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Abstract

Amyloid beta (Aβ) plaques are associated with neurodegenerative diseases such as Alzheimer’s disease.
Due to the involvement of Aβ plaques in the functioning of the brain; cognitive decline disrupts calcium
homeostasis in nerve cells and causes abnormal calcium ions (Ca2+) signaling patterns. In consequence,
there is enhanced neuronal excitability, compromised synaptic transmission, and decreased astrocytic
function. Neuron-astrocyte coupling through calcium dynamics with different neuronal functions has
been studied. Key signaling molecules in this process include Ca2+, which control several cellular
functions, including neurotransmission and astrocytic regulation. The mathematical model for neuron-
astrocyte communication has been developed to study the importance of calcium dynamics in signal
transduction between the cells. To understand the wide role of mitochondria, NCX, and amyloid
beta with various necessary parameters included in the model, Ca2+ signaling patterns have been
analyzed through amplitude modulation and frequency modulation. The results of the current model
are simulated and analyzed using XPPAUT. The findings of the current study are contrasted with
experimental data from an existing mathematical model that illustrates the impact of calcium oscillation
frequency and amplitude modulations in nerve cells.
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1 Introduction

Amyloid beta (Aβ) builds up in the brain and causes progressive cognitive impairment, which
are hallmarks of Alzheimer’s disease (AD), a debilitating neurodegenerative condition [1]. The
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complex interplay between Aβ and calcium dynamics in neurons and astrocytes has been brought
to light by recent studies [2]. Maintaining brain homeostasis depends on the neuron-astrocyte
connection, and disruptions in calcium signaling are linked to the etiology of AD. Neuronal
dysfunction and cell death in AD are believed to be profoundly influenced by the disruption of
Ca2+ homeostasis [3]. Maintaining appropriate Ca2+ levels requires neuron-astrocyte interaction,
and recent studies have shown the importance of mitochondria and NCX in this process [4].
In order to control Ca2+ signaling, these two cell types engage in intricate interactions known as
neuron-astrocyte coupling [5]. Through specialised transporters, astrocytes absorb excess synaptic
Ca2+, thereby buffering Ca2+ levels in neurons and reducing excitotoxicity [6]. By compromising
astrocytic Ca2+ regulation, Aβ has been demonstrated to interfere with this coupling and increase
neuronal susceptibility to Ca2+ overload [5].
An essential function of mitochondria is to preserve the Ca2+ homeostasis of neurons and astrocytic
membranes [7]. Research has indicated that an accumulation of Aβ within mitochondria can
impair their functionality and result in a higher generation of reactive oxygen species (ROS). Due
to decreased mitochondrial Ca2+ buffering, which lowers the effectiveness of Ca2+ clearance
within neurons and astrocytes, this mitochondrial dysfunction can cause problems with Ca2+

