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1. Introduction

Numerous researchers in the disciplines of calculus, applied mathematics, and linear algebra, as well as other branches of
mathematics, have been interested in the Fibonacci and Lucas numbers. There are also other relationships that are written and
new number sequences, such as Pell and Pell-Lucas number sequences, are derived that are similar to the recurring relationships
of the Fibonacci and Lucas number sequences. The Pell numbers P, and the Pell-Lucas numbers Q,, are defined by

P11 =2P,+PFP,—1, for n>1,
where Py =0 and P; = 1, and
On+1 =20, +Qn-1, for n>1,

where Qg =2 and Q; = 2, respectively. In addition, we present several identities associated with the Pell-Lucas numbers and
relationship between the Pell numbers and the Pell-Lucas numbers for k € N.

Or+0ky1 = 4Py, (L.1)
Or+0ky2 = 8Py, (L.2)
OrOry1—4

01 +05++0; = (1.3)

2

We refer to [1, 2, 3] for further information on the Pell and the Pell-Lucas numbers.

M,, denotes the set of all n x n matrices. If any matrix P € M,, may be written as P = RRT or P=RTR, where R € M,, is a
lower triangular matrix with diagonal entries that are not negative, then this factorization is known as a Cholesky factorization.
Moreover, this factorization is unique if R is nonsingular.

A matrix S € M,, of the form

Sy 0 - 0
0 S»n 0
S:
0 0 - S
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in which S; € My, i =1,2,...k, and Z§=1 n; = n, is called block diagonal. This matrix is frequently described as S =
S11®Sn® - DSy

Many issues resulting from linear recurrence relations can be resolved using matrix methods, which are a significant instrument
(see, for example, [4]). Before we go on to matrix factorization, we need to first grasp Cholesky factorization of the Pascal
matrix (see, for example, [5]). Furthermore, factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices
were presented by Lee et al. in [6]. The authors [7] discussed linear algebra of the k-Fibonacci and the symmetric k-Fibonacci
matrix. In addition to [7], a factorization of the Pascal matrix are provided in [8]. Zhang [9] also researched the Pascal matrix
and its generalization. Irmak and Kome [10] investigated the factorizations of the Lucas and the symmetric Lucas matrix. In
[11], factorizations and inverse factorizations of generalized k-Fibonacci matrices were proposed. The authors [12] discussed
the decomposition of Jacobsthal matrix and Jacobsthal-Lucas symmetric matrix, along with the inverses of these matrices. Kilig
and Tagc1 [13] gave the factorizations and eigenvalues of Pell and symmetric Pell matrices. Furthermore, for the eigenvalues of
the symmetric Pell matrix, they provided some relations and boundaries. Motivated by this paper, we define a new matrix as
follows. Then, in this paper we consider the factorizations and eigenvalues of Pell-Lucas and symmetric Pell-Lucas matrices.

Definition 1.1. Leti,j=1,2,...,n. Then, we define the Pell-Lucas matrix such that

Qi-jr1, i—j+1>0
AnZ[dij]Z{Ol] i it1<0°

Example 1.2. For n = 6 in Definition 1.1, then we have

2 0 0 0 00
6 2 0 0 0 0
A_ |14 6 2 000
=134 14 6 2 0 0|’
82 34 14 6 2 0
198 82 34 14 6 2

and the first column of Ag is the vector (2,6,14,34,82, 198)T. As a result, the matrix A, reveals a variety of interesting facts.

2. Factorizations

This section discusses the creation and factorization of our Pell-Lucas matrix of order n using the (0, 1,2)-matrix, which is
defined as a matrix whose elements are all either 0, 1 or 2. Let I, represents the order n identity matrix. Further, we define the

n X n matrices L,, A, and X} by
1 0 0 1 0 0
Ly=1(2 1 0|,L1=1]0 1 0f,
1 0 1 0 2 1
and Ly =Lo® I, k= 1,2,...,1Tn: [I]EBAn,],X] =15, X=05_30L_1,for3<k<n X,=1, 1 ®Ly_3, and X,, =L, _3.
Then we reach the following lemma.

