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Atangana Konformal Tiirevli Modifiye Camassa-Holm ve
Degasperis-Procesi Denklemlerinin Yeni Dalga C6ziimlerinin

Elde Edilmesi

Ozlem KIRCI®

Kirklareli Universitesi, Fen-Edebiyat Fakiiltesi, Matematik B6liimii, Kirklareli, Tiirkiye

Oz

Bu c¢alismada, akiskanlar mekanigi, hidrodinamik ve fiber optik
alanlarinda birgok fiziksel olayr tamimlamak igin sik¢a
kullanilmasi nedeni ile zaman-kesirli modifiye Camassa-Holm
(mCH) ve zaman-kesirli modifiye Degasperis-Procesi (mDP)
denklemlerinin  yeni tam ¢6ziimlerinin elde edilmesi
amaclanmistir. Bu kesirli denklemler, Atangana konformal tiirevi
gdz oOnlne alinarak nonlineer adi diferansiyel denklemlere
dondstlralmustir. Kesirli evolisyon denklemlerinin istenen tam
¢O6zimlerini elde etmek icin bu nonlineer adi diferansiyel
denklemlere (m+1/G’)-genisleme metodu uygulanmistir.
Hesaplamalar Mathematica yazilim sistemi ile
gerceklestirilmistir. Ayrica bu c¢alismada sunulan ¢dzimler
literatlirde zaman-kesirli CH ve DP denklemleri igin elde edilen
¢ozlimler ile kiyaslanmis ve ¢6ziimlerin davraniglari grafiksel
olarak sunulmustur.

Anahtar Kelimeler: Camassa-Holm ve Degasperis-Procesi Denklemleri;
(m+1/G’)-Genisleme Metodu; Atangana Konformal Tiirevi.

Afyon Kocatepe Universitesi

Abstract

In this study it is aimed to expose the new exact wave solutions
of time-fractional modified Camassa-Holm (mCH) and time-
fractional modified Degasperis-Procesi (mDP) equations due to
being extensively used to delineate many physical phenomena
in fluid mechanics, hydrodynamics and optical fibers. The
aforementioned fractional equations are transformed into
nonlinear ordinary differential equations (NLODE) considering
the Atangana’s conformable derivative (ACD). Then the
(m+1/G’)-expansion method is applied for these NLODEs to
obtain the desired exact solutions of the fractional evolution
equations. The evaluations are fulfilled through the software
system Mathematica. Also the reported solutions in this
manuscript are compared with the ones in the literature for the
time-fractional CH and DP equations and the behaviors of the
solutions are presented graphically.

Keywords: Camassa-Holm and Degasperis-Procesi Equations; (m+1/G’)-
Expansion Method; Atangana’s Conformable Derivative.

1. Introduction

In recent years, many researchers are motivated by the
applications of nonlinear partial differential equations
(NLPDEs) with fractional derivatives (FD). In this context,
a time delay fractional COVID-19 SEIR epidemic model is
solved via Caputo FD (Kumar and Erturk 2023), the FDs
based on the Mittag-Leffler kernels in the Liouville-
Caputo concept has been regarded to investigate the
conveyance of infectious diseases in a prey-predator
system (Ghanbari 2023), a fractional order model for the
transmission of Chlamydia is considered to explore the
dynamics of the disease (Vellappandi et al. 2023), a time-
fractional HIV/AIDS model is analyzed in the sense of
Atangana-Baleanu Caputo derivative (Farman et al. 2023),
a fractional order stochastic model based on the Lotka-
(Ali and Khan 2023),
fractional Maclaurin series is employed to solve various

Voltera system is presented

fractional differential equations that arise in physics and
engineering (Alguran 2023), an iterative method by
combining the generalized power series and artificial
neural networks is proposed to solve certain fractal-
(Shloof 2023), a
model

fractional differential equations

fractional order mathematical governing
meningitis is presented and the dynamics of the disease
is studied (Peter et al. 2022), a new defined Liouville—
Caputo fractional conformable derivative is considered
through modeling some real world problems (Ozarslan et

al. 2019).

