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ABSTRACT:  

The accurate modelling of streamflow is highly significant for hydrological monitoring, water 
resource management, and climate change studies. Streamflow simulation with lumped 

hydrological models has been widely performed by researchers. However, the parameter 

calibration process is a major obstacle in these models. In the present study, a conceptual 

rainfall-runoff model (TUW model) was used to simulate streamflow in the sub-basin of the 

Upper Euphrates Basin during the time period 1991-2009. The Differential Evolution 

Optimization (DEoptim) algorithm were tested for the automatic parameter calibration of the 

lumped version of TUW model, in the study area. The model is calibrated using two objective 

function named and Nash–Sutcliffe efficiency (NSE) and Kling-Gupta Efficiency (KGE). 

Additionally, percent bias (PBias) was used to evaluate the performance of the model. For the 

objective function NSE, calibration and validation results indicated good agreement between 

observed and simulated streamflow data with NSE, 0.76 and 0.76 and KGE, 0.73 and 0.75 and 

PBias (%), -0.8 and -7.5, respectively. Similarly for KGE objective function, the calibration 
results produced a NSE of 0.71, KGE of 0.85, and PBias (%) of -0.9, while validation results 

revealed a NSE of 0.72, KGE of 0.84, and PBias (%) of -7.2. It can be concluded that the 

applicability of the DEoptim algorithm for the estimation of the parameters of the TUW model 

is confirmed by the case study. The findings of the study can serve as a guide for researchers 

and be useful in achieving watershed management goals. 
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INTRODUCTION 

Water resources are constantly under threat due to climate change, one of the urgent problems of 

the modern world (Nhemachena et. al., 2020). Simulation of runoff is one of the most prominent 

research areas in the field of climate change in terms of adaptation to global warming (Adnan et al., 

2017). Reliable prediction of water balance-related components is important for solving many water-

related problems, such as flood forecasting, hydroelectric potential estimates, flood risk assessments, 

drought management, and agricultural activities (Farkas et al., 2016). Hydrological models are an 

effective tool for flow simulation and prediction. With the developing technology in recent years, 

models have become indispensable for the effective management of water resources (Brziak et al., 

2020).  

Numerous studies have investigated the simulation of runoff using various hydrological models 

in different basins. For example, Ye et al. (2014) used the Xin’anjiang model (XAJ), a conceptual 

rainfall runoff model, to simulate the runoff in Yanduhe basin in China. The results showed that 

compared to single-objective optimization results, the multi-objective optimization method extracts the 

parameter set more successfully. Piniewski et al. (2017) used the Soil and Water Assessment Tool 

model, a physically based semi-distributive model, to simulate the hydrological process for 80 

different basins. In their results, they emphasized that the median KGE value during the calibration 

period was 0.76. Sleziak et al. (2021) analyzed the climate change impact on the runoff regime by 

using TUW (Technische Universität Wien) model in Slovakia. Their results showed the runoff 

increase during winter months, and decrease in the summer season compared to the historical period. 

To evaluate the skill of the TUW model, Zhong et al. (2021) divided the base period into two parts: the 

calibration period (1970–1984) and the validation period (1985–1989). The results showed that the 

observed runoff corresponds well with the simulated runoff, achieving the NSE values of 89% during 

the calibration period and 86% during the validation period. In this study, the conceptual TUW 

hydrological model, which has been successfully tested in various studies (Neri et al., 2020; Hafizi & 

Sorman, 2022; Durgut & Ayvaz, 2023), is employed. 

