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Abstract. This research introduces a novel category of dual-generalized com-

plex numbers, with components represented by unrestricted Horadam num-
bers. We present various recurrence relations, summation formulas, the Binet

formula, and the generating function associated with these numbers. Addi-

tionally, a comprehensive bilinear index-reduction formula is derived, which
encompasses Vajda’s, Catalan’s, Cassini’s, D’Ocagne’s, and Halton’s identi-

ties as specific cases.

1. Introduction

Hypercomplex numbers have many applications such as in physics, geometry,
robotics, and quantum mechanics. There are many studies related to different types
of hypercomplex numbers. One among them is dual-generalized complex numbers.
They are defined by Gurses et al. [11] as a generalization of dual-complex numbers,
hyper-dual numbers, and dual-hyperbolic numbers. The set of dual-generalized
complex numbers is defined by

DCp = {a0 + a1J + a2ε+ a3Jε | a0, a1, a2, a3 ∈ R} , (1)

where the dual unit ε and the generalized complex unit J adhere to the following
rules:

J2 = p,−∞ < p < ∞, ε2 = 0, ε ̸= 0, εJ = Jε. (2)
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Table 1. Multiplication table of units J, ε, Jε.

1 J ε Jε
1 1 J ε Jε
J J p Jε pε
ε ε Jε 0 0
Jε Jε pε 0 0

The multiplication scheme for the basis elements of dual generalized complex
numbers can also be given in the following table.

Clearly, when the parameter p takes the value of −1, the newly introduced
commutative number system corresponds into dual-complex numbers. Similarly,
for p = 0, it aligns with hyper-dual numbers, and for p = 1, it corresponds to
dual-hyperbolic numbers. Consequently, an examination of dual-generalized com-
plex numbers allows for the simultaneous understanding of dual-complex numbers,
hyper-dual numbers, and dual-hyperbolic numbers. For a more in-depth under-
standing of dual-generalized complex numbers, one may refer to the relevant liter-
ature [5, 6, 9, 11,17,18] and the cited references therein.

Extensive research has been conducted on quaternion sequences within specific
quaternion algebras. Notably, Horadam [14] explored Fibonacci quaternions within
the realm of real quaternion algebra, focusing on quaternion sequences comprising
Fibonacci number components. Expanding on the concept of Fibonacci quater-
nions, Sentürk et al. [19] introduced unrestricted Horadam quaternions within a
generalized quaternion algebra by

H(x,y,z)
n = wn + wn+xi+ wn+yj + wn+zk,

where {wn} is the Horadam sequence [15] defined by

wn = pwn−1 + qwn−2, n ≥ 2 (3)

with the arbitrary initial values w0, w1 and nonzero integers p, q. Here the basis
{1, i, j, k} satisfies the following multiplication rules:

i2 = −λ, j2 = −µ, k2 = −λµ,

ij = −ji = k, jk = −kj = µi, ki = −ik = λj,

with λ, µ ∈ R. For λ = µ = 1, it simplifies to the real quaternion algebra, and
when x = 1, y = 2, and z = 3, the unrestricted Horadam quaternions reduce
to the Horadam quaternions in [13]. Some matrix representations of Horadam
quaternions can be found in [22], and for some recent papers related to special
types of quaternions with unrestricted subscripts can be found in [2, 3, 7, 8]. For
more on Horadam sequences, see [16,20].

Several researchers have explored the realm of dual-generalized complex numbers
incorporating components resembling Fibonacci sequences. Specifically, Cihan et
al. [4] pioneered the study of dual-hyperbolic Fibonacci and Lucas numbers, while
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Gungor and Azak [10] established the framework for dual-complex Fibonacci and
Lucas numbers. In a similar context, Tan et al. [21] introduced the concept of hyper-
dual Horadam quaternions. Furthermore, Gurses et al. [12] innovatively presented
the dual-generalized complex Fibonacci quaternions, utilizing dual Fibonacci num-
bers as coefficients in lieu of real numbers. Recently, Tan and Ocal [23] introduced
the dual generalized complex Horadam quaternions.

