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This research presents a comprehensive investigation into the accurate estimation 
of shear strength in rectangular reinforced concrete columns through advanced 
machine learning (ML) models. The study addresses the intricate challenge posed 
by shear strength complexity, which is crucial for evaluating column stability and 
ensuring structural integrity. Building upon a substantial dataset comprising 545 
experimental observations sourced from diverse literature, this research 
establishes a robust foundation for predictive modeling. Four distinct ML 
regression models, Random Forest, Decision Tree, XGBoost, and LightGBM, are 
meticulously evaluated for their performance. The evaluation employs 
established metrics, including R2, RMSE, MAE, and MAPE to quantify their 
predictive capabilities. The outcomes highlight the models' robustness in 
capturing nuanced variations in shear strength, with impressive R2 values ranging 
from 93.6% to 93.9%, showcasing their exceptional ability to elucidate intricate 
shear behaviors. Furthermore, comparative analysis indicates the slightly superior 
performance of the Random Forest over the Decision Tree, highlighting the 
efficacy of ensemble methods in this context. Extending the exploration to 
include XGBoost and LightGBM, the study showcases their potential as accurate 
shear strength predictors. The performance of the models is validated through 
scatter plots and error distribution plots, confirming accurate shear strength 
predictions across various scenarios. This research significantly advances 
structural engineering methodologies by demonstrating the potential of ML to 
enhance shear strength estimation accuracy. The findings not only underscore the 
exceptional performance of ML models but also provide valuable insights into 
their comparative effectiveness, paving the way for enhanced structural 
assessments in columns. 
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1. Introduction 
 