The fractional Sturm-Liouville problems which have

important applications in science, engineering and
mathematics have analyzed by Ercan (2020; 2022) and
Bas et al. (2021). The conformable Dirac system with
separated boundary conditions are studied by Ercan and

Bas (2021). These researches underline the efficiency of
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fractional calculus in modeling real world problems. The
FD is one of the main notions in this area. Therefore
several definitions for FDs such as Riemann-Liouville,
Caputo and Griinwald-Letnikov derivatives are reported
which are generalizations of classical derivative. On the
other hand these FDs have some disadvantages in
applications. For instance, Riemann-Liouville derivative of
a constant does not result with zero or the Caputo
derivative needs much requirement of regularity for
differentiability (Atangana 2017).

Alternative FD definitions are presented to eliminate
these drawbacks which have compatible properties with
the traditional derivative. Within this framework, Khalil et
al. (2014) have introduced a new conformable FD.
Atangana (2015) has also defined a new local derivative
by motivating the study of Khalil et al. (2014) and named
it beta derivative or ACD.

In this paper, a physically significant equation called
modified §-equation in Eq. (1) is considered (Jawarneh
2023, Zhang et al. 2023, Fang et al. 2022, Ganji 2008,
Wazwaz 2007):

%v(x,t) _ i(azv(x,t)) 2 v(x,t)
ot at \ 9x2 +(6+Dvilxt) ox
v (x,t) 82v(x,t) Bv(xt) _
—6— = —vixt)—5==0. (1)

In Eq. (1) setting § = 2 and § = 3 gives the fractional
mCH and the mDP equations, respectively as follows,

a%v(xt) i(azv(x,t)) 2 v(x,t)
ot at \ 9x2 +3v7(x, 1) ax
v(x,t) a%v(x,t) Bv(xt) _
_ZTW_V(X’QW_ 0, (2)
a%uxt) i(azu(x,t)) 2 ou(x,t)
atx at \ 9x2 +4u(x, 1) ax
du(x,t) 9%u(x,t) Bu(xt)
—377—11(3(,1:)?— 0. (3)

In Eq. (3) u(x,t) notation is used instead of v(x,t) to
present the solutions of these equations distinguishably.
Eqg. (2) and Eq. (3) are able to characterize the nonlinear
features of dispersive waves. Hence, this family of
equations has been an issue for various studies. Veeresha
and Prakasha (2020) have applied the g-homotopy
analysis transform method; Zhang et al. (2023) used the
Aboodh Adomian
perturbation transform methods; a method mixing the

decomposition and homotopy
Elzaki transform, homotopy perturbation method and
Adomian decomposition method has been applied by
Alesemi (2023); Singh and Gupta (2022) have employed
g-homotopy analysis generalized transform method and
homotopy perturbation generalized transform method;
Alquran et al. (2021) have exhibited new solutions of
these equations via Kudryashov-expansion method and
the sech-csch function method. Khatun and Akbar (2024)

have applied the (G'/G,1/G)-expansion method for
beta time-fractional mCH and mDP equations.

In this study an analytical method is proposed which is not
applied before for Egs. (2)-(3). This paper aims to obtain
the new exact wave solutions of Egs. (2)-(3) with ACD via
(m + 1/G")-expansion method. For this purpose the
structure of the present research is as follows: In Section
2 the definition of ACD together with some properties and
the steps of the proposed method are given. In Section 3
the (m + 1/G")-expansion method is applied to the time-
fractional mCH and mDP equations. In Section 4 the
graphical results are presented and the obtained
solutions are compared with the ones in the literature.

Finally in Section 5 the conclusion is given.

2. Materials and Methods

2.1. Basic definitions

In this subsection the basis about ACD is given that will be

used in the background of the research.

Definition 1: Let y: [0, ) — R be a function. Then, the
[B-derivative of s is defined as (Atangana 2015)

-8
w(t+h(t+%)1 >—¢(t)
h 7

4Ly = lim (4)

where 0 < f < 1 and I'(.) is the gamma function.
Atangana (2015) has introduced the properties of this
derivative as follows,

14Df (ap(£) + bo(£)) = afDf (Y(©))

+b4DF (o (£)),Va,b € R,
2. ‘SDtﬁ(c) =0,Vc ER,
3.4Df (@) = 24D (W (1)

+p(6) 4D (@(1),
anB (POY _ 2®80f (w®)-p®)4pf @)
4. 4D (qb (t)) = e () £ 0,
1 1_6 ! !
5. 40 (@) = (t+735) @' OV (@),

where Y, @ are § differentiable functions. The proofs of
these items can be found in (Atangana 2015).

