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Abstract
This paper presents the computational solutions of a time-dependent nonlinear system of partial
differential equations (PDEs) known as the Lotka-Volterra competition system with diffusion. We
propose a combined semi-discretized spectral matrix collocation algorithm to solve this system of PDEs.
The first part of the algorithm deals with the time-marching procedure, which is performed using
the well-known Taylor series formula. The resulting linear systems of ordinary differential equations
(ODEs) are then solved using the spectral matrix collocation technique based on the novel Touchard
family of polynomials. We discuss and establish the error analysis and convergence of the proposed
method. Additionally, we examine the stability analysis and the equilibrium points of the model to
determine the stability condition for the system. We perform numerical simulations using diverse
model parameters and with different Dirichlet and Neumann boundary conditions to demonstrate the
utility and applicability of our combined Taylor-Touchard spectral collocation algorithm.
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1 Introduction

During the past few years, the Lotka-Volterra population model has garnered significant attention
from scientists due to its efficacy in describing the interaction between two species in a closed
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ecosystem. Originating in 1925 from the work of renowned scientist Alfred Lotka and indepen-
dently developed by Vito Volterra in 1926, this model has become a cornerstone in ecological,
biological, epidemiological, and economic studies [1–4]. One notable application of this model in
economics is in modeling the interaction between firms within a market [5], while in epidemiology,
it finds use in understanding the spread of infectious diseases [6]. The fundamental assumptions
of the model posit that the population sizes of the predator and prey species are determined solely
by their interactions with each other and their environment.
Specifically, the model assumes (1) exponential growth of the prey population in the absence of
predators, (2) exponential decline of the predator population in the absence of prey, (3) propor-
tional growth of the predator population relative to the prey population, and (4) proportional
decline of the prey population relative to the predator population. The simplest form of the
Lotka-Volterra population model can be expressed as a system of two coupled first-order ordinary
differential equations, one for the prey population and one for the predator population. This
formulation serves as a foundational framework for further analysis and applications

dv
dt

= a v − b vw,

dw
dt

= −c w + d vw,
(1)

where v and w represent the population sizes of the prey and predator, respectively, and a, b, c,
and d are parameters governing the growth rates and interactions between the two populations.
The Lotka-Volterra model exhibits several intriguing and significant features. Among these is the
presence of periodic solutions, which depict the cyclic behavior of predator and prey populations
within a closed ecosystem. These cycles, often referred to as predator-prey cycles or limit cycles,
are a characteristic aspect of the model.
Moreover, the model has been extended in various ways to encompass more complex ecological
interactions. One notable extension is the diffusive Lotka-Volterra competition model, which
describes the interactions among two or more competing species within a spatially heterogeneous
environment. Unlike the classical Lotka-Volterra competition model, which assumes that the
population sizes of competing species are solely determined by their interactions and environment,
the diffusive Lotka-Volterra competition system accounts for the effects of spatial heterogeneity
on species competition. Given these important variations of the Lotka-Volterra model, numerous
efforts have been made to find accurate solutions to such models. For instance, Ni et al. [7]
investigated the model’s global stability and pattern formation, considering dynamical resources.
Lin et al. [8] discussed traveling wave solutions for the delayed Lotka-Volterra model using
Schauder’s fixed point theorem. Wijeratne et al. [9] conducted a detailed bifurcation analysis
for the diffusive model, with potential applications in market share at duopoly, including a case
study in Sri Lanka. Cherniha et al. [10] provided a review of up-to-date solutions for the diffusive
model, presenting a wide range of exact solutions for its applications.
Numerous other works on the simulation and discussion of dynamics in the diffusive model
can be found in [11–14] and references therein. In this research paper, our primary focus is on
the approximate solutions of a system of partial differential equations (PDEs) comprising two
nonlinear equations with quadratic terms (see [15]):
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
∂v
∂τ − D1

∂2v
∂x2 = v(A1 − B1 v − C1 w),

∂w
∂τ − D2

∂2w
∂x2 = w(A2 − B2 w − C2 v),

(x, τ) ∈ ΩL × ΩT, (2)

where ΩL := [0, L] and ΩT := [0, T] with the initial conditions

v(x, τ = 0) = f (x), w(x, τ = 0) = g(x), x ∈ ΩL. (3)