The hydrological model contains quite a lot of parameters and it is not possible to measure them 

directly. Therefore, model calibration is an indispensable step for hydrological models to improve 

model performance (Behrouz et al., 2020). The traditional procedure of model calibration is usually 

done manually by trial and error or using graphical analysis to determine parameter values (Legates & 

McCabe, 1999; Shamsi & Koran, 2017), which is quite time-consuming. Thus, automatic calibration 

methods are becoming popular techniques to determine the optimal parameters of a model by reducing 

model calibration effort (Mancipe-Munoz et al., 2017; Sirisena et al., 2020; Alizadeh & Yazdi, 2023; 

Tiwari et al., 2024). There are a few studies around the world using the Differential Evolution 

Optimization (DEoptim) algorithm for automatic calibration of hydrological models (Sleziak et al., 

2020; Garna et al., 2023; Rozos, 2023), but these are quite limited. Within the scope of the study, the 

TUW model was automatically calibrated with the DEoptim algorithm. 

Hydrological models play a crucial role in a wide array of domains, including climate modeling, 

water resource management, the planning and design of hydraulic structures, as well as the early 

prediction of droughts and floods. For the reasons mentioned above, a hydrological model with 

calibrated parameters is very important for researchers. A possible explanation for the low frequency 

of application of lumped models such as the TUW model may be that tools linking hydrological model 

with multi-objective search algorithms are not readily available. This study presents the applicability 

of the DEoptim algorithm for the calibration of the TUW model. 
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The Euphrates basin, where many water resources structures have been constructed, is a very 

important basin in terms of water potential. For this reason, simulation of flow data in sub-basins can 

be a preliminary analysis for water resources management and climate change studies. Therefore, the 

aim of this study is to investigate the applicability of the TUW model for the simulation of flows in the 

sub-basin of the Euphrates basin and to automatically calibrate the model with the DEoptim algorithm. 

Additionally, to the best of the author's knowledge, there is no published study in the literature on the 

application of the DEoptim algorithm for hydrological model calibration in Turkey. 

MATERIALS AND METHODS  

Study Area  

The Euphrates River Basin, which is located in the southeastern Anatolia region of Turkey, 

covers approximately 127,304 km2 and is the largest of 25 river basins in Turkey (Hopur, 2017). The 

Euphrates River is formed by the combination of two main rivers: one of them is the Karasu river 

which springs from the Dumlu Mountain in Erzurum City and the other is the Murat river which 

originates from the Tendurek Mountain in Ağrı City (Yenigun et al., 2010).  

A sub-basin of the Upper Euphrates River, is selected as study area for application of 

hydrological models as shown in Figure 1. The study area is located within the borders of Tunceli 

province in Turkey. Continental climate prevails in the study area. The summer months are very short 

and hot and dry, while the winters are very cold and rainy and last a long time. The basin is the 

drainage area of 2133 flow gauging station controlled by General Directorate of State Hydraulic 

Works in Turkey. The main reasons for concentrating on this basin in the study are; 1) snow melt 

contributes significantly to the total annual flow 2) the catchment has not been significantly affected 

by human intervention such as urbanization and reservoir regularization, 3) the gauging stations do not 

have missing data and are homogeneously distributed over the catchment. The study area has an area 

of 3284.8 km2, which is approximately 2.57% of Euphrates Basin.  

 
Figure 1. Study area with the location of the selected stations 
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Data 

Daily observed precipitation and temperature data from Tunceli station (17165) were used to 

validate TUW model in the study area. Daily streamflow data of 2133 station were used to evaluate the 

performance of the model. The mean, median, and standard deviation for the daily flow series during 

the observation period are 88.67 m3/s, 53.5 m3/s, 83.09 m3/s, respectively. The coefficient of skewness 

quantifies the asymmetry of a distribution relative to its mean and is expressed without units. Its value 

is 2.35 for the observation period. A positive skewness indicates that the data is skewed towards the 

right. Nondimensionalization is typically carried out to facilitate comparisons of parameter magnitudes 

across different series. In practical terms, the coefficient of variation, calculated as the ratio of the 

standard deviation to the arithmetic mean, is the widely employed metric for this purpose. The value of 

the coefficient of variation for the data of station 2133 is 0.93. 