2.2 (m + 1/G')-expansion method

Assume a time fractional NLPDE as in Eq. (5),
F(u, ux,Dfu, Usxs ) =0,0<p <1, (5)

where F is a polynomial of u. Eq. (5) is converted into a
NLODE as in Eq. (7) with the transformation below,

w 1 B
u(x,t)=U(n),n=x—E(t+Tﬁ)) , (6)
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then one gets,
GW,uu",..)=0, (7)

where ' = ;_77' The proposed method suggests a solution

for Eq.(7) as in the form,

UG = Ty (m+3), 8

where a;, (i = 0, £1, +2, ... &+ M), m are constants. M will
be determined by regarding homogeneous balance
between the nonlinear term and the highest order
derivative. The function G(n) in Eqg. (8) satisfies the
differential equation below,

G"+A+muG' +pu=0. (9)

The general solution of Eq. (9) can be found easily as in
the form,
A1

= — K _ 41 —(A+2mp)n
G A2mp A+2mpu € + 4z (10)

where A;, A, are constants. Then the term 1/G’ in Eq. (8)
will be determined from Eq. (10).

The suggested solution in Eq. (8) is put into Eq. (7) by

considering the term 1/G'and the coefficients of the term
i

(m + 5) are set to zero to obtain an algebraic equation

system for the parameters a;(i=
0,+1,%+2,..,M),A,m,u,A; and w. Evaluating these
parameters via Mathematica software, the exact wave
solutions of Eq. (5) are revealed.

3. Applications of the (m + 1/G")-Expansion Method

In this section the (m + 1/G')-expansion method is
applied to Eq. (2) and Eq. (3) to obtain the exact wave
solutions.

3.1. Solutions of the time-fractional mCH equation

Employing the traveling wave transform in Eq. (6), the

mCH equation in Eq. (2) becomes,
—wV' + V" + 3V = 2V'V" —VV" =0, (11)

where v(x,t) =V (n). Integrating Eq. (11) with zero
integration constant Eq. (12) is obtained as follows,

—wV 4+ V" +V3 -V — i(v')2 =0. (12)

Balancing the terms VV'' and V3 in Eq. (12) gives M = 2
which will be used in Eq. (8) to construct the solution of
Eqg. (12) as follows,

V) = T s (m+ ) (13)

Putting Eq. (13) into Eq. (12) and equating the coefficients

1\ . .
of the terms (m + F) to zero gives the equations below,

| =

-6
(m+2)  :—8m222a2, — 16m*aua?, — 8m*ua?; +

-5
(m + 5) :14mA%a?, + 14m?ua?, —
10m?A%a_,a_; — 20m3Aua_,a_; — 10m*ua_sa_; +
3a52a_1 = 0,

-4
(m + %) c6m?wi?a_, + 12m3wiua_, +
em*wula_, — 6A%a?, + 12mAua?, + 12m?u?a?, +
17mA%a_,a_; + 17m?*Aua_,a_, — gmzlzazl -

5
5m3Aua?, — Em"/ﬁazl +3a_,a?; — 6m?A%a_,a, —

12m3Aua_,a, — 6m*u2a_,a, + 3a2,a, = 0,

(m + 5) ’ :—10mwa?a_, — 10m?wAiua_, —
10Aua?, + 2m?wA?a_; + 4m3wiua_; +
2mtwula_; — 72 %a_a_; + 14mlpa_,a_; +
14m2uta_,a_, + 4maA%a?, + 4m?Aua?, + a3, +
10mA%a_,a, + 10m?Apa_,a, — 2m?A%a_ja, —
am3Aua_iay — 2m*uPa_ja, + 6a_,a_ay —
A4m?A%a_ja, — 8m3Aua_ya; — dm*ula_,a, +
3a%,a, =0,

-2
(m + ?) i—wa_, + 4wA?a_, — 8SmwAiua_, —
8m?wula_, — 4u?a?, — 3mwA?a_; — 3m?*wiua_; —
11Aua_,a_4 — z/lzagl + 3mAua?, + 3m?u?a?, —
422a_a, + 8mApa_,ay + 8m?uta_,a, +
3mAta_,aq + 3m?Aua_ja, + 3a%,a, + 3a_,a3 +
7mAta_ya, + 7m?Aua_,a; — m?A%a_ja; —
2m3lua_ja; — m*ula_ja; + 6a_,a_ja; —
4m?A%a_,a, — 8m3Aua_,a, — 4m*ula_,a, +
3a32a2 = 0,

