
have been examined in [1],[2],[6–11],[15],[18]. Clearly, the spectral singularities have an
impact on the spectral expansion of Sturm-Liouville type differential equations. This issue
has been solved by the method of regularizing a divergent integral in the studies [4],[23].

Consider a well-known form of Klein-Gordon s-wave equation for x ∈ R+ [5],

z
′′ + [µ − Q(x)]2z = 0 . (1.2)

Note that Q designates the static potential. This equation is used to model the behaviour
of a particle having a zero mass in quantum physics.

Let us also mention that the inverse spectral theory of Sturm-Liouville equations (also
called one dimensional Schrödinger equation) has been investigated in matrix form by [3].
Hence, some new class of equations with matrix form become more important in the years
after.

Inspired by the above mentioned studies, we set up our research problem as in the
following: Let L2(R+,CV ) stands for complete inner product space including all complex
vector functions

z =


z1
z2
...

zV

 ,

where the norm of the Hilbert space is defined by

∥z∥2 :=
∫ ∞

0

∞∑
n=1

|zv|2 dx.

Consider the finite system of Klein-Gordon s-wave differential expressions

lv(zv) := z
′′
v + [µ − qv(x)]2zv, x ∈ R+, v = 1, 2, ..., V,

where qv are complex valued functions.



Spectral properties of the finite system of Klein-Gordon... 3

Symbolize with L the operator defined in L2(R+,CV ) by

lv(zv) =


l1(z1)
l2(z2)

...
lN (zV )

 ,

and boundary condition with spectral parameter

z
′(0) − (α0 + α1µ + α2µ2)z(0) = 0, (1.3)

such αi ∈ C, i = 0, 1, 2, α2 ̸= 0, is a complex parameter. Since, the expressions qv, v =
1, 2, ..., V are assumed to have complex values, it is quite obvious that L is a non-selfadjoint
operator.

We obtain certain quantitative properties for the operator L under the conditions

lim
x→∞

qv(x) = 0, sup
x∈R+

{exp(ϵ
√

x)
∣∣∣q′

v(x)
∣∣∣} < ∞, ϵ > 0, v = 1, 2, ..., V.

2. Jost solutions of l(z) = 0
We will take into account the equation

z
′′ + [µ − Q(x)] 2z = 0, x ∈ R+, (2.1)

and with spectral parameter of the boundary condition

z
′(0) − (α0 + α1µ + α2µ2)z(0) = 0, (2.2)

such that

z =


z1
z2
...

zν

 , Q(x) =



q1(x) 0 ... 0
0 q2(x) ... 0
...
...
...
0 0 ... qν(x)


.

Suppose that the functions qv, v = 1, 2, ..., V , satisfy

lim
x→∞

qv(x) = 0,

∫ ∞

0
x3∣∣q′

v(x)
∣∣dx < ∞. (2.3)

The equation (2.1) have the matrix solutions E+(x, µ) for µ ∈ C+ := {µ : µ ∈ C, Imµ ≥ 0}
and E−(x, µ) for µ ∈ C− := {µ : µ ∈ C, Imµ ≤ 0} [3].

E± have the following representation

E±(x, µ) =



e±
1 (x, µ) 0 ... 0

0 e±
2 (x, µ) ... 0

...

...

...
0 0 ... e±

V (x, µ)


. (2.4)

e±
v (x, µ) are introduced as the Jost solutions of (2.1).

Suppose that the condition (2.3) satisfies, in this case the Jost solutions can be repre-
sented as [5]

e+
v (x, µ) = eiα(x)+iµx +

∫∞
x K+

v (x, t)eiµtdt, µ ∈ C+, v = 1, 2, ..., V,
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and
e−

v (x, µ) = e−iα(x)−iµx +
∫∞

x K−
v (x, t)eiµtdt, µ ∈ C−, v = 1, 2, ..., V α(x) :=

∫∞
x |qv(t)| dt.

Furthermore, K±
v (x, t) are solutions of Volterra type integral equations.

Besides, K±
v (x, t) satisfy

∣∣K±
v (x, t)

∣∣ ≤
∫ ∞

(x+t)
2

wv(s)ds, v = 1, 2, ..., V, (2.5)

∣∣∣∣ ∂

∂xi
K±

v (x1, x2)
∣∣∣∣ ≤ c

∫ ∞

(x+t)
2

wv(s)ds + wv

(
x1 + x2

2

)
, v = 1, 2, ..., V, i = 1, 2, (2.6)

where c > 0 is a constant and wv(x) = |qv(x)|2 +
∣∣∣q′

v(x)
∣∣∣.

Hence, the functions e±
v (x, µ), v = 1, 2, ..., V are analytic with respect to µ in C± where

C+ := {µ : µ ∈ C, Imµ > 0}, C− := {µ : µ ∈ C, Imµ < 0}, consequtively, and are also
continuous up to real axis.