handling [8].
Apart from their function of buffering Ca2+, mitochondria also use processes like Ca2+ absorption
and release to modify Ca2+ signalling. These mechanisms can be changed by Aβ-induced mito-
chondrial dysfunction, which can impact the Ca2+ dynamics in neurons and astrocytes [9, 10].
Uncontrolled release of Ca2+ by malfunctioning mitochondria can lead to astrocytic dysfunction
and neuronal excitotoxicity [11, 12]. In neurons and astrocytes, the sodium-calcium exchanger
(NCX) plays a critical role in controlling intracellular Ca2+ levels [13]. It has been demonstrated
that Aβ disrupts NCX function by changing its expression and activity [14]. Further altering
neuron-astrocyte connection, dysregulated NCX can worsen Ca2+ dysregulation by increasing
Ca2+ inflow and impairing Ca2+ extrusion in both cell types [2]. The two main cell types in
the central nervous system are neurons and astrocytes, and the proper functioning of these two
populations is essential for brain maintenance [15]. Key signaling molecules, such as calcium ions
Ca2+, are involved in several cellular activities, such as neurotransmitter release, plasticity, and
synaptic transmission. Calcium signaling is a mechanism used by both neurons and astrocytes to
exchange information and react to modifications in the brain’s microenvironment [16]. Action po-
tentials are produced when neurons release neurotransmitters into the synaptic cleft, which causes
postsynaptic calcium influx [17]. Changes in synaptic activity and calcium levels are actively
sensed by astrocytes, which surround synapses with their tiny processes. Astrocytes can control
neuronal excitability and synaptic transmission through a process called gliotransmission [15].
Amyloid beta and calcium de-regulation Aβ, the pathogenic hallmark protein in AD, has been
shown to disrupt calcium homeostasis in neurons and astrocytes, with important effects for
neuron-astrocyte connection [18]. Aβ peptides have direct interactions with ion channels, in-
cluding those that control calcium levels, and cell membranes. Increased intracellular calcium
levels in neurons as a result of this interaction ultimately cause neuronal death, and synaptic
dysfunction [1, 11]. Astrocytic calcium dynamics are similarly impacted by Aβ exposure. The
removal of extracellular Aβ is mostly dependent on astrocytes, and an elevated Aβ load may cause
abnormal calcium signaling in astrocytes. Dysfunctional astrocytic calcium signaling undermines
their ability to support neurons, compromising synaptic function and neuronal survival [1, 12, 19].
Normally, astrocytes remove excess glutamate from synapses to avoid excitotoxicity. This func-
tion is compromised by Aβ-induced disturbances in astrocytic calcium signaling, which prolong
glutamate exposure at synapses [4].
Neurotransmission is impacted by changes in calcium dynamics in both astrocytes and neurons.
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Reduced synaptic effectiveness and aberrant synaptic plasticity can be caused by Aβ-mediated
dysregulation [13, 16]. In astrocytes, dysregulation of calcium induced by Aβ can exacerbate
neuroinflammation. The neurodegenerative process is accelerated by reactive astrocytes that
emit proinflammatory cytokines. The complex interactions among Aβ, mitochondria, NCX, and
neuron-astrocyte coupling have a major effect on the dynamics of Ca2+ in AD. By upsetting the
delicate balance of Ca2+ homeostasis, Aβ causes malfunction in the mitochondria, interferes with
NCX activity, and affects astrocytic Ca2+ regulation. The pathogenesis of AD is aided by these
consequences, which increase neuronal susceptibility to Ca2+ excess. In order to determine viable
therapeutic strategies targeted at reestablishing appropriate Ca2+ homeostasis in Alzheimer’s
disease, future research should carry out an exploration of these pathways [20].
We offer a theoretical framework in this work to understand the driving forces behind different
Ca2+ oscillation patterns in an AD environment. Examining model solutions additionally provides
valuable insights into how Aβ affects Ca2+ basal levels across a range of timescales. Numerous
studies have been conducted on calcium dynamics to illustrate the impacts of different parameters,
as evidenced by the literature review. Parkinson’s disease starts to progress early when there is
a loss or change in this cellular activity [21–23]. To analyze the spatiotemporal fluctuations of
intracellular Ca2+ concentration in T lymphocyte cells, a two-dimensional mathematical model
has been explored [24]. During oocyte development, eggs develop the capacity to create this
specific calcium transient. It has been demonstrated that oocyte cells exhibit cytosolic calcium
signaling through the use of parameters including buffers, ryanodine receptor (RyR), and Serca
pump [25, 26]. Understanding the cellular mechanism underlying the inclusion and extrusion of
free calcium is essential [27]. It has been demonstrated analytically and quantitatively how the
glycolytic oscillator chemical model behaves through the flip and generalized flip bifurcations [28].

Figure 1. Neuron-astrocyte signaling
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2 Mathematical model of the problem

Neuron model

The leaky integrate and fire model (LIF) has been used to show the neural communication with
required parameters [2]:

τm
dV(t)

dt
= −V(t) + Rm Isyn, (1)

where V is the membrane voltage, Rm is the membrane resistance, Isyn is the input current, and τm
is the membrane time constant. V is clamped at 0V(volt) when the neuron membrane potential
(V) approaches a firing threshold value for the neuron, (Vth).