-1

(m + &) s6wiAua_, —wa_; + wAta_; —
2mwipa_; — 2m2wula_, — 4pla_ya_, — 2Apa?, —
6Aua_,a, — A%a_jag + 2mApa_ ay + 2m?uta_jay +
3a_ja3 —32%a_,a; + 6miua_,a, + 6m?uta_,a, +
2mA%a_ja;, + 2m?Aua_ja, + 3a2,a; + 6a_,aya, +
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8mA%a_,a, + 8m2Aua_,a, — 2m?A%a_ja, —
am3Aua_ia, — 2m*uta_ja, + 6a_,a_ja, =0,

(m + 5)0 2wpla_, + wiua_; — %,uzazl —way —
2uta_,ay — Aua_iay + a3 — mwita, — m*wiua, —
S5Apua_,a, — A*a_ja; + 2mApa_ja, + 2m?ula_ja, +
mA?aga, + m?Auaga, + 6a_jaya; — %mzlzaf -
m3ua? — %m“/.tzaf + 3a_,a? + 2m?*wita, +
am3wiua, + 2m*wula, — 42%a_ya, + 8miua_,a, +
8m?uta_,a, + 5mAa_,a, + 5m?Aua_,a, +

3a%,a, — 2m?A%aga, — 4m3Auaya, — 2m*ulaqa, +
6a_,aya, =0,

(m + $)1 t—wa; + wiA?a, — 2mwiua, —

2m?wula, — 2uta_,a, — 2Aua_ja; — A*aga; +
2mApaya, + 2m?uaga, + 3a3a, + 2mA%a? +
2m?Aua? + 3a_,a? — 6mwia, — 6m2wiua, —
8Aua_,a, — 32%a_,a, + 6miua_ja, + 6m?uca_ja, +
6mA?aga, + 6m?Auaya, + 6a_ja,a, — 4m*A%a,a, —
8m3Aua,a, — 4m*u*a,a, + 6a_,a,a, = 0,

(m + $)2 :3wApa; — pta_ja; — 3Auaga; — glzaf +
3mApa? + 3m?u?a? + 3aya? — wa, + 4wita, —
8mwlua, — 8m2wuta, — 4u*a_,a, — 7Apua_ja, —
42%aq4a, + 8mAuaya, + 8m?ulaya, + 3aia, +
11mA%a,a, + 11m?Aua,a, + 6a_,a,a, — 4m?A%a3 —
8m3Auaé — 4m*u*a + 3a_,a3 = 0,

3
(m + é) 2wpla, — 2utaga, — 4Apa? + ad +
10wAua, — 4u?a_ja, — 10Auaya, — 74%a,a, +
14mAua,a, + 14m?p?a,a, + 6aga,a, + 10mA%a? +
10m?Aua3 + 3a_,a% =0,

4
(m + é) :—(5/2)u?a? + 6wu’a, — 6ptaya, —
17Aua,a, + 3a?a, — 6A%a3 + 12mAua? +
12m2u?a + 3aya3 = 0,

5
(m + é) :—10p*a,a, — 14Apaj3 + 3a,a5 = 0,

(m +$)6 :—8u2a3 +a3 =0.

Solving this system of equations gives the cases and the
corresponding solutions of Eq. (2) which are presented as
in the following where 7 is stated as in Eq. (6).

Case-1:

a_, =2m?(—1+ A% a_; = —4m(—1+ A,

ag = 2(_1 +/12),a1 = 0,a2 = 0,
H= —E,(D = 2.

The corresponding solution of Eq. (2) is

2(—141)? -1+A)A
v1=—2+,12+(m2m(i”)2— LD (1)

—A1e’1+% —A1e’1+%

!
a_, = Ola—l = OiaO = 2(_1 +Az)uu = _12;mla1 =
2
_4/1(1+A)‘a2 _ 2(1+2,1) 0= 2
m m

The corresponding solution of Eq. (2) is

1
A1+ m————
< —Ale"+%>

m

v, = 2(—1+22) -

+

-Atlell+— =

2
2(1+A)2<m—;1+l>
— . (15)

Case-3:

a_, =2m?*(—i+ D% a_, = —4mA(=i+A),a, =1+
2 _ _
Zl,al—o,az—o,ﬂ— Zm,a)—l.