Reinforced concrete (RC) columns are crucial structural elements in the field of civil engineering, providing 
essential support and stability to buildings and infrastructures worldwide (Özyüksel Çiftçioğlu & Naser, 2022). 
These columns are designed to withstand a variety of forces, including compression, bending, and shear. Although 
significant research has been conducted to accurately predict their behavior under various loading conditions, one 
particular aspect that requires the utmost attention is the accurate estimation of shear strength in RC columns (Park 
et al., 2012; Zhou & Liu, 2010). 
Shear strength plays a pivotal role in determining the overall structural integrity and safety of RC columns. Unlike 
compression and bending forces, which are relatively more predictable, shear forces exert complex effects on these 
columns, making their accurate estimation a formidable challenge. Shear failure can occur suddenly and 
catastrophically, leading to the collapse of the entire structure. Therefore, a precise prediction of shear strength is 
of paramount importance to ensure structural reliability and avoid potential disasters (Wong & Kuang, 2014). 
The implications of underestimating or overestimating the shear strength of the RC columns are profound. If the 
shear strength is underestimated, it could lead to inadequate reinforcement or a lack of appropriate design 
measures. This, in turn, increases the risk of premature shear failure, compromising structural stability, and posing 
a threat to the safety of occupants. However, overestimating shear strength can result in an overly conservative 
design, leading to unnecessary material and financial costs. Therefore, achieving an accurate prediction of shear 
strength is essential not only for safety but also to optimize construction practices and resource allocation. 
The challenges in accurately estimating shear strength arise from the intricate interplay between various factors 
influencing the behavior of RC columns. These factors include concrete strength, reinforcement detailing, column 
dimensions, loading conditions, and boundary constraints. Researchers and engineers face the ongoing task of 
developing reliable models and techniques to capture complex shear behavior and accurately estimate the shear 
strength of RC columns. 
Machine learning (ML) has emerged as a promising approach to address the challenges associated with accurately 
estimating shear strength in RC columns. ML techniques leverage the power of data-driven analysis and 
computational algorithms to uncover intricate patterns and relationships within complex systems (Babaee 
Tirkolaee et al., 2020; Khalilpourazari et al., 2020; Khalilpourazari & Hashemi Doulabi, 2022; Moslemi et al., 
2021). In the realm of civil engineering, ML offers a unique opportunity to improve our understanding of shear 
behavior by integrating a multitude of influencing factors and their interactions. Using historical data on RC 
column performance and behavior under diverse loading conditions, ML models can learn from this information 
and make generalizations accordingly. This allows them to make predictions about shear strength that go beyond 
the limitations of traditional analytical methods (Emam et al., 2021; Zavvar Sabegh et al., 2014). ML algorithms, 
such as decision trees, support vector machines, neural networks, and ensemble methods, can be trained on datasets 
comprising various column geometries, material properties, loading scenarios, and failure modes. The models can 
then capture intricate nonlinear relationships that might be challenging to express through conventional equations 
(Khalilpourazari & Pasandideh, 2016). One of the significant advantages of using ML for shear strength estimation 
is its adaptability to changing conditions and new data. As new research findings and experimental data become 
available, ML models can be updated and refined, continuously improving their accuracy (Hashemi Doulabi & 
Khalilpourazari, 2023; Khalilpourazari & Doulabi, 2021; Mohammadi & Khalilpourazari, 2017; Naser & 
Ciftcioglu, 2022; Naser & Çiftçioğlu, 2023; Özyüksel Çiftçioğlu, 2023).  
Traditional methods often fail when confronted with the intricate and multifaceted nature of shear strength in RC 
columns. The variation in material properties, geometric configurations, and loading conditions poses challenges 
that traditional approaches struggle to address comprehensively. This inadequacy not only highlights the 
limitations of conventional methods but also creates a void in the literature on robust and universally applicable 
models for shear strength prediction. The gap in the literature becomes increasingly evident when considering the 
diverse scenarios and configurations encountered in real-world applications. Conventional methods, relying on 
simplified assumptions and empirical equations, may lack the flexibility and adaptability required to capture the 
intricate interplay of factors influencing shear strength in RC columns. As a result, there is a compelling need for 
advanced methodologies that can surpass the limitations of traditional approaches and offer more accurate and 
versatile predictions. This research seeks to address this gap in the literature by introducing ML as a powerful tool 
for shear strength prediction in RC columns.  
Integration of ML into the realm of civil engineering leads to a significant change in the approach to estimating 
shear strength in RC columns. It allows for a more holistic and data-driven understanding of this complex 
phenomenon, enabling more accurate predictions and better-informed design decisions. As researchers and 
practitioners continue to bridge the gap between traditional engineering principles and modern data-driven 
techniques, the potential to optimize structural safety, construction practices, and resource allocation remains a 
compelling prospect. 
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2. Database 
 
A comprehensive compilation of 545 experimental data sets on rectangular RC columns has been meticulously 
gathered from the literature (A. & O., 1984; Ahn & Shin, 2007; Belkacem et al., 2019; Dinh et al., 2019; Eom et 
al., 2014; Ghannoum et al., 2012; Goksu et al., 2014; Ho, 2012; Hugo et al., 2016; Hwang & Yun, 2004; Karbasi 
Arani et al., 2013, 2014; Lam et al., 2003; Y.-A. Li et al., 2014; Y. Li et al., 2018; Marefat et al., 2006; Melo et 
al., 2015; Shi et al., 2021; Woods et al., 2007; J. Zhang et al., 2020; Y. Zhang et al., 2019). The investigation 
requires the provision of ten crucial input parameters, including geometric dimensions, bar specifications, material 
properties, and axial load (P), to accurately estimate the shear strength of RC columns (Vmax). The geometric 
dimensions encompass the height of the column (L), the width of the cross-section (B), and the length of the cross-
section (H). Reinforcement details constitute the longitudinal reinforcement ratio (ρl), the transverse reinforcement 
bar ratio (ρh), and the spacing of transverse reinforcements (s), all of which significantly influence the capacity of 
the column to resist shear forces. Incorporating the properties of the material is of utmost importance, and we take 
into account the yield strength of both longitudinal (fyl) and transverse (fyw) reinforcing bars, as well as the 
compressive strength of the concrete (fc). These characteristics of the material directly affect the overall 
performance and structural integrity of the RC columns under varying load conditions. The descriptive statistics 
for the variables are presented in Table 1, covering the minimum, maximum, mean, and standard deviation values. 