Here, by v = v(x, τ) and w = w(x, τ) we denote the population densities of two given competing
species at time τ and f , g are two (smooth) given functions. Also, D1 and D2 are diffusion
coefficients and are assumed to be positive constants. The non-negative constants A1, A2 show the
growth rate of the respective species, B1, B2 ≥ 0 represent the related dead rates, and C1, C2 ≥ 0 are
the interaction rates between two competing species. The boundary conditions are supplemented
either in the form of Dirichlet{

v(x = 0, τ) = v0(τ), v(x = L, τ) = vL(τ),
w(x = 0, τ) = w0(τ), w(x = L, τ) = wL(τ),

τ ∈ ΩT, (4)

or as the Neumann boundary conditions are given by


∂v
∂x

(x = 0, τ) = v0(τ),
∂v
∂x

(x = L, τ) = vL(τ),

∂w
∂x

(x = 0, τ) = w0(τ),
∂w
∂x

(x = L, τ) = wL(τ),

τ ∈ ΩT, (5)

where the functions v0(τ), w0(τ), vL(τ), and wL(τ) are some familiar functions. A few analytical
and computational strategies have been developed to deal with the model problem (2) with initial
condition (3) accompanied with boundary condition (4) or (5). Let us mention the G ′/G-expansion
approach [16], the finite difference scheme [17], and the compact implicit-explicit RK type tech-
niques [18]. To acquire the approximate solution of model (2) along with its conditions, we shall
adopt a spectral matrix collocation algorithm based on a novel Touchard family of polynomials ac-
companied by the Taylor expansion technique [19–22]. The applications of the spectral collocation
approach with exponential-order accuracy have been examined for various model problems in
physical sciences. For example, we may draw your attention to the recently published works [23–
30]. The Touchard polynomials, also known as Touchard-Riordan polynomials or exponential
polynomials, constitute a family of functions prominent in combinatorics and partition theory [31].
Named after the French mathematician Jacques Touchard, who introduced them in 1934, these
polynomials are defined through exponential generating functions and exhibit close ties to Bell
polynomials and Stirling numbers of the second kind [32].
Offering several intriguing properties, they find applications across various mathematical domains,
including combinatorics, number theory, and algebraic geometry. Their utility extends to the realm
of modeling, where they have been increasingly employed in recent years. Touchard polynomials
have found utility in analyzing stochastic models such as branching processes, random walks, and
queueing systems. In these contexts, they have been instrumental in deriving exact and asymptotic
expressions for key parameters, including the probability of extinction, expected particle counts,
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and waiting time distributions. Despite their versatility, their application in solving mathematical
models has been relatively limited. For instance, Sabermahani [33] adapted Touchard polynomials
to solve fractional-order Fokker-Planck equations, representing one of the few reported instances
of their use in mathematical modeling. Motivated by this gap in the literature, the current study
explores the application of Touchard polynomials in simulating the model described in (2). As far
as the authors are aware, this represents the first instance of Touchard polynomials being utilized
to solve diffusive Lotka-Volterra competition systems.
The manuscript is structured as follows: Section 2 introduces the time-advancement approach
used for discretizing the time variable in the main model. In Section 3, we conduct a stability
analysis of the model, identifying equilibrium points and discussing the conditions for stable
solutions. Section 4 provides a comprehensive review of Touchard polynomials, highlighting
their relevant properties for subsequent sections. The hybrid Taylor-Touchard algorithm is then
elaborated upon in Section 5, followed by a validation of the theoretical framework through
several examples in Section 6. Finally, Section 7 presents the conclusions drawn from the study.

2 Time-advancement approach

Here and in this part, we first apply the Taylor formula to discretize the given system of PDEs (2)
in time direction. For this purpose, we consider a uniform partitioning of [0, T] into K subdivisions
with nodes

τ0 = 0 < τ1 = ∆τ < . . . < τK = K∆τ = T.

Here ∆τ = τk+1 − τk indicates the time step of the mesh for k ∈ K := {0, 1, . . . , K− 1}. By vk, wk, we
denote the approximations to the true exact solutions v(x, τ), w(x, τ) at time level τk, respectively.
Namely, we set

vk ≡ vk(x) := v(x, τk), wk ≡ wk(x) := w(x, τk), x ∈ ΩL.