The corresponding solution of Eq. (2) is

2/ 2
vy =1+ 242 4 2CED”
L
m —iA1ei7l+i2+T£>
4mA(=i+A
e (16)
—iA1ei77+%
Case-4:
a_,=0,a_,=0,a,=1+21%qa, = —@,az =
Z(Hj)z, = —ﬂ,w =1
m 2m
The corresponding solution of Eq. (2) is
4A(i+l)<m—+)
vy = 14227 - )
m
) 2
. L
2(l+ﬂ)2<m—w>
— . (17)
Case-5:
a_, =2m?(i+ A% a_; = —4mA(i+ A),a, =1+
—i+1
22%2,a, =0,a, =0,u = — —w=1
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The corresponding solution of Eq. (2) is

207 2
vs = 1+ 212 + — D

2
m+%>
. _in, —itA
iAle”M+—-=

4mA(i+2)
—mien (18)
—it4

m

i —1
iAle~ U+ >

m+

Case-6:

a_,=0,a_,=0,ay=1+21%q, = L)

2(—i+2)? —i+2
M= w= 1.

m2

The corresponding solution of Eq. (2) is

i
A+ )| Mt————
( iAle~ U+ 2:3)

v =1+21% — +

m

2
v
iAle=ing A

2(—i+A)2<m+
m - (19)

mZ
Case-7:

a_, =2m*(1+ )% a_; = —4mA(1 + 1),a, = 2(—1 +
12),611 = O,az = O,H = _ﬂ w=2.

2m
The corresponding solution of Eq. (2) is

4mA(1+1)
1

2
m——————
Ale—N4Z1+A m+ 1
2m Are—T4LtA
2m

2m?(1+1)?

v, = — +

2(—1+ 22). (20)
Case-8:

a_,=0,a_,=0,ay=2(-1421%),a, =
_ _ 2 _
_4( 1+)2 _ 2(—142) - _ 1+A’w -2

m 12 m?2 2m

’

The corresponding solution of Eq. (2) is

2

2(m+%1+1) (-1+1)2

Ale M+—

m2

Vg =

1
4<m+7_m)(—1+1)l
Ale M+ >m

m

+2(—1+ 1%). (21)

3.2. Solutions of the time-fractional mDP equation

In this subsection the second equation of the modified §-
equation in Eq. (3) is converted into the following NLODE
by using the transform in Eq. (6),

—wU'+ oU" +4U%U' —30'U" —UU" =0, (22)

where u(x,t) = U(n). Integrating Eq. (22) by setting the
integration constant zero gives,

—wU + U" + §U3 —UU" - (U =0. (23)

The terms UU"" and U? are considered for the balancing
principle to reach M = 2. Then the solution of Eq. (23) will
be,

UG = T pai(m+3)" (24)

The algebraic equation system is obtained when Eq. (24)
is substituted into Eq. (23) as follows,

-6
(m + ?) :—10m?2%2a?%, — 20m3Aua?, —

3
10m*ua?, + 4a3‘2 =0,

-5
(m + %) :18mA%a?, + 18m?Aua?, —
12m2?A%a_,a_; — 24m3Aua_,a_, — 12m*pa_ja_; +
4a%,a_, =0,

-4

(m + ?) c6m?wi?a_, + 12m3wiua_, +
6em*wula_, — 81%a?, + 16miua?, + 16m?u?a?, +
21mA%a_,a_; + 21m?Aua_,a_, — 3m?A%a?, —
6m3Aua?, — 3m*u?a?, + 4a_,a%, — 6m?*1%a_,a, —
12m3Aua_,a, — 6m*u?a_,a, + 4a%,a, = 0,

-3
(m + %) :—10mwa?a_, — 10m?*wiua_, —
14Aua?, + 2m?wA?a_; + 4m3wiua_; +
2miwpa_, —92%a_,a_, + 18miAua_ya_; +