Table 1. Descriptive statistics of the dataset 
  L B H ρl ρh s fc fyl fyw P Vmax 
min 225.00 108.50 100.00 0.20 0.01 20.00 20.00 77.06 215.00 0.00 13.34 
max 3000.00 610.00 610.00 4.50 4.00 457.20 141.00 745.00 1470.00 5491.75 982.00 
mean 1285.87 284.20 301.00 2.15 0.95 101.41 49.12 447.90 496.88 1135.67 228.61 
st dv 651.85 109.51 115.65 0.70 0.94 78.54 27.37 79.71 226.32 1083.46 175.22 

Figure 1 illustrates a visual representation of the colormap correlation matrix. This matrix effectively portrays the 
relationships between variables within the dataset. Notably, the colors red and blue denote strong positive and 
negative correlations, respectively. The correlation matrix distinctly reveals that variables B (cross-section), H 
(cross-section length), and P (axial load) exhibit a significant correlation coefficient of +0.6 in relation to the shear 
strength of the RC columns. Furthermore, it should be noted that the variable fc (compressive strength of concrete) 
has a negative correlation coefficient of -0.1 with compressive strength. 

 
Figure 1. Correlation matrix of variables in the dataset 



Özyüksel	Çiftçioğlu	 	 												 					 	 																																																JTOM(8)1,	279-289,	2024	

282 
 

 
3. Methodology 

3.1. Random Forest  

Random Forest (RF) is a powerful and widely used ensemble learning technique in the field of ML (Breiman, 
2001). It is renowned for its robustness, versatility, and excellent predictive performance in both classification and 
regression tasks. RF has gained popularity due to its ability to handle complex data sets and mitigate issues like 
overfitting. The method is an extension of the DT algorithm, and it combines multiple individual decision trees to 
form a more accurate and reliable predictor. The fundamental principle behind RF lies in aggregating the 
predictions of multiple decision trees, thereby forming a forest of trees. Each tree in the forest is trained on a 
random subset of the data, and at each split, a random subset of features is considered. This randomness introduces 
diversity among the trees, reducing overfitting and enhancing the generalization ability of the model. During the 
prediction phase, the final output is determined by averaging (in regression) or voting (in classification) the outputs 
of individual trees, resulting in a more robust and accurate prediction. In the classification context, RF constructs 
multiple decision trees during the training phase (Liu et al., 2021; X. Zhang et al., 2021). Each decision tree is 
built on a random subset of the training data, and at each split, a random subset of features is considered. During 
inference, each decision tree in the forest independently predicts the class label for a given input, and the final 
class is determined by majority voting. On the other hand, RF is equally adept at solving regression problems. In 
regression tasks, the algorithm assembles multiple decision trees just as in the classification setting, but the 
predictions from each individual tree are averaged instead of voting. Consequently, the final prediction is the mean 
of the results from all decision trees. This averaging process ensures that the RF regression model can capture 
complex nonlinear relationships between features and the target variable while also mitigating the effects of 
outliers and noise. RF finds extensive applications in various engineering domains. In civil engineering, it can help 
predict structural integrity, soil stability, etc. The proficiency of the algorithm in handling high-dimensional data 
and accommodating intricate non-linear relationships renders it an invaluable instrument for addressing intricate 
engineering challenges and augmenting decision-making endeavors within diverse industrial contexts. 