Lemma 2.1. For k > 3, we have Ay - Li_3 = Ay

Proof. For k =3, we have A3 - Ly = A3. Let k > 3. By using the familiar Pell-Lucas sequences, and matrix product definition,
we get the following conclusion. O

Fori,j=1,2,...,n, we define a matrix
2, i=j
Ih=[yl=42, i=j+1 . (2.1)
0, otherwise

Also we can give the inverse of matrix I';, as follows:

1
_ i—j = P> i
L=y = (g iz 2.2)

0, otherwise

We can obtain the following theorem by using Lemma 2.1 and equation (2.1).
Theorem 2.2. The X;.’s and I',, can factor the Pell-Lucas matrix A, in the following way:

An =X1Xp-- -ann = FnX]X2 .. .Xn_
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Now we give the factorization of Ag in Example 1.2.

Example 2.3. From Theorem 2.2, for n = 6, we have

Ae = XiXoX3XaXsXel

Ie(BOL-1) (O Lo) (L®L1) (I ®L2)Lals

1 000 0O 1 000 0O 1 00 0 0O 1 000 0O
01 0 0 0O 01 0 0 0O 01 00 0O 01 0 0 0O
10 001 0 0O 001 0 00O 0010O0O0 |0010O00O00O0
|10 001 00 00 01 0O 0001 O0O0 002100
0000 1O0 00 0 01O 0 00 210 001010
o 00001 [0O0O0O02T1] |00O0T1TO0T1] [00O0O0O01
[1 0 0 0 0 0] [1 OO O0OO] [2 000 0 O
01 00 0O 2 1.0 0 0 O 220 0 00
021000 1 01 0 0O 022 000
01 01 00 0001 0O 0 02 2 0 0]
0 00 01 0 000 01O 0 00 2 20
o 0 6001 |00 0O0O0T1 [000O0 2 2]
Now, we give another factorization of A,,. Fori, j = 1,2,...,n, we define a matrix
. 0 0 - 0
Oi, j=1, o 1 -+ 0
Vn = [Vij} = 1 y i:j, s i‘e, Vn = . . . .
0, otherwise 0, 0 - 1

An elementary calculation leads to the next theorem.
Theorem 2.4. Forn>1, A, =V, (I ® V1) (LD Vu—2) - (L1 & V1).

The inverse of the Pell-Lucas matrix A, is easily found. We know that

1 00 1 0 0
Ly'=|-2 1 0|, L{={0 1 0|, and ;' =L,'®L
-1 .0 1 0 -2 1

Fork=1,2,...,n, we define Yk:Xk_l. Then Y; :X]_1 =1,

Y, :Xz_l =13 EBL:% =1, 72 {_12 ﬂ ,and Y, = L;_13. Also we can derive

0i/4 0 0 0
—0:/2 1 0 0

vol=|-0s/2 0 1 Ol and (h®Vyy) =LV
—0,/2 0 0 - 1

Utilizing Theorem 2.2 and Theorem 2.4, we derive the subsequent corollary.
Corollary 2.5. The inverse of the Pell-Lucas matrix A;;' can be factored by the Y;’s and T, ! as follows:
Al = WY, . hY =YY, . L]
= (LotVi) Vo (haVi) (e V), !
By Corollary 2.5, we get
1/2, i=j
-3/2, i—j=1
(D)™, i-jz2

0, otherwise

(2.3)
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Example 2.6. By (2.3), the inverse of Ag in Example 1.2 is

12 0 0 0 0 0

-3/2 1/2 0 0 0 0
|t 32 2 o 0 0
6 ~1 1 =3/2 12 0 0
1 -1 1 =32 1/2 0

-1 1 -1 1 =3/2 1)2

Definition 2.7. Fori,j=1,2,...,n, we define the symmetric Pell-Lucas matrix such that

Yo OFs i=j
By = [bij] = [bji] = | bij2+2bij1+4, i+1=],
bij_2+2b;;_1, i+1<j
where by g = 4.
So we get
bij=bj1 =2Q;, for j>1 (2.4)
byj=bj =8Pjr1, for j=2. (2.5)

Example 2.8. For n = 6 in Definition 2.7, then we get

4 12 28 68 164 396
12 40 9% 232 560 1352
28 96 236 572 1380 3332
68 232 572 1392 3360 8112
164 560 1380 3360 8116 19596
396 1352 3332 8112 19596 47320

jos]
)
Il

According to the Definition 2.7, the following lemma is derived.