The solutions e±
v (x, µ) also satisfy

e±
v (x, µ) = e±i[α(x)+µx] + O

(
e±xImµ

|µ|

)
, µ ∈ C±, |µ| → ∞, (2.7)

(
e±

v (x, µ)
)′

= ±i [µ − Q(x)] · e±i[α(x)+µx] + O(1), µ ∈ C±, |µ| → ∞. (2.8)
Let h±

v (x, µ) denote the solutions of (2.1) subject to the conditions

lim
x→∞

e±iµx · h±
v (x, µ) = 1, lim

x→∞
e±iµx ·

(
h±

v (x, µ)
)′

= ∓iµ, µ ∈ C±. (2.9)
It follows from (2.9) and the definition of zv that

W
[
e±

v (x, µ), h±
v (x, µ)

]
= ∓2iµ, µ ∈ C±, (2.10)

W
[
e+

v (x, µ), e−
v (x, µ)

]
= −2iµ, µ ∈ R. (2.11)

3. Main results for the spectrum of L

Define

E±
v (µ) =

(
e±

v (0, µ
)′ −

(
α0 + α1λ + α2λ2

)
e±

v (0, µ) (3.1)

H±
v (µ) =

(
h±

v (0, µ
)′ −

(
α0 + α1λ + α2λ2

)
h±

v (0, µ)

and

U±
v (t, µ) = ∓ 1

2iµ
H±

v (µ)e±
v (t, µ)

where E±
v (µ) and H±

v (µ) are diagonal matrices. Moreover, the Green’s function

R(x, t; µ) =
{

R+(x, t; µ), µ ∈ C+,

R−(x, t; µ), µ ∈ C−,
(3.2)

of the boundary value problem (2.1)-(2.2) can be calculated using the classical methods
where

R±(x, t; µ) = R±
1 (x, t; µ) + R±

2 (x, t; µ). (3.3)
Since det E±

v (µ) ̸= 0, we define
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R±
1 (x, t; µ) = −e±

v (x, µ)U±
n (t, µ) ·

(
E±

v (µ)
)−1

,

R±
2 (x, t; µ) = ∓


e±

v (x,µ)·U±
v (t,µ)

2iµ , 0 ≤ t < x,
e±

v (t,µ)·U±
v (x,µ)

2iµ , x ≤ t < ∞.
(3.4)

(2.10) indicates that e±
v and h±

v , from (2.11) e+
v and e−

v are linearly independent. So the
functions Φ±

v (x, µ) and Φv(x, µ) are defined by

Φ±
v (x, µ) = H±

v (µ) · e±
v (x, µ) − E±

v (µ) · h±
v (x, µ), µ ∈ C± \ {0}, (3.5)

Φv(x, µ) = E+
v (µ) · e−

v (x, µ) − E−
v (µ) · e+

v (x, µ), µ ∈ R∗ = R \ {0}, (3.6)
are solutions of the (2.1)-(2.2).

We designate the set of all eigenvalues and the set of all spectral singularitites of the
(2.1)-(2.2) by σd and σss, consequtively. Taking into account (2.7),(3.2),(3.4)-(3.6), it
follows that

σd(L) =
{

µ : µ ∈ C+, det E+
v (µ) = 0

}
∪
{
µ : µ ∈ C−, det E−

v (µ) = 0
}

, (3.7)

σss(L) =
{

µ : µ ∈ R∗, det E+
v (µ) = 0

}
∪
{
µ : µ ∈ R∗, det E−

v (µ) = 0
}

, (3.8)

where E±
v (µ) := E±

v (0, µ). Since E±
v (µ) are diagonal matrices

det E±
v (µ) =

V
Π

v=1

[
e

′
ν(0) −

(
α0 + α1µ + α2µ2

)
eν(0)

]
Moreover, {

µ : µ ∈ R∗, det E+
v (µ) = 0

}
∩
{
µ : µ ∈ R∗, det E−

v (µ) = 0
}

= ∅.

Definition 3.1. We introduce the multiplicity of a root of det E±
v (v = 1, 2, ..., V ) in C±

as the multiplicity of the corresponding eigenvalue or spectral singularity of L.

Clearly, (3.1), (3.7), (3.8) indicate that to be able to search for the quantitative features
of the spectrum of L, one has to take into consideration the quantitative features of the
roots of det E±

v , v = 1, 2, ..., V in the region C±. Let us define

M±
1 =

{
µ : µ ∈ C±, det E±

ν (µ) = 0
}

, M±
2 =

{
µ : µ ∈ R, det E±

ν (µ) = 0
}

.

Consequently, we have

σd(L) = M+
1 ∪ M−

1 , σss(L) =
{

M+
2 ∪ M−

2

}
\ {0} .

Lemma 3.2. If the condition (2.3) holds,

(i) M±
1 is a bounded set. Moreover, it posseses at most countably many elements.