3
18m?u?a_ya_; + 5mA?a?; + 5m?Aua?, + MT* +
10mA%a_,a, + 10m?Apa_,a, — 2m?A%a_ja, —
A4m3Aua_jay — 2m*uta_ja, + 8a_a_jay —
2m?A%a_,a, — 4m3Apa_,a, — 2m*ua_y,a, +
4a%,a, =0,

(m + &) ’ i—wa_, + 4wA?a_, — 8mwlua_, —
8m?wula_, — 6u?a?, — 3mwiA?a_, — 3m?*wiua_; —
15Aua_ya_, — 2A4%a?, + 4miua?, + 4m?u?a?, —
42%a_,a, + 8mApa_,ay + 8m?uta_,a, +
3mA%a_ja, + 3m?Aua_ja, + 4a%,a, + 4a_,al +
3mA%a_ya, + 3m?Aua_,a; + 8a_,a_,a, + 4a?,a, =
0,

-1
(m + %) c6wiAua_, —wa_; + wAta_; —
2mwApa_, — 2m?wpa_, — 6p*a_,a_; — 3Aua?, —
6Aua_,aq — A*a_jay + 2miua_ja, + 2m?ua_ja, +
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4a_jat — %a_,a, + 2mApa_ya; + 2m?pla_,a, +
4a31a1 + 8(1_2610(11 + 8a_2a_1a2 = 0,

(m + 5)0 2wpla_y, + wlna_, — p?a?, —wag —
2uta_jay — Aua_,ay + (4a3)/3 — mwira, —
m2wlua, — Apa_,a, + mA%aga, + m?Auaga; +
8a_jaga; — m?A%a? — 2m3Aua? — m*uta? +
4a_,a? + 2m?wi?a, + 4m3wlua, + 2m*wya, +
mAa_ja, + m*Aua_qa, + 4a*,a, — 2m?A*aqa, —
am3Auaya, — 2m*ucaqa, + 8a_,aya, = 0,

(m + %)1 i—wa, + wAla; — 2mwlua; —

2m?wula, — 2%aya, + 2mipaga; + 2m?uaga, +
4ata, + 3mA%a? + 3m*Aua? + 4a_,a? — 6mwi’a, —
6m?wlua, — A%a_,a, + 2miAua_,a, + 2m?uta_ja, +
6mA?aga, + 6m?Auaya, + 8a_ja.a, — 6m?A%a,a, —
12m3Aua,a, — 6m*u?a,a, + 8a_,aa, = 0,

2
(m + 5) :3wlua, — 3Auaga; — 2A%a? + 4miua? +
am?u?a? + 4aya? — wa, + 4wi?a, — 8mwiua, —
8m?wu?a, — 3Aua_,a, — 41%aya, + 8miuaya, +
8m?utaya, + 4a3a, + 15mA%a a, + 15m?Aua,a, +
8a_ja,a, — 6m2A%a? — 12m3Aua? — 6m*u?az +

4a_,a% =0,

3
(m + 5) 2wuta, — 2utaga, — 5Aua? + (4a3)/3 +
10wAua, — 2u%a_,a, — 10 uaya, — 91%a,a, +
18mAua,a, + 18m?u?a,a, + 8aga,a, + 14mA%a? +
14m?Aua3 + 4a_,a% =0,

4
(m + é) :—=3u%a? + 6wpa, — 6ulaya, —

21Aua,a, + 4aa, — 82%a% + 16mluas +
16m2u2a? + 4aya3 = 0,

5
(m + é) :—12u%a,a, — 18Auas + 4a,a2 = 0,

6
(m+2) :—104%a3 + (4a3)/3 = 0.

The parameters m, iU, w,a_,,a_4,a4,a1,05, A4 are

evaluated by solving this system with the assist of
Mathematica. The following results including different
cases and the corresponding solutions are obtained

where 7 = x —%(t +%ﬁ))ﬁ.

Case-1:

a_, = :—zmzyl, a,= —%m/l( —125 — 5iv/15 +
10/1),a0 =2 (39— iWVI5+ 604?),a, = 0,0, = O, =
— 22 =2 (11 +3iV15),

2m '

where o; = -1+ %(—\/ —125 — 5iv15 4+ 101) and
y1 = =25 — iV15 + 42 (v/-125 - 51V15 + 52).

The corresponding solution of Eq. (3) is

u; = (39 — iV15 + 6042) +

3m?y,

2
91
32(m—7
g1+i >
+2——Ale77‘71 o1
30mA(oy+A1)
801 ’ (25)

—A1eM%1g4

A
NIE!