—4
Lemma 2.9. For j >3, we get b3 j = Pj_3 (8P4 +4)+Pj_» <Q3Q;>
—_ 02 2 2 03044 : _ _
Proof. From (1.3), we know that b33 = Q7+ 05 + 03 = Y On the other hand, since Py = 0, and P; = 1, then we
—4 —4
have b33 = % =P (8P +4)+P (Q3Q;) . By induction, the proof is completed. O

We know that b3 1 = b1 3 = 203 and b3 > = by 3 = 8P4 by (2.4) and (2.5). In addition, we get that by | = by 4, bap = b3 4, and
b4 3 = b3 4. By induction, the following lemma is reaced.

—4
Lemma 2.10. For j >4, we have by j = Pj_4 (8P4 +4+ Q304) + Pj_3 (Q4Q5)

2

By using Lemmas 2.9 and 2.10, we can derive bs 1, bs 2, bs 3, and bs 4. From these conclusions and Definition 2.7, we reach
the following lemma.

Lemma 2.11. For j > 5, we get

0506 —4
bs,j=Pj_5(8P4+4+ Q304+ Q4Q05) +Pj_4 <52 .
P iti i 222 D0 —4 . ,
roof. From (1.3), and Definition 2.7, since bs s = Q1 + 05+ 05+ 05 + 05 = — by induction, the proof is completed.

O
Utilizing Definition 2.7, Lemmas 2.9, 2.10 and 2.11, we arrive at the following lemma through induction on the variable i.

Lemma 2.12. For j > i > 6, we have

d iQir1—4
b j=P_; <8P4 +4+ Z Qk—le) +Pj_it1 (QQ;I> .

k=4
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We can easily obtain the following corollary by using Pell numbers and Pell-Lucas numbers.

Corollary 2.13. For the symmetric Pell-Lucas matrix By, we get

1 1 ..
5Q,‘+j+1 — EQ/—i+1+(—1)i+l + (=1 2P, i<

By = [bij] =
1 1 S
5Qj+j+1 - EQi—j+1+(—1)-i+1 +(—1)/*! 2P, i>]

Lemma 2.14. Leti,j € Z* and i > 3. Then we have

i—2 . .

i—0— 3 1 Q‘fi B lg
Y () by - Fbijt5bij= {0’ ! . j (2.6)
k=1 )

Proof. Assume that i < j. Now, we prove the theorem by the induction method on i. Let i = 3. From Corollary 2.13, we can
derive

3 1 1 1 3 3 1 1
brj— Ebz,ﬁ- 5173.,] = (ZQj+2 — 59+ +2Pj—1> + <_4Qj+3 + 4Qj—2+3Pj_2) + <4Qj+4 — 791 +Pj—3>
= 0Qj.

Suppose that the hypothesis is true for i. For i+ 1, by using equations (1.1), (1.2) and Corollary 2.13, we find

© i1k 3 1 = i—2—k 3
Y (-1) bej—=3bijt5biv; = biij- Y (-1 bej—3

1
bij+3biv1
k=1 k=1

3 1 3 1
= bi_1;+ <—2bi—1,j + Ebi,j - Qj—i+1) - Ebi,j + ibi+1,j
1 1
= b= bijt Sbivi = Qj-in
1 1 i
= (=294t 7@ 2y — (CD) P