Also, its accumulation points can only belong to a subinterval which is bounded
and subset of the real axis,

(ii) M±
2 is a compact set. µ(M±

2 ) = 0 for which µ(M±
2 ) represents the Lebesgue

measure of M±
2 .

Proof. The asymptotic equality

e±
v (µ) = e±iα(0) + o(1), µ ∈ C±, |µ| → ∞, v = 1, 2, ..., V, (3.9)

is obtained from (2.5).
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From (3.1), one can show that the sets M±
1 and M±

2 are bounded. As a consequence of
analicity of e±

v in the region C±, one may see that the set M±
1 has at most a countably

many of elements. If we make use of the uniqueness of analytic functions, we get that the
accumulation points of M±

1 can only be in a bounded subinterval of the real axis. The
closedness and the feature of obtaining zero Lebesgue measure of the set M±

2 can be seen
from the boundary uniqueness theorem of analytic functions. □

The next result can be directly written as a direct consequence of (3.7), (3.8) and Lemma
(3.2).

Theorem 3.3. Let us assume that the condition (2.3) holds, then
(i) The set of eigenvalues of L is bounded. It has countably many elements. Further,

its accumulation points can only belong to a bounded subinterval of R+.
(ii) The set of spectral singularities of L is bounded and µ

(
M±

2

)
= 0.

From now on, let us take into account

lim
x→∞

qv(x) = 0, sup
x∈R+

{
exp(ϵ

√
x)
[∣∣∣q′

v(x)
∣∣∣]} < ∞, ϵ > 0, v = 1, 2, ..., V. (3.10)

It follows from (2.5) and (3.1) that, under the condition (3.10) the functions E±
v , v =

1, 2, ..., V are analytic in the region C±. Further, whole of its derivatives are continuous
in C±. We obtain that following inequality∣∣∣∣ dr

dµr
E+

v (µ)
∣∣∣∣ ≤ D+

r , µ ∈ C+, v = 1, 2, ..., V, r = 0, 1, ...,

and ∣∣∣∣ dr

dµr
E−

v (µ)
∣∣∣∣ ≤ F −

r , µ ∈ C−, v = 1, 2, ..., V, r = 0, 1, ...,

where

D+
r = 2n+1c1

∫ ∞

0
trexp

(
− ϵ

2
√

t

)
dt, r = 0, 1, ..., (3.11)

and

F −
r = 2n+1c2

∫ ∞

0
trexp

(
− ϵ

2
√

t

)
dt, r = 0, 1, ...,

c1 > 0 and c2 > 0 are constants.
We use the symbolizations to designate the set of all accumulation points of M±

1 and
M±

2 by M±
3 and M±

4 , consequtively, and the set of whole roots of det E±
v having infinity

multiplicity in C± by M±
5 .

Making use of the uniqueness results investigated in [12], we get

M±
3 ⊂ M±

2 , M±
4 ⊂ M±

2 , µ(M±
5 ) = 0.

It is a well-known fact that whole derivatives of F ±
n are continuous on real axis. Therefore,

we get

M±
3 ⊂ M±

2 . (3.12)

Lemma 3.4. Under the condition (3.10), the set M±
5 = Ø.
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Proof. At this stage, we will only show that M+
5 = Φ. To show M−

5 = Φ, similar steps can
be used. If we benefit from properties of the analytic functions in terms of the uniqueness
results given in [12], we have ∫ h

0
lnT (s)dµ(M+

5,s) > −∞, (3.13)

where h > 0 is a constant, T (s) = inf
r

D+
r sr

r! , the constant D+
r is defined by (3.11) and

µ(M+
5,s) stands for the Lebesgue measure of s-neighborhood of M+

5,s.
It is easy to derive that

D+
r ≤ Bbrrrr!, (3.14)

where B and b are constants.
Using (3.14), we obtain

T (s) = inf
r

D+
r,sr

r!
≤ Binf

r
{brsrrr} ≤ B exp

{
−b−1e−1s−1

}
,

or by (3.13) ∫ h

0

1
s

µ
(
M+

5,s

)
< ∞. (3.15)

It is clear that, (3.15) satisfies for an orbitrary s, if and only if µ(M+
5,s) = 0 or M+

5 = Φ. □

Theorem 3.5. Suppose that (3.10) holds to be true. Then, L can have only finitely many
spectral singularities and eigenvalues. Further, their multiplicities can only have a finite
number.

Proof. Clearly, one needs to verify that the functions E±
v (µ), v = 1, 2, ..., V have a finitely

many zeros with finite multiplicities in the region C±. If we benefit from the Lemma
(3.4) and (3.12), it can be written that M±

3 = Φ. Hence, we see that the bounded
sets M±

1 and M±
2 do not have no accumulation points. This implies that the functions

E±
v (µ), v = 1, ..., V have only a finitely many of zeros in C±. As a consequence of the fact

that M±
5 = Φ, they must have a finite multiplicity. □
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