Inspired by the studies mentioned earlier, we now present the unrestricted dual
generalized complex Horadam numbers. We obtain some recurrence relations, the
generating function, and the Binet formula of these numbers. We also obtain the
general bilinear index-reduction formula of these numbers which reduces to the
Vajda’s, Halton’s, Catalan’s, Cassini’s, and D’Ocagne’s identities as a special case.
Moreover, we give summation formulas and a matrix representation of them.

We conclude this section with some preliminaries related to the Horadam se-
quence.

The Horadam sequence {wn} transforms into the (p, q)-Fibonacci sequence {un}
when w0 = 0, w1 = 1, and into the (p, q)-Lucas sequence {vn} when w0 = 2, w1 = p.
When p = q = 1, these sequences simplify to the traditional Fibonacci sequence
{Fn} and Lucas sequence {Ln}, respectively.

The Binet formula of Horadam sequence {wn} is

wn =
Aαn −Bβn

α− β
, (4)

where A := w1 − w0β,B := w1 − w0α, and α, β are the roots of the characteristic

polynomial x2 − px − q, that is; α =
p+

√
p2+4q

2 , β =
p−

√
p2+4q

2 . Also we have

αβ = −q, α+ β = p,∆ := α− β =
√
p2 + 4q with p2 + 4q > 0.

2. Main Results

In this section, we initially establish the concept of unrestricted dual-generalized
complex Horadam numbers, followed by an exploration of some fundamental prop-
erties associated with these numbers. Throughout this section, we simply denote
the unrestricted dual-generalized complex Horadam numbers as unrestricted DGC
Horadam numbers. Let also x, y and z be arbitrary positive integers.

Definition 1. The nth unrestricted DGC Horadam number is defined as

w̃(x,y,z)
n = wn + wn+xJ + wn+yε+ wn+zJε,

where wn is the nth Horadam number, ε is dual unit, and J is generalized complex
unit adhering to the multiplication rules in (2) .

In the following table, we give some special cases of the unrestricted dual-

generalized complex DGC Horadam numbers w̃
(1,2,3)
n . We should note that when
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Table 2. Special cases of the unrestricted DGC Horadam numbers.

p p q w0 w1

p 1 1 0 1 DGC Fibonacci numbers [12]
p 1 1 2 1 DGC Lucas numbers [12]
−1 1 1 0 1 Dual-complex Fibonacci numbers [10]
−1 1 1 2 1 Dual-complex Lucas numbers [10]
−1 k 1 0 1 Dual-complex k-Fibonacci numbers [1]
1 1 1 0 1 Dual-hyperbolic Fibonacci numbers [4]
1 1 1 2 1 Dual-hyperbolic Lucas numbers [4]
0 1 1 w0 w1 Hyper-dual Fibonacci numbers [22]

x = 1, y = 2, and z = 3, the unrestricted dual-generalized complex Horadam num-

bers w̃
(x,y,z)
n reduce to the conventional dual generalized complex Horadam numbers

in [23].
The addition, subtraction, and multiplication of two unrestricted DGC Horadam

numbers w̃
(x,y,z)
n and w̃

(x,y,z)
m are defined as

w̃(x,y,z)
n ± w̃(x,y,z)

m = (wn ± wm) + (wn+x ± wm+x) J

+(wn+y ± wm+y) ε+ (wn+z ± wm+z) Jε

and

w̃(x,y,z)
n w̃(x,y,z)

m = (wnwm + pwn+xwm+x)+(wnwm+x + wn+xwm) J

+ (wnwm+y + wn+ywm + pwn+xwm+z + pwn+zwm+x) ε

+ (wnwm+z + wn+xwm+y + wn+ywm+x + wn+zwm) Jε,

respectively.

Theorem 1. The unrestricted DGC Horadam numbers satisfy the following rela-
tion:

w̃(x,y,z)
n = pw̃

(x,y,z)
n−1 + qw̃

(x,y,z)
n−2 , n ≥ 2.