All data mentioned were evaluated in hydrological modeling for the water years between 

October 1990 and September 2009. The locations of the streamflow station and meteorological station 

used in the study are given in Figure 1. Table 1 shows detailed information about streamflow and 

meteorological stations. 

Table 1. Streamflow and meteorological stations used for model calibration and validation 

Station type Station Name Station ID Latitude Longitude Data Length 

Steramflow Melekbahçe 2133 39.0458 39.52611 1968-2009 

Meteorological Tunceli 17165 39.1058 39.5408 1960-present 

TUW hydrologic model 

Within the scope of the study, the lumped version of the TUW model (Viglione & Parajka, 2014) 

was used. The TUW model follows the structure of the Swedish Hydrologiska Byråns 

Vattenbalansavdelning (HBV) model (Parajka et al., 2007). The model has been widely used in many 

studies in the field of hydrology (Ceola et al., 2015; Sleziak et al., 2016). The model operates on a 

daily time step and requires the following data: daily precipitation totals (mm), average daily air 

temperature (oC), and daily potential evapotranspiration (mm). The potential evaporation data were 

calculated using the Blaney-Criddle approach (Parajka et al., 2005). The TUW model has 15 

parameters to calibrate snow, soil moisture, and runoff routines (Table 2). 

Table 2. TUW model parameters 

Symbol Description of the model parameters Units Range 

1. SCF Snow correction factor - 0.9–1.5 

2. DDF Degree day factor mm/oC/day 0.0–5.0 

3. Tr Threshold temperature above which precipitation is rain oC 1.0–3.0 

4. Ts Threshold temperature below which precipitation is snow oC -3.0–1.0 
5. Tm Temperature threshold above which melt starts oC -2.0–2.0 

6. Lprat Parameter related to the limit for potential evaporation - 0.0–1.0 

7. FC Field capacity mm 0.0–600 

8. BETA Non-linear parameter for runoff production - 0.0–20 

9. K0 Storage coefficient for a very fast response day 0.0–2.0 

10. K1 Storage coefficient for a fast response day 2.0–30 

11. K2 Storage coefficient for slow response day 30–250 

12. lsuz Threshold storage state mm 1.0–100 

13. cperc Constant percolation rate mm/day 0.0–8.0 

14. bmax Maximum base at low flows day 0.0–30 

15. croute Free scaling parameter day2/mm 0.0–50 

Calibration of the TUW model 

The DEoptim algorithm was first developed by Storn and Price (1997) to avoid complex 

mathematical operations and also to give reliable solutions to engineering and finance models. 
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DEoptim is a population-based stochastic algorithm that searches for the global optimum for a 

specified objective function (Mullen et al., 2011). DEoptim algorithm has been widely used for 

optimization problems by different researchers in the literature (Cao et al., 2009; Yilmaz et al., 2021; 

Atanaw et al., 2023). In present study, the DEoptim algorithm of the package DEoptim developed by 

Ardia et al. (2016) in R software is utilized to calibrate the TUW model. The DEoptim algorithm was 

iterated one thousand times to optimize the fit between the simulated streamflow values and the 

observed values within a dependable range. The model was run daily for the calibration from 1991 to 

2002, the validation period from 2003 to 2009. 

Two objective functions: 1) Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970) and 2) 

Kling-Gupta Efficiency (KGE) (Gupta et al., 1998; Kling et al., 2012) were utilized for parameter 

estimations. Thus, different aspects of streamflow estimations were examined in detail according to the 

results of two different objective functions widely used in hydrology. Additionally, Percent Bias 

(PBias) was used to evaluate model performance. Formulation of NSE KGE, and PBias are given in 

Equation 1, 2, and 3 respectively. 