3.2. Decision Tree 

The Decision Tree (DT) algorithm is a widely employed and interpretable ML technique that serves as a powerful 
tool for classification and regression tasks (Quinlan, 1986). Its fundamental principle lies in partitioning the feature 
space into a hierarchical structure of nodes, where each node represents a decision based on a particular feature, 
leading to subsequent splits until the leaf nodes produce the final predictions. Decision trees are extensively utilized 
due to their ability to handle categorical and numerical data, their ease of interpretability, and their ability to capture 
nonlinear relationships between features (Naser, 2021; Rajakarunakaran et al., 2022). The construction of a DT 
starts with selecting the most informative feature of the dataset to create the root node. The subsequent nodes are 
generated by iteratively choosing the best feature and its optimal split point, which maximizes information gain or 
minimizes impurity. Information gain measures the reduction in uncertainty after a split, whereas impurity refers 
to the homogeneity of the target values within a node. The recursive partitioning process continues until predefined 
termination conditions are met, such as reaching a specified depth or having a minimum number of data points in 
a leaf node. To avoid overfitting, techniques such as pruning or setting a minimum number of samples per leaf are 
commonly used. Decision trees find wide-ranging applications in engineering disciplines due to their versatility 
and comprehensibility. Their capability to handle large datasets and effectively model complex systems has 
positioned Decision Trees as a valuable asset in the engineering domain, enabling informed decision-making and 
problem-solving across various sectors. 

3.3. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a state-of-the-art ML algorithm renowned for its exceptional predictive 
capabilities (Chen & Guestrin, 2016). XGBoost has gained widespread popularity in both academia and industry 
due to its outstanding performance across a diverse array of tasks, including regression, classification, and ranking 
(Nguyen-Sy et al., 2020; Nguyen et al., 2021). The efficacy of the algorithm comes from its ability to blend the 
advantages of boosting and gradient descent, enabling it to handle complex high-dimensional data with remarkable 
accuracy and efficiency. XGBoost operates by building an ensemble of weak learners, typically decision trees, in 
a sequential manner. Each subsequent tree aims to correct the errors of the previous ones, progressively refining 
the predictions. The algorithm employs a combination of regularization techniques, such as regularization L1 and 
L2, to avoid overfitting and improve generalization. Additionally, it employs a novel "gradient boosting" strategy 
to minimize a cost function by iteratively fitting weak learners to the negative gradient of the loss function. This 
technique facilitates optimizing the performance of the model by minimizing prediction errors. In the realm of 
engineering, XGBoost has found extensive applications across various domains. Its speed and adaptability enable 
engineers to effectively handle large-scale datasets and complex relationships, making XGBoost an indispensable 
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tool to solve intricate engineering challenges and improve decision-making processes in diverse engineering 
applications. 

3.4. Light Gradient Boosting Machine 

Light Gradient Boosting Machine (LightGBM) is a gradient-boosting framework that has gained remarkable 
popularity in the field of ML due to its efficiency and high performance (Ke et al., 2017). It is based on the concept 
of gradient boosting, which involves sequentially adding weak learners (typically decision trees) to improve the 
accuracy of the model. What sets LightGBM apart is its focus on optimizing both training speed and memory 
consumption, making it well-suited for handling large-scale datasets and computationally intensive tasks. The core 
idea behind LightGBM lies in its novel approach to tree construction and leaf-wise growth strategy. Unlike 
traditional depth-first tree growth, LightGBM adopts a leaf-wise approach, where it selects the leaf node with the 
maximum decrease in the loss function during each tree expansion. This technique significantly reduces the 
number of nodes and the depth of the tree, thereby reducing computation time and memory usage (Ma et al., 2022). 
Additionally, LightGBM employs a histogram-based method to quantize feature values into discrete bins, further 
accelerating the training process. The algorithm also offers various regularization techniques, such as L1 and L2 
regularization, to prevent overfitting and enhance generalization. LightGBM finds wide applications in various 
engineering domains, due to its ability to handle large-scale datasets and efficiently tackle complex problems. The 
superior performance and scalability of the algorithm make it a valuable asset in engineering domains where data 
volume and computational resources are paramount concerns, empowering engineers to make informed decisions 
and deliver efficient and accurate solutions. 