Proof. Using the definition of unrestricted DGC Horadam numbers and the defini-
tion of classical Horadam numbers, we get

pw̃
(x,y,z)
n−1 +qw̃

(x,y,z)
n−2 = p (wn−1 + wn−1+xJ + wn−1+yε+ wn−1+zJε)

+q (wn−2 + wn−2+xJ + wn−2+yε+ wn−2+zJε)

= (pwn−1 + qwn−2) + (pwn−1+x + qwn−2+x) J

+(pwn−1+y + qwn−2+y) ε+ (pwn−1+z + qwn−2+z) Jε

= wn + wn+xJ + wn+yε+ wn+zJε = w̃(x,y,z)
n .

□

In the following Theorem, we give a relation between (p, q)-Fibonacci numbers
and the unrestricted DGC Horadam numbers.
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Theorem 2. For n ≥ 1, we have

w̃(x,y,z)
n = unw̃

(x,y,z)
1 + qun−1w̃

(x,y,z)
0 .

Proof. From the definition of (p, q)-Fibonacci numbers and the definition of the
unrestricted DGC Horadam numbers, we get

un (w1 + wx+1J + wy+1ε+ wz+1Jε) + qun−1 (w0 + wxJ + wyε+ wzJε)

= unw1 + qun−1w0

+(unwx+1 + qun−1wx) J + (unwy+1 + qun−1wy) ε+ (unwz+1 + qun−1wz) Jε

= wn + wn+xJ + wn+yε+ wn+zJε

= w̃(x,y,z)
n .

□

Theorem 3. The generating function for unrestricted DGC Horadam numbers is

G(t) =
w̃

(x,y,z)
0 +

(
w̃

(x,y,z)
1 − pw̃

(x,y,z)
0

)
t

1− pt− qt2
.

Proof. Let

G(t) :=

∞∑
n=0

w̃(x,y,z)
n tn = w̃

(x,y,z)
0 + w̃

(x,y,z)
1 t+

∞∑
n=2

w̃(x,y,z)
n tn.

From Theorem 1, we have(
1− pt− qt2

)
G(t)

= w̃
(x,y,z)
0 + w̃

(x,y,z)
1 t+

∞∑
n=2

w̃(x,y,z)
n tn − pw̃

(x,y,z)
0 t− p

∞∑
n=2

w̃
(x,y,z)
n−1 tn − q

∞∑
n=2

w̃
(x,y,z)
n−2 tn

= w̃
(x,y,z)
0 + w̃

(x,y,z)
1 t− pw̃

(x,y,z)
0 t+

∞∑
n=2

(
w̃(x,y,z)

n − pw̃
(x,y,z)
n−1 − qw̃

(x,y,z)
n−2

)
tn

= w̃
(x,y,z)
0 +

(
w̃

(x,y,z)
1 − pw̃

(x,y,z)
0

)
t.

Thus, we get the desired result. □

Theorem 4. The Binet formula of unrestricted DGC Horadam numbers is

w̃(x,y,z)
n =

Aααn −Bββn

α− β
,

where α = 1 + αxJ + αyε+ αzJε and β = 1 + βxJ + βyε+ βzJε.

Proof. Using the Binet formula of Horadam numbers in (4), we have

w̃(x,y,z)
n = wn + wn+xJ + wn+yε+ wn+zJε
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=

(
Aαn −Bβn

α− β

)
+

(
Aαn+x −Bβn+x

α− β

)
J

+

(
Aαn+y −Bβn+y

α− β

)
ε+

(
Aαn+z −Bβn+z

α− β

)
Jε

=
Aαn

α− β
(1 + αxJ + αyε+ αzJε)− Bβn

α− β
(1 + βxJ + βyε+ βzJε)

=
Aααn −Bββn

α− β
.

□

From Theorem 4, we derive the Binet formulas of unrestricted DGC (p, q)-
Fibonacci and Lucas cases:

ũ(x,y,z)
n =

ααn − ββn

α− β
and ṽ(x,y,z)n = ααn + ββn, (5)

respectively. By considering (5), the following relation can be easily derived:

ṽ(x,y,z)n = ũ
(x,y,z)
n+1 + qũ

(x,y,z)
n−1 .

To establish various properties of unrestricted DGC Horadam numbers, we re-
quire the following lemma.