The given equations at time step τk are{
vk

τ = D1 vk
xx + A1 vk − B1 (vk)2 − C1 vk wk,

wk
τ = D2 wk

xx + A2 wk − B2 (wk)2 − C2 vk wk.
(6)

Using the Taylor series formula, we find that{
vk

τ = (vk+1 − vk)/∆τ + ∆τ vk
ττ/2 +O(∆τ2),

wk
τ = (wk+1 − wk)/∆τ + ∆τ wk

ττ/2 +O(∆τ2),
(7)

if we differentiate system (6) with regard to τ, we shall have
∆τ vk

ττ = D1(vk+1
xx − vk

xx) + A1(vk+1 − vk)− 2B1 vk(vk+1 − vk)− C1 (vk+1 − vk)wk

−C1 vk(wk+1 − wk),

∆τ wk
ττ = D2(wk+1

xx − wk
xx) + A2(wk+1 − wk)− 2B2 wk(wk+1 − wk)− C2 vk (wk+1 − wk)

−C2(vk+1 − vk)wk,

(8)
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in which we have replaced all terms in the forms vk
τ, wk

τ by their difference first-order quotients
(vk+1 − vk)/∆τ, (wk+1 − wk)/∆τ respectively on the right-hand side.

Now, it is sufficient to insert the two above relations (8) into (7). Then, the left-hand sides of
relations (7) will be equated to those related relations given in (6). After some manipulations and
collecting the same terms together, we reach the discretized linearized set of equations for (2). In
the matrix form, we get

MMMk
1(x)

d2

dx2UUUk+1(x) + MMMk
2(x)UUUk+1(x) = HHHk(x), k ∈ K, (9)

where

UUUk+1(x) :=
[

vk+1

wk+1

]
, MMMk

1(x) :=
[
−D1 ∆τ 0

0 −D2 ∆τ

]
, HHHk(x) :=

[
D1 ∆τ vk

xx + (2 + A1 ∆τ)vk

D2 ∆τ wk
xx + (2 + A2 ∆τ)wk

]
,

and

MMMk
2(x) :=

2 + ∆τ
(
−A1 + 2B1 vk + C1 wk

)
C1 ∆τ vk

C2 ∆τ wk 2 + ∆τ
(
−A2 + 2B2 wk + C2 vk

) .

To compute the approximate solution of Eq. (9), one first requires the expression UUU0(x), which
is obtained from the initial conditions v0(x) = f (x) and w0(x) = g(x). Besides the functions
v0(x) = f (x) and w0(x) = g(x), the second-order derivative of them also appears in the vector
function HHH0(x). The boundary conditions (4) or (5) will be converted accordingly. Under the
prescription of Dirichlet boundary conditions we have the following at x = 0, L

UUUk+1(0) = BBBk+1
0 :=

[
vk+1

0
wk+1

0

]
=

[
v0(τk+1)

w0(τk+1)

]
, UUUk+1(L) = BBBk+1

L :=

[
vk+1

L
wk+1

L

]
=

[
vL(τk+1)

wL(τk+1)

]
. (10)

In an analog manner, we can handle the Neumann boundary conditions (5) as

d
dx

UUUk+1(0) = BBBk+1
0 ,

d
dx

UUUk+1(L) = BBBk+1
L , (11)

where two vectors BBBk+1
0 and BBBk+1

L are defined in system (10).

3 Qualitative analysis of the model

This section is devoted to the qualitative study of the Lotka-Voltral PDE model (2). First, we derive
the equilibria of system (2). Then, we discuss the stability of each point.

The equilibrium points of the system

Let us consider both non-diffusive model
dv
dt

= v(A1 − B1 v − C1 w),

dw
dt

= w(A2 − B2 w − C2 v),

(12)
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and diffusive model
∂v
∂τ

− D1
∂2v
∂x2 = v(A1 − B1 v − C1 w),

∂w
∂τ

− D2
∂2w
∂x2 = w(A2 − B2 w − C2 v),

(x, τ) ∈ ΩL × ΩT. (13)

The equilibrium points of these systems are obtained by equating the right-hand side of system
(13) to zero as follows [34, 35]: 

v(A1 − B1 v − C1 w) = 0,

w(A2 − B2 w − C2 v) = 0.

(14)

Hence, by solving the system (14), the equilibrium points of this system are as follows:

(v1, w1) = (0, 0),

(v2, w2) = (0,
A2

B2
),

(v3, w3) = (
A1

B1
, 0),

(v4, w4) = (
A1B2 − A2C1

B1B2 − C1C2
,

A2B1 − A1C2

B1B2 − C1C2
).