𝑁𝑆𝐸 = 1 −  
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑄𝑚)2𝑛
𝑖=1

                                                                                                       (1) 

𝑃𝐵𝑖𝑎𝑠 =
∑ (𝑆𝑖−𝑂𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

× 100                                                                                                                     (2) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠

𝜎𝑜
− 1)

2

+ (
𝜇𝑠

𝜇𝑜
− 1)

2

                                                                                 (3) 

where 𝑄𝑖 indicates the observed streamflow, 𝑄𝑚 represents the mean observed streamflow, and 

𝑆𝑖 is the simulated streamflow, r indicates Pearson’s correlation, 𝜎𝑜 and 𝜎𝑠 are the standard deviations 

in observation and simulated streamflow data, respectively; 𝜇𝑜 is the observation mean, and 𝜇𝑠 is the 

simulated data mean.  

Table 3 was used to classify model performance. 

Table 3. Performance ratings for evaluation metrics (Moriasi et a., 2007; Thiemig et al., 2013) 

Performance Criteria Very Good Good Satisfactory Unsatisfactory 

NSE 0.75 <NSE ≤ 1 0.65 <NSE ≤ 0.75 0.5 <NSE ≤0.65 NSE ≤0.5 

PBIAS PBIAS < ±10 ±10 ≤PBIAS < ±15 ±15 ≤PBIAS < ±25 BIAS≥+-25 

KGE 0.9 ≤ KGE ≤ 1 0.75 ≤ KGE < 0.9 0.5 ≤ KGE < 0.75 KGE <0.5 

RESULTS AND DISCUSSION  

19-year measured runoff data were collected from 2133 station in the upper Euprates Basin. In 

this study, 1991–2002 (12 years) was selected as the calibration periods, and 2003–2009 (7 years) was 

the verification periods of the TUW model. The parameters of the study area were automatically 

calibrated with the DEoptim algorithm. The calibration step was carried out in two steps. Firstly, NSE 

was used as the objective function and secondly, the KGE metric was used. Thus, a detailed evaluation 

was carried out in terms of NSE and KGE indices in reproducing the streamflow data. 

With the NSE objective function, the graph of simulated and observed streamflow during 

calibration and validation were given in Figure 2. Figure 2 showed that the calibrated model generally 

underestimated peak flows, and this result was especially evident for the validation period. In the 2007 

water year, the model underestimated extreme events. This is probably due to missing rainfall data in 

the study area because of flood events in that year. Statistical metrics results for the NSE objective 
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function are presented in Table 4. The NSE, KGE and PBias (%) values calculated in the calibration 

step were 0.76, 0.73, and -0.8, respectively. According to Moriasi et al., (2007), the model 

demonstrates ‘very good’ performance in terms of NSE and PBias, whereas it performed ‘good’ based 

on the KGE result. 

In the validation stage, values of 0.76, 0.75, and -7.5 were obtained for The NSE, KGE and 

PBias (%) coefficient, respectively. Findings showed good agreement between the recorded and 

simulated daily streamflow data. When the objective function is considered as NSE, the optimal 

parameters obtained are presented in Table 5. 

 

Figure 2. Comparison of daily observed and simulated streamflow at the station for NSE objective function 

Table 4. Evaluation of the accuracy of calibration and validation periods of daily runoff for the NSE 

objective function 

 Evaluation Statistics 

 KGE NSE PBias (%) 

No Calibration Validation Calibration Validation Calibration Validation 

2133 0.73 0.75 0.76 0.76 -0.8 -7.5 

Table 5. The optimum tuw model parameters for NSE and KGE objective functions in the study area 

 Objective function 

Parameter Name NSE KGE 

1. SCF(-) 1.49 1.49 

2. DDF(mm/oC/day) 1.10 0.84 

3. Tr(oC) 2.99 2.99 

4. Ts(oC) 0.99 0.99 

5. Tm(oC) 1.99 1.99 

6. Lprat(-) 0.99 0.99 

7. FC(mm) 232.36 221.97 

8. BETA(-) 0.06 0.06 

9. K0(day) 0.18 0.25 

10. K1(day) 28.62 29.86 

11. K2(day) 57.40 38.43 

12. lsuz(mm) 67.24 25.02 

13. cperc(mm/day) 7.99 7.99 

14. bmax(day) 7.44 2.78 

15. croute(day2/mm) 24.03 19.23 
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The calibrated results of KGE for the selection of the objective function were similar to those of 