Lemma 1. Let x, y, z be positive integers with z > y > x. Then we have

αβ = ṽ
(x,y,z)
0 − 1 + (−q)

x
((1 + vz−xε) p+ vy−xJε) .

Proof.

αβ = (1 + αxJ + αyε+ αzJε) (1 + βxJ + βyε+ βzJε)

= 1 + p (αβ)
x

+(αx + βx) J

+(αy + βy + p (αxβz + αzβx)) ε

+(αz + βz + αxβy + αyβx) Jε

αβ = 1 + p (−q)
x
+ vxJ + vyε+ p (αxβz + αzβx) ε+ vzJε+ (αxβy + αyβx) Jε

= 1 + vxJ + vyε+ vzJε+ p (−q)
x
+ p (αxβz + αzβx) ε+ (αxβy + αyβx) Jε

= ṽ
(x,y,z)
0 − 1 + p (−q)

x
+ p (αxβz + αzβx) ε+ (αxβy + αyβx) Jε

= ṽ
(x,y,z)
0 − 1 + p (−q)

x
+ p

(
(αβ)

x (
αz−x + βz−x

))
ε+

(
(αβ)

x (
αy−x + βy−x

))
Jε

= ṽ
(x,y,z)
0 − 1 + (−q)

x (
p+ p

(
αz−x + βz−x

)
ε+

(
αy−x + βy−x

)
Jε
)

= ṽ
(x,y,z)
0 − 1 + (−q)

x
((1 + vz−xε) p+ vy−xJε) .

□
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Utilizing the Binet formula for unrestricted DGC Horadam numbers and apply-
ing Lemma 1, we derive the following identity.

Theorem 5. (General bilinear index-reduction formula) For nonnegative integers
a, b, c, d such that a+ b = c+ d, b > a, d > c, we have

w̃(x,y,z)
a w̃

(x,y,z)
b − w̃(x,y,z)

c w̃
(x,y,z)
d = −AB

∆2
αβ ((−q)

a
vb−a − (−q)

c
vd−c) .

Proof. Let ∆ =α−β. Using the Binet formula of unrestricted DGC Horadam num-
bers, we have

(α− β)
2
(
w̃(x,y,z)

a w̃
(x,y,z)
b − w̃(x,y,z)

c w̃
(x,y,z)
d

)
=
(
Aααa −Bββa

) (
Aααb −Bββb

)
−
(
Aααc −Bββc

) (
Aααd −Bββd

)
= A2α2αa+b−ABαβαaβb−ABβααbβa+B2β2βa+b

−A2α2αc+d+ABαβαcβd+ABβαβcαd−B2β2βc+d

= A2α2
(
αa+b − αc+d

)
−ABαβ

(
αaβb − αcβd + αbβa − αdβc

)
+B2β2

(
βa+b − βc+d

)
= −ABαβ

(
αaβb + αbβa − αcβd − αdβc

)
= −ABαβ

[(
(αβ)

a
(
αb−a + βb−a

))
−
(
(αβ)

c
(
αd−c + βd−c

))]
= −ABαβ ((−q)

a
vb−a − (−q)

c
vd−c) .

Thus we get the desired result. □

From Theorem 5, we have the following corollaries.

Corollary 1. (Vajda’s identity) For a = m + k, b = n − k, c = m, and d = n, we
have

w̃
(x,y,z)
m+k w̃

(x,y,z)
n−k − w̃(x,y,z)

m w̃(x,y,z)
n

= −AB

∆2
αβ
(
(−q)

m+k
vn−m−2k − (−q)

m
vn−m

)
= −AB

∆2
αβ (−q)

m
(
(−q)

k
vn−m−2k − vn−m

)
.

Since vn−m − (−q)
k
vn−m−2k = ∆2ukun−m−k, we also have

w̃
(x,y,z)
m+k w̃

(x,y,z)
n−k − w̃(x,y,z)

m w̃(x,y,z)
n = ABαβ (−q)

m
ukun−m−k.