(15)

The stability of the equilibrium points

The non-diffusive model can be described by the following system:


dv
dt

= v(A1 − B1 v − C1 w) = φ(v, w),

dw
dt

= w(A2 − B2 w − C2 v) = ψ(v, w).

(16)

The Jacobian matrix corresponding to system (16) is as follows:

J =

∂φ

∂v
∂φ

∂w
∂ψ

∂v
∂ψ

∂w

 .

The characteristic equation can be represented by

λ2 −

(
∂φ

∂v
+

∂ψ

∂w

)
λ +

(
∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v

)
= 0. (17)

Suppose that we are at the steady state v = vss, w = wss. Therefore, we can conclude that the
equilibrium point (vss, wss) is locally asymptotically stable according to Routh–Hurwitz criteria if
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the next conditions are fulfilled at the equilibrium point


∂φ

∂v
+

∂ψ

∂w
< 0,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
> 0.

(18)

From system (16), we have 

∂φ

∂v
= A1 − 2B1 v − C1 w,

∂φ

∂w
= −C1 v,

∂ψ

∂v
= −C2 v,

∂ψ

∂w
= A2 − 2B2 w − C2 v.

(19)

Since we have four equilibrium points, there are four cases:
Case 1: For (vss, wss) = (v1, w1) = (0, 0), the partial derivatives in (19) can be written as follows:

∂φ

∂v
= A1,

∂φ

∂w
= 0,

∂ψ

∂v
= 0,

∂ψ

∂w
= A2.

(20)

Therefore, we can write 
∂φ

∂v
+

∂ψ

∂w
= A1 + A2 ≥ 0,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= A1 A2 ≥ 0.

(21)

Hence the equilibrium point (v1, w1) = (0, 0) is unstable.
Case 2: For (vss, wss) = (v2, w2) = (0, A2

B2
), the partial derivatives in (19) can be written as follows:



∂φ

∂v
= A1 − C1

A2

B2
,

∂φ

∂w
= 0,

∂ψ

∂v
= 0,

∂ψ

∂w
= −A2.

(22)
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Consequently, we can write 
∂φ

∂v
+

∂ψ

∂w
= A1 − C1

A2

B2
− A2,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= (C1

A2

B2
− A1)A2.

(23)

Hence the equilibrium point (v2, w2) = (0, A2
B2
) will be asymptotically stable if A1 −C1

A2
B2

− A2 < 0

and (C1
A2
B2

− A1)A2 > 0.

Case 3: For (vss, wss) = (v3, w3) = (A1
B1

, 0), the partial derivatives in (19) can be written as follows:



∂φ

∂v
= −A1,

∂φ

∂w
= −C1

A1

B1
,

∂ψ

∂v
= −C2

A1

B1
,

∂ψ

∂w
= A2 − C2

A1

B1
.

(24)

Thus, we can write 
∂φ

∂v
+

∂ψ

∂w
= A2 − A1 − C2

A1

B1
,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= (C2

A1

B1
− A2)A1 − C1C2(

A1

B1
)2.

(25)

Hence, the equilibrium point (v3, w3) = (A1
B1

, 0) will be asymptotically stable if A2 − A1 − C2
A1
B1

<

0 and (C2
A1
B1

− A2)A1 − C1C2(
A1
B1
)2 > 0.

Case 4: For (vss, wss) = (v4, w4) = (A1B2−A2C1
B1B2−C1C2

, A2B1−A1C2
B1B2−C1C2

), the partial derivatives in (19) can be
written as follows: 

∂φ

∂v
= A1 − 2B1(

A1B2 − A2C1

B1B2 − C1C2
)− C1(

A2B1 − A1C2

B1B2 − C1C2
),

∂φ

∂w
= −C1(

A1B2 − A2C1

B1B2 − C1C2
),

∂ψ

∂v
= −C2(

A1B2 − A2C1

B1B2 − C1C2
),

∂ψ

∂w
= A2 − 2B2(

A2B1 − A1C2

B1B2 − C1C2
)− C2(

A1B2 − A2C1

B1B2 − C1C2)
.