1 .
+ Ql+]+1 + ZQJ i+1+(—1 )[+1 +(1)’2le>

2

l .
<4Q1+]+2 Qi iy +(1)1Pji1> = Qj-it1
(-
(=

+

Ql+} 2QH1+1+Q1+1+2)+411(Qj,i+2+( erZQj i+ 14 ( 1)’+17Qj7i+(71)i)
1) ( j—ivt + 2P i+ Pj i 1)_Qj*i+l

_ Z(fo e 20 ) — Qi

= 4Pji_it1—Qj-it1

= Qj-i+Qj-it1—=Qj-it1

= Qji

+4>\~

The proof for i > j can be completed in a similar way. O

Theorem 2.15. Forn € Z™", we have Y,)Y,_1 ... Y2Y1F;1Bn = AZ and the Cholesky factorization of By, is given by B, = A,,A,{.

Proof. By Corollary 2.5, Y,,Y,, ... oY, = A1, So, if we get A, 'B, = AT, then the theorem holds. Let A, !B, = [cij]- So,
from (1.1), (2.3), (2.4), (2.5) and Lemma 2.14, we find the following:
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1

§b1j7 l: 1
3 1 . .

*§b11+5b217 i=2,j=1

A By = [ey] =

3 1 . .

7§b1]‘+§b2]‘, i=2,j>2
. o 3 1 )

Yo (=1 : kbk,j_ibifl,j‘FEbi,j, i>3

0j, i=1

-301+0», i=2,j=1

—30;+4Pj 1, i=2,j>2
- i—2— 3 1 .

i (=) by - Fbi-1j+5bij, 23

0j, i=1

0, i=2,j=1

== ijl, 1= 2,] >2

Qj—l'+13 123al<.]

0, i>3i>]

Qj-iv1, i<

0, i>]j

= Al
Hence, the Cholesky factorization of B, is given by B,, = A,,A,{. O

Now we give the Cholesky factorization of Bg by using A¢ in Example 1.2.

Example 2.16. By Theorem 2.15, since the Cholesky factorization of Bg is AéAg , then we get

4 12 28 68 164 396 2 0 0 0 0O 2 6 14 34 82

12 40 9% 232 560 1352 6 2 0 0 0O 0 2 6 14 34

B — 28 96 236 572 1380 3332 |14 6 2 0 0 O 00 2 6 14
67 168 232 572 1392 3360 8112 (34 14 6 2 0 0 00 0 2 6
164 560 1380 3360 8116 19596 82 34 14 6 2 0 00 0 0 2

396 1352 3332 8112 19596 47320 198 82 34 14 6 2 00 0 0 O

198
82
34
14

6
2
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. _ -1, .
Moreover, since B, ' = (A,{) A, we obtain

2(n+1-i)+1 ..
, i=j<n
2
! i=j=n
47 =J=
4(n—i)+1
_%, it1=j<n
B,' =Byl =Bl = : 2.7)
23 i+l=j=n
47 =J=
(=) (n4+1—j), i+l1<j<n
_1)/t
( 2) , i+1<j=n
Example 2.17. By (2.7), the inverse of Bg in Example 2.8 is
[ 13/2  -21/4 4 -3 2 —1/2]
-21/4 11/2 -17/4 3 -2 1/2
4 —17/4 9/2 —13/4 2 —1/2
B ' =
-3 3 —13/4 7/2 -9/4 1)2
2 -2 2 -9/4 5/2 -3/4
| —1/2 1/2 —1/2 /2 =3/4 1/4 ]

From Theorem 2.15, we get the following corollary.

Corollary 2.18. Forn e Z*, we get

2
(Q"2+1> —2, ifniseven
Qn+1Qn +0uOn-1+--+ 0201 =
(Qn+l)2 . .
T 6, ifnisodd

3. Eigenvalues of the symmetric Pell-Lucas matrix B,

In this section, we consider the eigenvalues of the symmetric Pell-Lucas matrix B,,.

LetW ={r=(ri,r2,...,;a) ER* : 1 >rp>--->r,}. Forrnse W, r<sif Y\ i <Y s, t=12,...,n—1, and if
t = n, then equality holds.It is stated that s majorizes r or that r is majorized by s when r < s. The condition for majorization
can be written as follows: for s € W, r < sif Y _qrn—i > Yt osu—i, t =0,1,...,n—2, and if r = n— 1, then equality holds.