4. Results and Discussion 
 
In this study, a comprehensive analysis employing four distinct ML models was conducted to perform regression 
analyses. The primary objective of the investigation was to accurately predict the shear strength (Vmax) of the RC 
columns. The dataset was split into training and test sets using the train_test_split function from the scikit-learn 
library, with a test size of 25% and a random state of 0. Specifically, 75% of the data was used for training the 
models, while the remaining 25% was reserved for testing. This approach ensures that the models are trained on a 
sufficiently large portion of the data while also allowing for robust evaluation on unseen data. The regression 
models used in the study were RF, DT, XGBoost, and LightGBM. The parameters of these ML models, including 
maximum depth, learning rate, and other hyperparameters, were detailed in Table 2. It is important to note that 
Python programming language (Van Rossum & Drake Jr, 1995), along with its libraries such as scikit-learn and 
XGBoost, was utilized for implementing and training these ML models.  

Table 2. Specifications of Machine Learning Models 

Model Parameters 

RF n_estimators=19, random_state=0, max_depth=None, min_samples_split=2 

DT max_depth=10, min_samples_split=2, random_state=42 

XGBoost n_estimators=100, max_depth=10, random_state=42, learning_rate=0.2, subsample=1.0, 
colsample_bytree=0.8 

LightGBM n_estimators=100, random_state=0, max_depth=10, min_child_samples=10 

The performance of each model was evaluated based on several key metrics, including Coefficient of 
Determination (R2),  Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE). The obtained results are summarized in Table 3. 

Table 3. Performance Evaluation of Regression Models 

Algorithm Data R2  RMSE MAE MAPE (%) 
RF Test 0.939 48.278 28.972 13.862 
DT Test 0.939 48.327 30.863 16.530 
XGBoost Test 0.937 49.048 27.119 12.215 
LightGBM Test 0.936 49.560 29.155 15.302 
RF Train 0.985 20.830 12.555 7.045 
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DT Train 0.998 8.411 3.586 2.055 
XGBoost Train 0.999 0.218 0.120 0.095 
LightGBM Train 0.994 13.372 8.493 4.729 

 
The results indicate strong predictive capabilities of the employed ML models, with R2 values ranging from 0.936 
to 0.939. These coefficients of determination suggest that the models can explain approximately 93.6% to 93.9% 
of the variability in the shear strength of RC columns. Moreover, the relatively low values of RMSE, MAE, and 
MAPE demonstrate the accuracy of the predictions and the robustness of the models across different algorithms. 
The RF and DT models yield comparable results in terms of R2, while the RF model outperforms slightly in terms 
of RMSE, MAE, and MAPE. This underscores the effectiveness of ensemble methods in capturing complex 
relationships within the dataset. Furthermore, both XGBoost and LightGBM exhibit promising results, 
demonstrating their potential for accurate shear strength estimation. It is worth noting that the observed MAPE 
values, ranging from 12.215% to 16.530%, indicate the percentage error in the predictions. This insight is valuable 
for assessing the practical utility of the models in engineering applications, as it provides an understanding of the 
potential variability in the estimated shear strength. 
In Figure 2, scatter plots illustrating the predictions of the four employed ML regression models are presented. 
These plots depict the relationship between the predicted shear strength values and the actual shear strength values 
for each data point in the test dataset. This visual representation enables a comprehensive assessment of the 
predictive performance of the model and provides information on its accuracy in the range of shear strength values. 
The scatter plots highlight the alignment of the predicted values with the ideal diagonal line, which represents 
perfect predictions. Notably, all four models exhibit a consistent pattern of predictions closely clustered around 
this diagonal line, indicating strong predictive capabilities. Despite slight variations, the scatter plots reveal that 
the predictions closely follow the actual values, affirming the models' ability to capture the underlying trends and 
relationships within the dataset. This observation is consistent with the quantitative results presented in Table 1, 
where metrics such as R2, RMSE, MAE, and MAPE indicated favorable predictive performance. Moreover, the 
dispersion of points around the diagonal line suggests that the models perform consistently across the entire range 
of shear strength values. This consistency is crucial in engineering applications where accurate predictions are 
essential across a broad spectrum of scenarios. The scatter plots further emphasize the proficiency of the RF and 
DT models, as their predictions align more closely with the ideal diagonal line compared to the other models. This 
alignment signifies the robustness of the models to handle the various patterns present in the dataset. The XGBoost 
and LightGBM models also demonstrate respectable alignment, reinforcing their viability for shear strength 
estimation. 
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Figure 2. Scatter Plots for Regression Models 
 