(26)
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Hence the equilibrium point (v4, w4) = (A1B2−A2C1
B1B2−C1C2

, A2B1−A1C2
B1B2−C1C2

) is asymptotically stable if

∂φ

∂v
+

∂ψ

∂w
= A1 − 2B1(

A1B2 − A2C1

B1B2 − C1C2
)− C1(

A2B1 − A1C2

B1B2 − C1C2
)

+A2 − 2B2(
A2B1 − A1C2

B1B2 − C1C2
)− C2(

A1B2 − A2C1

B1B2 − C1C2)
< 0,

∂φ

∂v
∂ψ

∂w
−

∂φ

∂w
∂ψ

∂v
= (A1 − 2B1(

A1B2 − A2C1

B1B2 − C1C2
)− C1(

A2B1 − A1C2

B1B2 − C1C2
)) (27)

×(A2 − 2B2(
A2B1 − A1C2

B1B2 − C1C2
)− C2(

A1B2 − A2C1

B1B2 − C1C2)
))

−C1C2(
A1B2 − A2C1

B1B2 − C1C2
)2 > 0.

The diffusive model can be written as follows:
∂v
∂τ

= D1
∂2v
∂x2 + φ(u, v),

∂w
∂τ

= D2
∂2w
∂x2 + ψ(u, v).

(28)

Now, we linearize the diffusive model by taking ṽ = v − vss and w̃ = w − wss. Hence, system (28)
is transformed to 

∂ṽ
∂τ

= D1
∂2ṽ
∂x2 +

∂φ

∂v
ṽ +

∂φ

∂w
w̃,

∂w̃
∂τ

= D2
∂2w̃
∂x2 +

∂ψ

∂v
ṽ +

∂ψ

∂w
w̃.

(29)

By taking ṽ(x, t) = v∗eσt sin αx and w̃(x, t) = w∗eσt sin αx, then (29) is transformed to


σv∗ = −α2D1v∗ +

∂φ

∂v
v∗ +

∂φ

∂w
w∗,

σw∗ = −α2D2w∗ +
∂ψ

∂v
v∗ +

∂ψ

∂w
w∗,

(30)

or 
σv∗ = (

∂φ

∂v
− α2D1)v∗ +

∂φ

∂w
w∗,

σw∗ =
∂ψ

∂v
v∗ + (

∂ψ

∂w
− α2D2)w∗,

(31)

which can be written as a linear system as follows:

AX = σX, (32)
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A =

∂φ

∂v
− α2D1

∂φ

∂w
∂ψ

∂v
∂ψ

∂w
− α2D2

 , X =

[
v∗

w∗

]
. (33)

Hence, the characteristic equation |A − σI| = 0, can be represented by

σ2 −

(
(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2)

)
σ +

(
∂φ

∂v
− α2D1

)(
∂ψ

∂w
− α2D2

)
−

∂φ

∂w
∂ψ

∂v
= 0. (34)

As a result, the asymptotic stability according to Routh–Hurwitz criterion [34, 35] is verified if(
(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2)

)
< 0, (

∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
> 0. (35)

As we discussed above we have four equilibrium points, then there are four cases:
Case 1: The equilibrium point (v1, w1) = (0, 0) is asymptotically stable if


(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2) = A1 + A2 − α2(D1 + D2) < 0,

(
∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
= (A1 − α2D1)(A2 − α2D2) > 0.

(36)

Case 2: The equilibrium point (v2, w2) = (0, A2
B2
) is asymptotically stable if


(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2) = A1 − A2 − C1

A2

B2
− α2(D1 + D2) < 0,

(
∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
= (A1 − C1

A2

B2
− α2D1)(−A2 − α2D2) > 0.

(37)

Case 3: The equilibrium point (v3, w3) = (A1
B1

, 0) is asymptotically stable if


(

∂φ

∂v
− α2D1) + (

∂ψ

∂w
− α2D2) = −A1 + A2 − C2

A1

B1
− α2(D1 + D2) < 0,

(
∂φ

∂v
− α2D1)(

∂ψ

∂w
− α2D2)−

∂φ

∂w
∂ψ

∂v
= (−A1 − α2D1)(A2 − C2

A1

B1
− α2D2) > 0.