NSE. Figure 3 showed that there are years where peak flows are underestimated, and this result is 

evident in the water years 2002 and 2007. Table 6 shows the performance metrics values for the 

measured and simulated flow in the monitoring stations during calibration and validation periods, 

when KGE is considered as the objective function. The values of the statistical function were found to 

be 0.71 (NSE), 0.85 (KGE) and -0.9% (PBias) during calibration period. The model classified as 

“good” calibration period except for PBias, which displayed a “very good” performance. The NSE, 

KGE and PBias values calculated in the validation step were 0.72, 0.84, and -7.2 %, respectively. 

According to Moriasi et al., (2007), validation results are in the same class as calibration results. Table 

5 presented the optimal parameters for the KGE objective function. 

 

Figure 3. Comparison of Daily Observed and Simulated Streamflow at the Station for KGE Objective Function 

Table 6. Evaluation of the accuracy of calibration and validation periods of daily runoff for the KGE 

objective function 

 Evaluation Statistics 

 KGE NSE PBias (%) 

No Calibration Validation Calibration Validation Calibration Validation 

2133 0.85 0.84 0.71 0.72 -0.9 -7.2 

Evaluation between NSE and KGE objective functions showed that while the model is classified 

as “very good” for two metrics (NSE and PBias) in terms of NSE objective function, it is evaluated as 

“very good” for one index (PBias) in terms of KGE objective function. 

The study site stands out as an area characterized by substantial snowmelt and determining water 

availability is critical in the region due to its contribution to the overall yearly streamflow. In the study 

area, as the weather warms up in late spring under the changing climate conditions, melting snow leads 

to high flows, and predicting these high flows becomes important for early flood warning systems. In 

fact, a general evaluation showed that maximum flows were successfully predicted except for the years 

when extreme events occurred (see Figures 2 and 3). Hence, the model's ability to accurately simulate 

peak flows is satisfactory in terms of achieving another aim of the study. 

Consequently, the TUW model is able to reproduce the observed daily streamflow at the outlet 

of the study basin with a high level of accuracy.  
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CONCLUSION 

Accurate estimation of flow data is very important for the effective management of a basin's 

water resources. Moreover, a successfully calibrated hydrological model for any basin is a preliminary 

analysis for climate change studies. TUW model was used to investigate the hydrological component 

of the sub-basin of the upper Euphrates basin, which is controlled by 2133 flow observation stations in 

Turkey. The model was calibrated in daily steps and the calibration process was carried out with the 

DEoptim algorithm. The performance of the TUW model in the calibration and validation phase was 

calculated using NSE, PBIAS and KGE evaluation criteria, which are widely used in the literature. 

When NSE was selected as the objective function, NSE, KGE, and PBIAS (%) values reached 0.76, 

0.73 and -0.8, respectively, during the calibration period. In the validation phase, NSE, KGE, and 

PBIAS (%) values were 0.76, 0.75, and -7.5, respectively. For KGE objective function, the statistical 

values of NSE, KGE, and PBIAS (%) were established to be 0.71, 0.85, and -0.9 respectively for the 

time of calibration. Similarly, the statistical values of NSE, KGE, and PBIAS were established to be 

0.72, 0.84, and -7.2 respectively for the time of validation. According to the classification of Moriasi et 

al. (2007), the NSE objective function gave a more successful prediction result than the KGE in 

reproducing the streamflow data. The results showed that the automatically calibrated model is capable 

of reproducing the observed daily streamflow data in this basin with a high level of accuracy. 

According to the results of the study, the DEoptim algorithm showed successful results. In this context, 

it is planned to conduct climate change studies using a model calibrated with the DEoptim algorithm in 

future studies. 
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