Corollary 2. (Catalan’s identity) For a = n − m, b = n + m and c = d = n, we
have

w̃
(x,y,z)
n−m w̃

(x,y,z)
n+m − w̃(x,y,z)

n w̃(x,y,z)
n

= −AB

∆2
αβ
(
(−q)

n−m
v2m − 2 (−q)

n
)
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= −AB

∆2
αβ (−q)

n−m
(v2m − 2 (−q)

m
) .

Since v2m − 2 (−q)
m

= ∆2u2
m, we also have

w̃
(x,y,z)
n−m w̃

(x,y,z)
n+m − w̃(x,y,z)

n w̃(x,y,z)
n = −ABαβ(−q)

n−m
u2
m.

Corollary 3. (Cassini’s identity) For a = n− 1, b = n+1 and c = d = n, we have

w̃
(x,y,z)
n−1 w̃

(x,y,z)
n+1 −w̃(x,y,z)

n w̃(x,y,z)
n = −ABαβ(−q)

n−1

By using Lemma 1, we get

w̃
(x,y,z)
n−1 w̃

(x,y,z)
n+1 −w̃(x,y,z)

n w̃(x,y,z)
n

= −AB(−q)
n−1

(
ṽ
(x,y,z)
0 − 1 + (−q)

x
((1 + vz−xε) p+ vy−xJε)

)
.

Corollary 4. (d’Ocagne’s identity) For a = n, b = m + 1, c = n + 1, and d = m,
we have

w̃(x,y,z)
n w̃

(x,y,z)
m+1 − w̃

(x,y,z)
n+1 w̃(x,y,z)

m = −AB

∆2
αβ (−q)

n
(vm−n+1 + qvm−n−1) .

Since vm−n+1 + qvm−n−1 = −∆2um−n, we also have

w̃(x,y,z)
n w̃

(x,y,z)
m+1 − w̃

(x,y,z)
n+1 w̃(x,y,z)

m = ABαβ(−q)
n
um−n.

Corollary 5. (Halton’s identity) For a = m+ k, b = n, c = k, and d = m+ n, we
have

w̃
(x,y,z)
m+k w̃(x,y,z)

n − w̃
(x,y,z)
k w̃

(x,y,z)
m+n = −AB

∆2
αβ
(
(−q)

m+k
vn−m−k − (−q)

k
vm+n−k

)
= −AB

∆2
αβ (−q)

k
((−q)

m
vn−k−m − vn−k+m) .

Since vn−k+m − (−q)
m
vn−k−m = ∆2umun−k, we have

w̃
(x,y,z)
m+k w̃(x,y,z)

n − w̃
(x,y,z)
k w̃

(x,y,z)
m+n = ABαβ(−q)

k
umun−k.

Next, we give a relation between the unrestricted DGC (p, q)-Fibonacci numbers
and the unrestricted DGC (p, q)-Lucas numbers.

Theorem 6. For nonnegative integers n and m such that m ≥ n, we have

ṽ(x,y,z)n ũ(x,y,z)
m − ṽ(x,y,z)m ũ(x,y,z)

n = 2 (−q)
n
um−n

(
ṽ
(x,y,z)
0 − 1

+ (−q)
x
((1 + vz−xε) p+ vy−xJε)

)
.

Proof. Using the Binet formula of unrestricted DGC Horadam numbers, we have

∆
(
ṽ(x,y,z)n ũ(x,y,z)

m − ṽ(x,y,z)m ũ(x,y,z)
n

)
=

(
ααn + ββn

) (
ααm − ββm

)
−
(
ααm + ββm

) (
ααn − ββn

)
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= α2αn+m − αβαnβm + αβαmβn − β2βn+m

−α2αn+m + αβαmβn − αβαnβm + β2βn+m

= 2 (αβ)
n
αβ
(
αm−n − βm−n

)
= 2 (−q)

n
αβ∆um−n.

By using Lemma 1, we have

ṽ(x,y,z)n ũ(x,y,z)
m − ṽ(x,y,z)m ũ(x,y,z)

n = 2 (−q)
n
um−n

(
ṽ
(x,y,z)
0 − 1

+ (−q)
x
((1 + vz−xε) p+ vy−xJε)

)
.