(38)

Case 4: The equilibrium point (v4, w4) = (A1B2−A2C1
B1B2−C1C2

, A2B1−A1C2
B1B2−C1C2

) is asymptotically stable if


(

∂φ

∂v
− α2D1

)
+

(
∂ψ

∂w
− α2D2

)
< 0,(

∂φ

∂v
− α2D1

)(
∂ψ

∂w
− α2D2

)
−

∂φ

∂w
∂ψ

∂v
> 0,

(39)
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where 

∂φ

∂v
= A1 − 2B1

(
A1B2 − A2C1

B1B2 − C1C2

)
− C1

(
A2B1 − A1C2

B1B2 − C1C2

)
,

∂φ

∂w
= −C1

(
A1B2 − A2C1

B1B2 − C1C2

)
,

∂ψ

∂v
= −C2

(
A1B2 − A2C1

B1B2 − C1C2

)
,

∂ψ

∂w
= A2 − 2B2

(
A2B1 − A1C2

B1B2 − C1C2

)
− C2

(
A1B2 − A2C1

B1B2 − C1C2

)
.

(40)

4 A review of Touchard polynomials: a convergence analysis

The goal is here to first review the main aspects of the Touchrad polynomials (TPs). Also, we
mention some main properties of this set of functions. Next, the convergence analysis of TPs is
studied.

An overview of Touchard polynomials

Jacques Touchard was the first who study the Touchard polynomials (TPs) associated with various
enumeration problems in number theory related to the permutations [36]. These polynomials are
also known as the generalization of Bell polynomials or exponential polynomilas [37]. For more
applications and detailed descriptions, we refer to [31, 38, 39].

The TPs are defined through the following Rodriguez-like formula:

Tq(x) = exp(−x)
(

x
d

dx

)q {
exp(x)

}
, q ∈ N.

We next denote the Stirling number (of the second type) by S2(q, i). It is defined as [40, Chap. 5]

S2(q, i) :=
1
i!

i∑
j=1

(−1)i−j
(

i
j

)
jq, 1 ≤ i ≤ q,

and if 1 ≤ q < i we have S2(q, i) = 0. We also set S2(0, 0) = 1 and S2(0, i) = 0 for i ≥ 1. In fact,
the Stirling number indicates the number of partitions of a set of size q into i disjoint nonempty
subsets. From these numbers, we have the next definition of TPs:

Definition 1 The Touchard polynomials on [0, 1] are given by

Tq(x) :=
q∑

i=0

S2(q, i) xi, q ∈ N, (41)

and T0(x) := 1.



48 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 37–65

It is not difficult to obtain the list of T1(x), . . . , Tq(x) for q = 5 given as follow

T1(x) = x,

T2(x) = x2 + x,

T3(x) = x3 + 3x2 + x,

T4(x) = x4 + 6x3 + 7x2 + x,

T5(x) = x5 + 10x4 + 25x3 + 15x2 + x.

One can evidently see that Tq(0) = 0 for all q ∈ N. We also have Tq(1) = Bq, where Bq represents
the Bell numbers for q ∈ N0 := N∪ {0}. By using B0 = B1 = 1, the values of the first Bell numbers
are given as 1, 1, 2, 5, 15, 52, 203, 877, and 4140.
The next result is about the zeros of TPs. These roots with some modifications can be used as the
set of collocation nodes in our proposed spectral collocation algorithm, below. A proof of which
was proved in [41]:

Theorem 1 The zeros of Tq(x) are real, distinct, and non-positive for all q ∈ N.

The following results are useful in the subsequent error analysis of TPs. Let Q ∈ N be given. To
continue, let us denote the vector of (Q + 1) TPs by

TTTQ(x) :=
[
T0(x) T1(x) . . . TQ(x)

]
. (42)

From this representation, we have:

Lemma 1 The following representation for TTTQ(x) holds

TTTQ(x) = ΣΣΣQ(x)PPPQ, (43)

where the structured upper-triangular matrix PPPQ is constant. It is of size (Q + 1)× (Q + 1) and defined
as

PPPQ =



1 S2(1, 0) S2(2, 0) . . . S2(Q − 1, 0) S2(Q, 0)

0 1 S2(2, 1) . . . S2(Q − 1, 1) S2(Q, 1)

0 0 1 . . . S2(Q − 1, 2) S2(Q, 2)

...
... . . . . . . . . . ...

0 0 0 . . . 1 S2(Q, Q − 1)

0 0 0 . . . 0 1



,

and the vector ΣΣΣQ(x) is

ΣΣΣQ(x) =
[
1 x x2 . . . xQ

]
.
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Proof By considering (6) and by induction on Q ∈ N we can easily deduce the proof.