Astrocyte-neuron interactions

Gliotransmitters that change neurotransmitter reuptake, boost synaptic strength, or control prun-
ing of synaptic cells may be emitted by astrocytes when exposed to an action potential from a
neuron. The neuron-astrocyte coupling process for Ca2+ dynamics is heavily dependent on the
inositol trisphosphate (IP3) signaling pathway. Neurotransmitters released by stimulated neurons
can activate receptors on astrocytes. The activation of these receptors results in the synthesis of IP3,
a secondary messenger molecule that causes the astrocyte’s internal stores of Ca2+ to be released.
Surrounding neurons may be profoundly impacted by this Ca2+ increase in astrocytes, which can
alter their activity and synaptic transmission. The model states that the extent of neurotransmitter
exposure affects the extension of IP3. The neuron-astrocyte coupling describes the two-way
exchange of information and interaction that occurs between astrocytes and neurons [29, 30].

dIP3

dt
=

IP∗
3 − IP3

τip3

+ rip3(AG), (2)

where rip3 is the IP3 assembly rate, IP∗
3 is the baseline of IP3 in the steady-state,τip3 is the IP3

decay rate.

Astrocyte dynamics

The Ca2+ flux inside the astrocyte is measured using the Li-Rinzel model. Many computational
simulations inside the Li-Rinzel model have demonstrated Ca2+ oscillations for a range of param-
eter settings [31]. The intracellular expansion triggers reactions in the cytosolic calcium absorption
process, including the ER leakage flux, the pump-flux from the cytosol into the ER, and the Ca2+

flux from the ER(Endoplasmic Reticulum) over the IP3 carriers. By moving Ca2+ across the
plasma membrane, the Na+/Ca2+ exchanger influences the intracellular Ca2+ concentration. The
differential equation for the dynamics of Ca2+ in mitochondria is governed by a balance of Ca2+

fluxes [2, 32]:

d
[
Ca2+]
dt

= Jchannel − Jpump + Jleak + Jin − Jout − JMCU + JmNCX − JNCX, (3)

dh
dt

=
h∞ − h

τh
, (4)
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where

h∞ =
Q2

Q2 + Ca2+ , (5)

τh =
1

a2 (Q2 + Ca2+)
, (6)

Q2 = d2
IP3 + d1

IP3 + d3
, (7)

where h is the fraction of activated IP3. The following calculates the calcium flux via the channel,
pump-flux, and leakage flux from the ER:

Jpump = vER

( (
Ca2+)2

k2
ER + (Ca2+)

2

)
, (8)

Jchan = rcm3∞n3∞h3
(

c0 − (1 + c1)Ca2+
)

, (9)

Jleak = rL

(
c0 − (1 + c1)Ca2+

)
, (10)

Jout = k1Ca2+, (11)

JNCX = c0

(
Nai
Na0

)3
exp

(
2FVm

RT

)
, (12)

with

m∞ =
IP3

IP3 + d1
, (13)

n∞ =
Ca2+

Ca2+ + d5
, (14)

where rc represents the maximum CICR (Calcium-induced calcium release) rate, c0 represents
the total of the free Ca2+ cytosolic collection, and c1 represents the ER/cytoplasm capacity ratio.
The IP3 induced calcium release is shown by m∞, the CICR channels are indicated by n∞, the
maximum absorption amount for the SERCA pump is vER, the stimulation constant of the SERCA
pump is kER, and the calcium leakage amount is rL.
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Amyloid beta hypothesis

IP3 concentration is modeled as a linearly increasing function of the membrane leak Jin. To
ensure that the steady-state Ca2+ concentration relies on p, we only include a linearly increasing
contribution in this case, even if this rise could be the result of many causes. The effects of Aβ on
the existence of exchangers, channels, and pumps are still largely unknown. Despite this, we have
used some of the offered papers to view the Aβ influence. To add kβam in Jin in order to account
for the effect of Aβ in the model [6, 30]:

Jin = a1 + a2 p + kβam, (15)

where a1 and a2 are parameters and m denotes a cooperatively coefficients and kβ is a constant of
speed.