The following is an exciting simple fact:

n .
(F,7,...,F) < (r1,r2,...,r), where 7= izt ”i,
n

We refer to [14] and [15] for more information about majorizations.

An n x n matrix D = [d;;] is doubly stochastic if d;; > 0 fori,j=1,2,...,n, ¥ djj =1, j=1,2,...,n, and Yidij=1,
i=1,2,...,n. Hardy et al. [16] show that there must exist a doubly stochastic matrix D such that r=sD. This is the necessary
and sufficient condition for r < s.

It is a well-known fact that the eigenvalues and the main diagonal components of a real symmetric matrix are both real
numbers. The concept of majorization provides the precise link between the main diagonal components and the eigenvalues.
The diagonal components symmetric matrix majorize the vector of eigenvalues of the matrix.
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By Definition 1.1, we have det (A,) = 2". Also by Theorem 2.15, since B, = A,AL, we have det (B,) = 2*". Let A1, A2,..., Ay

be the eigenvalues of B,. Since B, = A,Al and Z —1 Q2 QHZI O —2 by (1.3), the eigenvalues of B,, are all positive and
(Q”+21Q" —2, Q"%"‘l —2,...,% —2) < (A, A2, M), 3.1)
In [17], we arrive at the combinatorial property
15]
no(n—m\_,_om
Q":an( N )2" 2 forn 0. (3.2)
m=0

Hence, we obtain the following corollaries.

Corollary 3.1. Let A1, A3, ..., A, be the eigenvalues of By,. Then we have

2] nd L nem 1 )
Yonso™ — 7 2
n—m+1 m .
1 —2n—1, ifniseven
MtA+--+A =
< I_%J n+1 <n_m+l>2n—2m+l>2
m=0 . _ 1
— 1
nom ; m —on—3, ifnisodd
Proof. From (3.1), and Corollary 2.18, we find
)~1+)~2+"'+}Ln _ Q11+1Qn+QnQr£—l+"'+Q2Ql_2n
2
%—Zn—l, if niseven
2
(Q”T“)—zn—a if nisodd
By (3.2), the proof is completed. O
Corollary 3.2. Ifnis an even number, then we have
ot 2
Renl n+l (mn—m+1 N
4nly < Z ( >2"— " —8n—4 <4nd;.
= n—m+1 m
If n is an odd number, then we have
[ ’
1 — 1
ad< | Y ”+<” m )2"2'"“ —8n—12 < 4nl,.
= n—m+1 m
m=0
Proof. LetS, =X +A,+---+A,. Since
S, S S
(",",...,") < (A, 22,0, M), 3.3)
n’'n n
we have A, < % < Ai. Then by Corollary 3.1, the proof is completed. O
From (2.7), we have
2n+1 2n—1 751 1 1 1 1 1 1
, yees =y == | < | —, —, R L ey I 34
( 2 2 22 4) (l,, FRRY BSLELY W /11> 4
Therefore, there exists a doubly stochastic matrix H = [h;;] such that
hiv hiz - hip
2n+12n—1 751\ (1 1 11 1) |kt b2 o
2 ) 2 7"'32’274 - An n 17 "3&37&271{1 E E ... .
hnl hn2 hnn

That is, we find Ay + 5 —hog 4 -y =  and hiy +hoy + -+ = 1.
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Lemma 3.3. Foralli=1,2,....,n,we get h, (;_1), < nll

Proof. Assume that h, _;_1), > n}f] . So

1),n
A A

Lk An
n—1 n-1 n—1
1
(At ).