□

Presently, we provide a sum formula for unrestricted DGC Horadam numbers.

Theorem 7. For n ≥ 2, we have

n−1∑
r=1

w̃(x,y,z)
r =

w̃
(x,y,z)
n − w̃

(x,y,z)
1 + q

(
w̃

(x,y,z)
n−1 − w̃

(x,y,z)
0

)
p+ q − 1

.

Proof. Using the Binet formula for unrestricted DGC Horadam numbers, we have

n−1∑
r=1

w̃(x,y,z)
r =

n−1∑
r=1

Aααr −Bββr

α− β

=
Aα

α− β

n−1∑
r=1

αr −
Bβ

α− β

n−1∑
r=1

βr

=
Aα

α− β

(
αn − α

α− 1

)
−

Bβ

α− β

(
βn − β

β − 1

)

=
1

(α− β) (1− p− q)

(
−
(
Aααn −Bββn

)
− q

(
Aααn−1 −Bββn−1

)
+q
(
Aα−Bβ

)
+
(
Aαα−Bββ

))
=

−w̃
(x,y,z)
n − qw̃

(x,y,z)
n−1 + qw̃

(x,y,z)
0 + w̃

(x,y,z)
1

1− p− q
.

□

Theorem 8. For nonnegative integers n and r, we have

n∑
m=0

(
n

m

)
qn−mpmw̃

(x,y,z)
m+r = w̃

(x,y,z)
2n+r .
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Proof. Using the Binet formula for unrestricted DGC Horadam numbers, we obtain
n∑

m=0

(
n

m

)
qn−mpmw̃

(x,y,z)
m+r

=

n∑
m=0

(
n

m

)
qn−mpm

(
Aααm+r −Bββm+r

α− β

)

=
Aααr

α− β

n∑
m=0

(
n

m

)
qn−m (pα)

m −
Bββr

α− β

n∑
m=0

(
n

m

)
qn−m (pβ)

m

=
Aααr

α− β
(q + pα)

n −
Bββr

α− β
(q + pβ)

n

=
Aαα2n+r −Bββ2n+r

α− β
= w̃

(x,y,z)
2n+r .

□

Ultimately, we present a matrix representation for unrestricted DGC Horadam
numbers.

Theorem 9. For n ≥ 0, we have[
p q
1 0

]n [
w̃

(x,y,z)
2 w̃

(x,y,z)
1

w̃
(x,y,z)
1 w̃

(x,y,z)
0

]
=

[
w̃

(x,y,z)
n+2 w̃

(x,y,z)
n+1

w̃
(x,y,z)
n+1 w̃

(x,y,z)
n

]
.

Proof. By using Theorem 2, it can be easily demonstrated through mathematical
induction on n. □

By computing the determinant on both sides of the matrix equality mentioned
earlier, we derive Cassini’s identity for the sequence {w̃n} in a straightforward
manner as:

w̃
(x,y,z)
n+2 w̃(x,y,z)

n − w̃
(x,y,z)
n+1 w̃

(x,y,z)
n+1 = (−q)

n
(
w̃

(x,y,z)
2 w̃

(x,y,z)
0 − w̃

(x,y,z)
1 w̃

(x,y,z)
1

)
.

3. Conclusion

In this paper we define a novel category of dual-generalized complex numbers,
with components represented by unrestricted Horadam numbers. The main advan-
tage to introducing unrestricted dual-generalized complex Horadam numbers is that
many unrestricted dual-generalized complex numbers with the well-known numbers
such as Fibonacci, Lucas, Jacobsthal, Jacobsthal-Lucas, Pell, Pell-Lucas can be de-
duced as particular cases of these unrestricted DGC numbers. We state recurrence
relations, summation formulas, Binet formula, and generating function associated
with these numbers. In addition, a comprehensive bilinear index-reduction formula
is derived, which encompasses Vajda’s, Catalan’s, Cassini’s, D’Ocagne’s, and Hal-
ton’s identities as specific cases. For interested readers, the results of this paper
could be applied for any other type of hypercomplex numbers.
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