Mitochondria model

Studies have demonstrated that the ER and mitochondria cooperate to generate complex functional
membranes associated with the ER that is mitochondria-associated membranes (MAMs). The
Ca2+ concentration between ER-Mitochondria can reach 10 times higher integrity than in the bulk
cytoplasm when cells are activated. When properly activated, the mitochondrial Ca2+ uniporter
(MCU) allows for an increase in Ca2+ levels [33]. Owing to their bidirectional nature, the local
Ca2+ intake by mitochondria and the inositol triphosphate receptor (IP3R) by Ca2+ can both
expand or contract the ER. Ca2+ reveals that by severing the effective feedback from Ca2+ on
IP3R, Ca2+ releases, by reducing the ER or the Ca2+-related IP3Rs deactivation [7, 8, 34]:

d
[
Ca2+]

Mt
dt

= JMCU − JmNCX, (16)

JMCU = vmNCX

(
Na3

k3
Na + Na3

)( [
Ca2+]

Mt
kmNCX + [Ca2+]Mt

)
, (17)

JmNCX = vMCU

( [
Ca2+]2

k2
MCU + [Ca2+]

2

)
, (18)

where
[
Ca2+]

Mt mitochondrial calcium concentration and JMCU and JmNCX are fluxs of Ca2+ ions
through the mitochondrial Ca2+ uniporter and mNCX channels.

Endocannabinoid dynamics

Several computational models represent the interaction between astrocytes and neurons using
tripartite synapse connections. When the signal-receiving neuron is sufficiently depolarized and
the synaptic cleft releases a glutamate-like neurotransmitter, 2-AG leaves from the dendrite and
attaches itself to CB1Rs on the surface of astrocytes [2]. The model equations are

d (AG)

dt
= −

AG
τAG

+ rAG H (c − cth) , (19)
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d (Glu)
dt

= −
Glu
τGlu

+ rGluH (c − cth) , (20)

where AG denotes the quantity of 2-AG and Glu denotes the amount of glutamate, and τAG and
τglu indicate the relaxation time constants for 2-AG and glutamate, respectively. Glutamate release
and 2-AG production are denoted by the variables rAG and rGlu, respectively. The release of 2-AG
and glutamate is indicated by the Heaviside function H(c − cthreshold), which is accompanied by
the Ca2+ threshold and catalyzed by calcium [27].

Table 1. Values of biophysical parameters

Astrocyte Constraint Constraint Description Value
τAG Decay rate of 2-AG 10 s
τGlu Decay rate of Glutamate 100 ms
rGlu Maximum rate of Glutamate production 10 µMs−1

rAG Maximum rate of AG production 0.018 µMs−1

IP∗
3 Baseline value of IP3 0.16 µM

rIP3 Rate of IP3 production 0.5 µMs−1

rC Maximum rate of CICR 6 s−1

rL Ca2+ leakage rate from ER 0.11 s−1

vER Maximum rate of SERCA uptake 0.8 µMs−1

kER SERCA pump activation constant 0.1 µM
c1 Ratio of ER volume to cytosol volume 0.185
d1 IP3 Disconnection constant Ca2+ 0.13 µM
d2 Ca2+ Dismissal dissociation constant Ca2+ 1.049 µM
d3 IP3 Separation constant Ca2+ 0.9434 µM
d5 Ca2+ Stimulate dissociation constant Ca2+ 0.08234 µM
a2 IP3R Ca2+ Dismissal binding rate 0.2 µMs−1

Ca2+threshold Astrocyte Glutamate release threshold 0.3 µM
c0 Total free Ca2+ cytosol concentration 2 µM
τm Membrane time constant 0.1
Isym Injected current 2
V Firing threshold voltage 9 mv
Rm Membrane resistance 1.2 GΩ
kNa Na+ activation constants for the mNCX 7.4 mM
kmNCX Ca2+ activation constants for mNCX 45 µM
kMCU Ca2+ activation constants for MCU 0.84 µM
Na+ Na+ Concentrations in the Cytosol 12 mM
VmNCX Maximal flux through the mNCX 100 µMs−1

VMCU Maximal flux through the MCU 0.07 µMs−1

Nai Intracellular Na+ concentration 12 µM
Nao Extracellular Na+ concentration 145 µM
F Faraday’s constant 96485 Cmol−1

R Gas constant 8.314 JK−1mol−1

T Absolute temperature 310 (oC)
Vm Membrane potential -70000 V
k1 Rate constant of Ca2+ extrusion 0.5 s−1

a1 Parameter for membrane leak 0.1 µMs−1

a2 Parameter for membrane leak 0.02 s−1

kβ Constant of speed 0.18 s−1

m Cooperatively coefficients 4
p Linear increase of IP3 0.13
a Measurement of Aβ presence 1.15
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Table 1 provides the starting values for the variables and parameters used in this work [2, 33–35].
The system appears to be inactive based on the principal variable rates. By initializing both
variables to zero, experimental measurements have been made for Ca2+ and h. To duplicate the
model, IP3 levels have been limited at 0.16µM (that is equal to IP∗

3 ) until Ca2+ and h have been
balanced [36–38].