2m
where g, = A+ — (—V—125 — 5iV15 — 104).

Case-2:

a_,=0a_,=0a = %(39 — V15 + 604%),a;, =
15(-01—-4) 372

_ _ —o1-4 _1 .
Jap = =0 0 =~ (11 + 3iV15),

a4m

where y, = —25 — (V15 — 4(¥ =125 — 5iV15 — 52) .
The corresponding solution of Eq. (3) is
up = (39 — V5 + 604 +

g1
-30(o1+ DA m—————
+6217;1/1—A12"51 o1

8m

2m

2
g1
3yl m————
( RN 01>
32m? ’

(26)
Case-3:

3 15 1
a_p, = 3—2m2y1, a_, = Tm(_o-l - Miay = 3_2(39 -

22 h=ta1+
2m 8

iV15 4 604%),a; = 0,a, = 0, u =
3iV15).

The corresponding solution of Eq. (3) is

us = —(39 — iV15 + 6042) +

3m2y, 30m(A+o;)A )
z =0 " (27)
- 8m+7}h_d2
32| mb—2—— S T
A1eM92g,+ 2m2

Case-4:

a_,=0,a_,=0a = 3%(39 — V15 +604%),a; =
S g, = =2 =111 4 30VT5).

P2 T 3o,

am
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The corresponding solution of Eq. (3) is

U, = %(39 — (V15 + 6012) —

g2
30A(A—0p)(m+ —)
A1e %24, +12_:12

+

8m

2

3N ]

s\m+———=F - (28)

32m Ale M%2g,+=—%
2m

Case-5:

3 15 1
a_, = §m2y3, ay =—m(oz — MDA ao = 5(39 +
; 2 _ — — =1 _
iV15 4 604%),a; = 0,a, = O, u = L w=_(11
3iV15),

where 03 = 1—10(\/ —125 + 5iV15 — 10&) + 4,0, =

1

—(— —125 + 5iV/15) — 101) +Aandy; = =25+

04—

10

iv15 — 4( 5i(25i + V15) — 5,1) A.

The corresponding solution of Eq. (3) is

us = —(39 + iV15 + 6042) +

3m?y. 15m(o3—A)A
—i @t (29)
32(m+ 1= ) 4(m+ =)
A12‘7la4a4+2—m4' Alé,’_77‘7‘1-<:'4+Z—m4
Case-6:

a_,=0,a_; = 0,a0 = (39 + V15 + 6042),a; =

15A(A—04) 3y [ 1 .
— a, = w==-(11-3iv15
am 27 32m2’ 20m’ 8 ( )

where y, = —25 + iv15 + 4A< ’5i(25i + \/1_5) +
51).

The corresponding solution of Eq. (3) is

us = 3= (39 + VT5 + 6042) —

30A(A—0y) (m+ Ja
A1e—71‘74a4+}‘2 94

m_ 4
8m
2
3y oy
2\ Mt o s (30)
32m Ale~M04g,+22%4
2m

Case-7:
3 15 1
a_, = ;mz'y[}, a_, = :ml(o’;l_ - /1), aO = ;(39 +
. -1 1
iVT5 +604%),a, = 0,0, = O,p = 25,00 = - (11 -

3iV15).

The corresponding solution of Eq. (3) is

u; = —(39 + iV15 + 6042) +

3m2y,
> —
o3
22l mt——————
ag3—4 —
( ——m tAle 77‘7303)
30mA(A—04)
8(734 . (31)
8m+ ) o
——m tAle 303
Case-8:

a_,=0a_,=0a = %(39 +iV15 +604%),a;, =
15(0‘3—1)/1’az _ 3y3 o= 0’3—1‘(1) _ %(11 _3 /—15)

am ~ 32m2’ 2m

The corresponding solution of Eq. (3) is

ug = (39 + iVT5 + 6042) +

30(a3—)A(m+ I3
(@5 =DAGm —6231:11+A13_"J30'3
8m
2
33 03
32m?2 (m + —”3—_’1+A1e—’7”303) ' (52)
2m
Case-9:
a_, = 1—85m2(—1 +D)%a_, = —%Sm(—l + DA, a0 =
5 2 - - — W 5
8( 1+/’{)1a1_01a2_0uu_ Zme_Z-