hln+h2n+"'+hnn >

Since hip +hoy + -+ +hyy = 1 and Yy A; > n, this yields a contradiction, then /,_(;_y, < ;= O
For k € Zt, we define
ko]
T, = ZI (3.5)
B 2k+1+2k71+2k73+ +74_54_1
n 2 2 2 2 2 4
2P +4k-5
= 2 .
Hence we obtain
T, T, L LY (1 1 11
n'n’ " n’n I R P Pl
1
Theorem 3.4. Let2<nc€ZVv, S, =M +A+ -+ A, and U, = (S,,—;). Then we have
n— n
n
(T;UmUm-n,Un) < (11,2,2,...,}1,”).
n
Proof. Fori,j=1,2,... ,n, we define an n X n matrix
811 g2 812 - 812
821 822 822 - 822
A R (3.6)
8nl 8n2 8n2 ' En2
. 1 1—gi
where fori=1,2,...,n, gii = i and gpp = j’l{ )
From (3.5) and (3.6), fori =1, 2 .,n, we have
+eu++ - PR
gu+gi1+t-+8u = )
Tn 1 TnAZ Tnln
l—gn  1—gu 1—gn
grtgn+-+gn = Sy 28 Ty
n—1 n—1 n—1
_ l—gi
gnt(n—1l)gn = gu-&-(n—l)ﬁ—l»
where g;; > 0 and g;» > 0. Then, G, is a doubly stochastic matrix. Also, we get
1 1
A A A = A A An —
1811 + 42821+ - + Angni T/'Ll+ 2 n/l +-+ Tn/ln T

1_ n
Mg +Agn+-+gn = M( 811>_~_l< 821) ( 1)
n—1 n—1

Therefore, we have

n
<T7Un7Una"'7Un) = ()‘17)’2a~--a)~n)Gna

and so, we obtain

(;,UH,U,,,...,U,,) 2 A Ay A).
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Lemma 3.5. Fork=2,3,...,n, we get
1
e > —
k — Tk7
where Ty = 72]‘2*;”"5.
Proof. By using (3.4), for k > 2, we have
1 L 1 L 1 T 1 n 1 <1+5+7+ +2k—1+2k+1_T
M A A3 Mo M4 272 2 2 K
Therefore, we have
! < T + ! + ! +-t <T
A\ T A M) =0
and so, the proof is completed. O
1
Theorem 3.6. Let2<ncZ,S, =M +b+ -+, and U, = — (S,, — ;1) Then for k < n—?2, we have
n— n
n
Mmo< 2]
i=2
k—1 1
A < (k+1U,— .
n—k X ( + ) n l;() Tnfi
Proof. By Theorem 2.15, we know that det (B,,) = 2*" = A Ay - -- A,. By Lemma 3.5, we get
2 1
2N = Ay Ay > _
1A A > A I:I T
i=2
and so, we obtain A; < 2% [T, Ti. By Theorem 3.4, for k < n—2, we have
A+ At + Ay ) + Anik < (k+1) Uy,
and so, by Lemma 3.5, we get
Mk < (k+1)Un_()vn+)~n—l+"'+)~n7(k71))
k—1 1
< (k+1)U, - Y,
i=0 tn—i
Then the proof is completed. O

By applying Theorem 3.4 and Lemma 3.5, we can readily derive the subsequent corollary.

Corollary 3.7. Let2 <n € Z" and k < n—2. Then we have

2 <nm <2,
T, i=2
1 Y k=1
<A (< (k+1U,— ,
Tk "k ( ) " i=0 Thi
1
7, <A < Uy,

4. Conclusions

In this article, we introduce the Pell-Lucas A, and the symmetric Pell-Lucas B, matrices. We consider the linear algebra
of these matrices. Firstly, we construct two different factorizations of Pell-Lucas matrices by the new matrix I',,. We find

the inverse of the Pell-Lucas matrix A, !,

and present the factorization of A,’!. Then, we derive the components [b;;] of the

Pell-Lucas matrix B,,, and construct the Cholesky factorization of B,,. This factorization is A,,A,{. We determine the inverse of
the symmetric Pell-Lucas matrix B, '. We give some interesting relations which include the eigenvalues of Pell-Lucas matrices.

Moreover, we obtain the lower and upper boundaries for the eigenvalues of B,, by majorizations.
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