3 Results

The mechanism of Ca2+-dependent exosome release is examined, along with the coupling of
neuron and astrocytes on the Ca2+-driven exosomal dynamics, in response to different values of
factors linked to mitochondria, NCX, and amyloid beta. The parameter values listed in Table 1 are
used to generate the numerical results provided in this section [2, 33–35]. We aim to demonstrate
the influence of Aβ on the promotion of a chemical involved in several cellular processes. As of
right now, IP3 serves as the main agonist, which can subsequently cause the release of Ca2+ from
different fluxes. In all figures, c represents Ca2+ concentrations.

i. First, we have used the neglected NCX (Sodium-Calcium exchanger) and Amyloid beta
effects on Ca2+ dynamics to characterize the model’s solutions with mitochondria.
ii. Secondly, we have extended to incorporate the impact of NCX (sodium-calcium exchanger)
on neuron-astrocyte coupling calcium dynamics, likewise in the absence of amyloid beta.

iii. Finally, we have incorporated flux Jin to account for the Aβ impacts of membrane potential
on Ca2+ dynamics.

The neuron-astrocyte model has been analyzed using the XPPAUT software, and the Euler in-
tegration approach was employed in all of the results shown here. The model dynamics in the
following three sections demonstrate that aberrant Ca2+ can arise when Aβ is present. These
aberrant signals can arise in a variety of scenarios, pointing to a complex relationship between
Aβ’s effect and the model’s constituent parts. As a result, we deconstruct the model’s dynamics
by monitoring the outcomes of changing one or two parameters inside a particular signaling
component. Finally, we take membrane potential into account and explore model solutions at
different Aβ levels while IP3 concentration is fixed [39].
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Figure 2. The Ca2+ frequency modulation is displayed in Figure 2(a)-Figure 2(b). Figure 2(a) displays the FM
mode results of Ca2+ oscillations for rL = 0.11, IP3 = 0.29, and kER = 0.09 in the proposed model while Figure 2(b)
displays the FM mode results of Ca2+ oscillations for rL = 0.8, with fixed values of IP3 = 0.78 and kER = 0.07 in
the original model
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(a) (b)

Figure 3. These graphs Figure 3(a)-Figure 3(a) show the results of frequency modulation Ca2+ oscillations for
IP3 =0.5, rL range 0.08 to 0.15 and kER =0.07

(a) (b)

(c) (d)

Figure 4. These graphs Figure 4(a)-Figure 4(d) show the results of frequency modulation Ca2+ oscillations
IP3=0.35, IP3=0.32, IP3=0.28, and IP3=0.27, respectively, for p = 0.13 and a = 1.15
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(a) (b)

Figure 5. The phase plane analysis diagram between Ca2+ and IP3 fraction with distinct values of the parameters

4 Discussion

The cytoplasmic calcium level remains constant while the calcium dynamic is in equilibrium. The
IP3 readings are related to the stability of the calcium level. At low IP3 values, Ca2+ oscillations
are weakly stimulated; at higher IP3 values, the modulation is altered by Ca2+ oscillations.
As IP3 increases in Figure 4, Ca2+ oscillations alter as Ca2+ concentration rises. The system
eventually finds a stable state and loses its oscillation behavior at a certain value of IP3. The
experiment demonstrated that adding Aβ directly increases Ca2+ dependent fluorescence, which
is an indication of intracellular Ca2+ levels [30]. According to the findings, Aβ does not directly
bind with the IP3 receptor; rather, it stimulates the synthesis of IP3 through G-protein-mediated
activation of PLC, which opens IP3 receptors and causes intracellular Ca2+ liberation. As a result,
even though IP3 is digested in tens of seconds, IP3 are actively activated in the presence of Aβ and
last for several minutes or hours. The Ca2+ oscillations appear and attain an equilibrium state for
a specific range of IP3. Figure 3 shows how Ca2+ oscillations alter modulation as rL (Ca2+ leakage
rate from ER) increases and reaches the steady-state at a greater level of Ca2+ concentration. At a
specific value of rL, the oscillation vanishes, and the concentration of Ca2+ achieves the steady-
state. The Ca2+ oscillations appear and achieve an equilibrium state for a specific range 0.08 to 0.15
of rL. Calcium dynamics is in equilibrium when the cytoplasmic calcium level is constant (dc/dt =
0) and the percentage of inactive IP3R remains constant (dh/dt = 0). The calcium oscillations in
Figure 4(a)-Figure 4(d) vary differently as IP∗