The non-singularity of the matrix PPPQ is obvious as one can see that det(PPPQ) = 1.

Error analysis and convergence result of TPs

The goal is to consider the sequence of TPs on [0, 1]. We will investigate a convergence result
associated with the TPs in a detailed manner. In this respect, one is required to consider a suitable
space related to [0, 1]. We set the weight function as w(x) := 1 and define

L2
w[0, 1] := {p : [0, 1] → R : p is measurable and ∥p∥w < ∞} ,

with the associated norm as ∥p∥w :=
√∫1

0 |p(x)|2w(x)dx.
Let’s assume that a function p(x) ∈ L2

w[0, 1] is given. By writing the function p(x) in a series form
in terms of TPs we have

p(x) =
∞∑

q=0

ϕq Tq(x), x ∈ [0, 1]. (44)

The final aim would be to find the coefficients ϕq, q ≥ 0 as unknowns. The next finite-dimensional
subspace ZQ ⊆ L2

w[0, 1] will be considered in practical computing as

ZQ := Span⟨T0(x), T1(x), . . . , TQ(x)⟩.

It is evident that ZQ is a closed and finite-dimensional (of dimension Q + 1) and therefore a
complete subspace of L2

w[0, 1]. This implies that one finds the finest (best) approximation element
p⋆(x) ∈ ZQ such that

∥p(x)− p⋆(x)∥w ≤ ∥p(x)− r(x)∥w, ∀r ∈ ZQ.

As previously mentioned, we use only the first (Q + 1) TPs to approximate p(x). It follows that

p(x) ≈ pQ(x) :=
Q∑

q=0

ϕq Tq(x), x ∈ [0, 1]. (45)

The approximate solution pQ(x) can be stated concisely as follows

pQ(x) = TTTQ(x)ΦΦΦQ, (46)

where TTTQ(x) is defined in (7) and the unknowns ϕq for q = 0, 1, . . . , Q will be put in a vector form
as

ΦΦΦQ :=
[
ϕ0 ϕ1 . . . ϕQ

]t .

To establish our main result related to the convergence of TPs, we state the following Corollary,
which is taken from [42] (without proof):

Corollary 1 Assume that p(x) has a continuous second derivative on [−1, 1]. Let PN(x) denote the
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interpolation polynomials (of degree at most N), based on the N + 1 points xi = cos
(

2i+1
N+1

π
2

)
, i =

0, 1, . . . , N. Then PN(x) converges to p(x) on [−1, 1] as N → ∞. Indeed, we have

|p(x)− PN(x)| = O(
1√
N
). (47)

Note that we can extend the above result on a general arbitrary domain [a, b] by using the change
of variable 2x̄ = a + b + (b − a)x. This transformation also converts the the Chebyshev nodes xi
on [−1, 1] into the associated points x̄i on [a, b]. Here, we have a = 0 and b = 1. However, the
given upper bound in (47) still is valid.
By increasing the number of bases Q, we will show in the next result that the difference between
p(x) and the series form pQ(x) (45) approaching zero. To do so, let us define the error EQ(x) :=
p(x)− pQ(x).

Theorem 2 Suppose that pQ(x) = TTTQ(x)ΦΦΦQ indicated the best (closest) approximation to p(x) out of
space ZQ and let p(x) ∈ L2

w[0, 1] ∩ C2[0, 1]. Then, EQ(x) converges to zero as Q → ∞. Indeed, we have

∥EQ(x)∥2 = O(Q− 1
2 ). (48)

Proof We first utilize the fact that pQ(x) shows the finest approximation to p(x) out of ZQ. Based
on the above discussion, one finds that

∥p(x)− pQ(x)∥w ≤ ∥p(x)− r(x)∥w, ∀r ∈ ZQ. (49)

The last inequality (49) is still true for a specific selection for r(x) to be PQ(x) as in Corollary 1
with N = Q. Therefore, we conclude

∥p(x)− pQ(x)∥2
w ≤ ∥p(x)− PQ(x)∥2

w =

∫ 1

0

∣∣p(x)− PQ(x)
∣∣2 w(x)dx.

Now, by virtue of (47) there is a constant C such that

∥p(x)− pQ(x)∥2
w ≤

[ C√
Q

]2 ∫ 1

0
w(x)dx.