Figure 3 displays the error distribution plots corresponding to the predictions generated by the four distinct ML 
regression models. These plots illustrate the distribution of errors between the predicted shear strength values and 
the actual shear strength values across the test dataset. This visualization provides insight into the ability of the 
models to consistently estimate shear strength and the magnitude of errors associated with their predictions. The 
error distribution plots depict a symmetric distribution of errors centered around zero for all four models. This 
symmetry signifies that the models tend to produce predictions with balanced overestimations and 
underestimations, indicating the absence of systemic biases. While the majority of errors are clustered around zero, 
there are occasional instances of larger errors. However, these occurrences are limited and do not deviate 
significantly from the central trend. This observation aligns with the quantitative metrics reported earlier, such as 
the MAE and RMSE, which demonstrated relatively low magnitudes. Furthermore, the error distribution plots 
provide evidence of the consistency of the models in terms of error magnitudes across the entire range of shear 
strength values. This uniformity in the error distribution is an essential characteristic in applications where reliable 
predictions are crucial in various scenarios. The RF and DT models exhibit narrower error distributions, indicating 
their precision in generating predictions close to the actual shear strength values. This precision is consistent with 
the visual and numerical findings presented in the scatter plots (Figure 2) and the performance metrics in Table 1. 
The XGBoost and LightGBM models also demonstrate commendable error distribution patterns, indicating their 
potential utility for shear strength estimation tasks. 
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Figure 3. Error Distribution Plots for Regression Models 

5. Conclusions 

This research underscores the formidable potential of ML models in estimating shear strength, contributing 
substantially to advances in structural engineering methodologies. Research findings highlight the significant 
predictive capacity inherent in the ML models, demonstrating exceptional coefficients of determination ranging 
from 93.6% to 93.9% in relation to the variations observed in the shear strength of the RC columns. The 
comparative analysis highlights the effectiveness of the ensemble methods, with the RF model showing slight 
superiority in predictive performance over the DT model. Moreover, the expansion of the investigation to 
incorporate XGBoost and LightGBM models accentuates their promising role in precise estimation tasks related 
to shear strength. Scatter plots visually validate the models' proficiency in predicting shear strength values across 
a range of scenarios, while error distribution plots emphasize the models' balanced overestimations and 
underestimations, reinforcing their reliability. In essence, this study underscores the potential of ML models to 
significantly enhance shear strength estimation accuracy, thus contributing to the advancement of structural 
engineering practices. While this study provides valuable insights into the estimation of shear strength using ML 
models, several avenues for future research could be explored to further advance this field. One potential direction 
could involve investigating the applicability of advanced ML techniques, such as deep learning algorithms, in 
predicting shear strength with even greater accuracy. Additionally, incorporating more diverse datasets 
encompassing a wider range of structural configurations and material properties could enhance the generalizability 
of the developed models. However, it is imperative to acknowledge the limitations inherent in the present study. 
The reliance on experimental data entails inherent constraints regarding the extrapolation of findings to real-world 
applications within the field of structural engineering. Furthermore, the accuracy of the predictive models is 
contingent upon the quality and representativeness of the dataset, which may not fully encapsulate the intricate 
nuances of structural behavior across diverse operational conditions. Additionally, the narrow focus on shear 
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strength estimation may inadvertently disregard other pivotal factors influencing structural performance, including 
but not limited to material aging, variations in construction methodologies, and environmental influences. 
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