The corresponding solution of Eq. (3) is

15m?(-1+1)%

2
1
8l m-———
( —A1e’7+1+’1>

2m

Ug =18—5(—1 +2%) +

5m(—1+1)A
4;_’”(714”. (33)
—Alen+%
Case-10:
15 2
a_, = O!a—l = OiaO = ;(_1 +/1 ),al =
_15(1+2) _15(1+0)% 0 144 w=?2
4am 727 gmz om’ 2
The corresponding solution of Eq. (3) is
152(1+2) (M————)
15 —-Atel+5 =
u10=?(_1+/’12)_ Y Zm +
15(14+4)2 (m—————)2
(1+)*(m —A1e’1+%) )

8m?2
Case-11:

@, ="m?(1+ D% e, = —2mA(1+2),a, =

18—5(_1‘}‘2.2),(11 = O!aZ = Onu = _ﬂ;w =§

2m

The corresponding solution of Eq. (3) is
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_ 15mA(1+1) 15m?(1+21)?
1 = = o E ) : ES—
A1e‘71+_21;l}‘ A1e‘n+_21n+1)“
15(=1+42)
— (35)
Case-12:
15 2
a_, = Ola—l = O,ao = ?(_1 +A )!al =
_15(=14+2)4 _ 15(-1+4)2 _-1#4 S
am 2T gz BT 2m '
The corresponding solution of Eq. (3) is
1 2 2
15 —14+A2
B (m+ e—n+-2;f) (-1+2) )
Uiz = 8m?2
1
15(mt———— (- 1+)A
Ale™ N
* tam + 51+ 2. (36)
a4m 8

4. Results and Discussions

The new traveling wave solutions of time-fractional mCH
and mDP equations are offered above and the results are
supported with 3D and 2D plots. The graphical delineation
of the solutions in Eq. (14), Eq. (16), Eq. (20), Eqg. (28), Eq.
(33) and Eq. (34) is presented in Figs. 1-8 for some values

of the parameters.

Figure 1. 3D and 2D graphs of Eq. (14) form=1,A=2, =
0.5,A1 = 15 (t = 1 for 2D plot).

Figure 2. 3D graphs of real and imaginary parts of Eq. (16) for
m=11=3,8=05A1=4.

Imv3(x,t)

NN

-10

Figure 3. 2D graphs of real and imaginary parts of Eq. (16) for
m=1,1=3,=05A1=4,t=1.

Figure 4. 3D and 2D graphs of Eg. (20) for m = 0.2,4 =
2.5,A1 =10, = 0.5 (¢ = 1 for 2D plot).

Reuy(x.t)

~—_

Figure 5. 3D graphs of real and imaginary parts of Eq. (28) for
A=08m=1A1=0.6,=0.5.

Reuy(x,t) ImlfA (x,t)

il

=

Figure 6. 2D graphs of real and imaginary parts of Eq. (28) for
1=08m=1A1=06,8=05,t=1.

| "

Figure 7.3D and 2D graphs of Eq. (33) form = 1,4 = 0.01,A1 =
5, = 0.5 (t = 1 for 2D plot).
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’Tumr(x.t)
g %5 uo(x,t)

=
10 "

Figure 8. 3D and 2D graphs of Eq. (34) for m=4.7,A =
0.3,A1 =0.5,8 =0.5(t = 1 for 2D plot).

It is observed that the solutions reported in this study in
Egs. (14-36) have different structures when compared
with the solutions obtained in Wazwaz (2006), Wazwaz
(2007), Khatun and Akbar (2024). The dependability and
the effectiveness of the (m + 1/G")-expansion method
are highlighted together with these figures.

5. Conclusion

In conclusion, the new exact wave solutions of the beta
time-fractional mCH and mDP equations are evaluated by
using the (m + 1/G')-expansion method together with
Mathematica software. This method has served as a
powerful and an adaptable method to handle in analyzing
the nonlinear wave propagation. The exact solutions
reported in the present paper have yielded important
perceptions for the dynamics of the nonlinear wave
propagation. The results may be used to forecast many
phenomena such as fluid mechanics, hydrodynamics and
optical fibers. For further studies, this method can be
used for many other NLPDEs to prove the new exact wave
solutions.
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