3 (Baseline value of IP3) decreases and eventually
disappear when IP∗

3 gets closer to a stable state. The calcium leakage rate from the ER causes the
calcium concentration to stabilize. The calcium oscillation appears and reaches an equilibrium state
for the 0.27 < IP∗

3 < 0.36. For a specific stimulation intensity, both the range and amplitude of
calcium oscillations increase within the specified range. The highest value of the calcium responses
in the amplitude modulation encodes the IP3 level. It is closely related to how strongly the stimulus
acts on the cell. Changes in IP3 cause calcium responses in the frequency modulation and the
information contained in those interspike intervals is encoded. IP∗

3 must fluctuate dynamically
under the influence of Aβ in order to duplicate the reaction in Ca2+. Examine the effect of
membrane potential and consider model solutions for various IP∗

3 concentration levels once Aβ is
fixed. In an experimental situation, IP∗

3 can be photoreleased simultaneously throughout a cell.
IP∗

3 diffusion is constant and minimized under these conditions. The model can demonstrate
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Ca2+ oscillations, indicative of various cell types, by varying the amount of IP∗
3 accessible in the

cytoplasm. These oscillation patterns are necessary for cells to maintain appropriate concentration
gradients and recover homeostasis after a triggering event. In the presence of Aβ, model Ca2+

oscillations emerge and disappear due to transitions through amplitude modulations as IP∗
3 grows.

Dynamic transitions across (Figure 5) can account for both the increases in Ca2+ oscillations and
the observed aberrant Ca2+ signals through phase-plane analysis. While there has been some
accumulation of Aβ in an AD environment, it is assumed that this quantity stays constant over the
course of our simulation. Aβ can accumulate to produce large amplitude oscillations and elevated
steady-state values. A range of behaviors are displayed by the corresponding model solutions:
aberrant Ca2+ signals, steady-state Ca2+ signals, and stable periodic solutions. An essential
second messenger in the neurological system is intracellular Ca2+ regulation. The signaling
pathways in neurons that govern neurotransmitter release, metabolism, gene expression, plasticity,
development, proliferation, and cell death are known to be mediated by Ca2+. Because of this,
Ca2+ might be very important in the pathophysiology of AD. Unfortunately, understanding exactly
how Aβ affects various intracellular regulating mechanisms and components is challenging due
to the complexity of Ca2+ signaling. Through the decoupling of specific components by various
investigations, we can better comprehend intracellular Ca2+ signaling by combining these theories
into a whole-cell computational model.

5 Conclusion

In the current study using the neuron-astrocyte model, the synaptic connection initiates diffusions
of the gliotransmitters 2-AG and glutamates. The solution graphic shows how variable-parameter
Ca2+ frequency and amplitude modulation of leak flow is impacted by mitochondria, NCX, and
Aβ. The proposed model combines cell activation and intracellular signaling. A mathematical
model is developed to accurately quantify the Ca2+-mediated astrocytic exosome exocytosis in AD
that is driven by Amyloid-beta. Our model indicates that increasing the amount of Aβ can lead to
aberrant signals and changes in homeostasis levels. A change in intracellular Ca2+ homeostasis
can have an impact on the cascade of apoptotic signals. A comparison analysis was performed
to quantify the effects of different components related to mitochondria, NCX, and Aβ the leak
fluxes on the calcium signaling process through the amplitude and frequency modulation. They
do, however, transform into exosomes produced by astrocytes in AD, which have the potential to
harm neurons. This computational model tracks the influence of numerous interrelated biological
pathways, which can aid in our understanding of complicated cellular activity in an AD context.
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