We then evaluate the definite integral, which is equal to one. Taking the square root yields the
desired conclusion.

Remark 1 We remark that we can use the larger interval [0, L], (L > 1) instead of unit interval [0, 1].
This can be done just by changing of variable x → x/L. In other words, the above results can be easily
extended to [0, L]. In the computational experiments, we may use a larger interval [0, L] rather than [0, 1].

5 The hybrid Taylor-Touchard algorithm

The solution of the Lotka-Volterra competition system (2) can now be obtained through solving the
family of discretized equations (9) together with Dirichlet boundary condition (10) or Neumann
boundary conditions (11). Now, suppose that we have the approximate solution of (9) at time level
k − 1 for k ≥ 1. Evidently, at the first time level, namely τ = 0, we have UUU0(x) at hand. We assume
that at time step k, we can state the numerical solutions of the system (9) as a finite summation of
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(Q + 1) Touchard basis functions. It follows thatvk(x) ≈ vk,Q(x) =
∑Q

q=0 ϕ
(k)
q,1 Tq(x),

wk(x) ≈ wk,Q(x) =
∑Q

q=0 ϕ
(k)
q,2 Tq(x).

(50)

We now seek the coefficients ϕ
(k)
q,r for r = 1, 2 and q = 0, 1, . . . , Q. We may state these unknowns in

vectorized forms by

ΦΦΦ(k)
Q,r :=

[
ϕ
(k)
0,r ϕ

(k)
1,r . . . ϕ

(k)
Q,r

]t
, r = 1, 2.

In accordance to the definition TTTQ(x) in (42), one able to represent the foregoing equations (50) as

{
vk,Q(x) = TTTQ(x)ΦΦΦ(k)

Q,1,

wk,Q(x) = TTTQ(x)ΦΦΦ(k)
Q,2.

(51)

With the help of relation (43) in Lemma 1, we further rewrite these equations as{
vk,Q(x) = ΣΣΣQ(x)PPPQ ΦΦΦ(k)

Q,1,

wk,Q(x) = ΣΣΣQ(x)PPPQ ΦΦΦ(k)
Q,2.

(52)

We now put both approximate solutions into one vector. We set UUU(k)
Q (x) as an approximation to

UUUk(x) yielding

UUUk(x) ≈ UUU(k)
Q (x) :=

[
vk,Q(x)
wk,Q(x)

]
. (53)

By using the foregoing relations (52), the next matrix representations for UUU(k)
Q (x) is provided. The

proof of which is an easy job.

Lemma 2 The approximated solution UUU(k)
Q (x) in (53) has the following matrix representation

UUU(k)
Q (x) = Σ̂ΣΣQ(x) P̂PPQ Φ̂ΦΦ

(k)
Q , (54)

where

Σ̂ΣΣQ(x) =
[

ΣΣΣQ(x) 000
000 ΣΣΣQ(x)

]
, P̂PPQ =

[
PPPQ 000
000 PPPQ

]
, Φ̂ΦΦ

(k)
Q =

[
ΦΦΦ(k)

Q,1

ΦΦΦ(k)
Q,2

]
.

By looking at (51), we find that one needs to approximate d2

dx2 UUUk(x). Thus, we consider the vector
form

d2

dx2UUUk(x) ≈ d2

dx2UUU(k)
Q (x) :=

[
v ′′

k,Q(x)
w ′′

k,Q(x)

]
. (55)
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To calculate the second-order derivatives of UUU(k)
Q (x), we return to the relations (53). We have to

compute only derivatives of the vector ΣΣΣQ(x). A simple calculation yields

d
dx

ΣΣΣQ(x) = ΣΣΣQ(x)EEEQ, EEEQ =


0 1 0 . . . 0
0 0 2 . . . 0
...

... 0
...

...

0 0 0 . . . Q
0 0 0 . . . 0


(Q+1)×(Q+1)

. (56)

If we repeat the differentiation, we arrive at

d2

dx2 ΣΣΣQ(x) = ΣΣΣQ(x)EEE2
Q. (57)

By combining the last relations (57) and (53) we finally get{
v ′′

k,Q(x) = ΣΣΣQ(x)EEE2
Q PPPQ ΦΦΦ(k)

Q,1,

w ′′
k,Q(x) = ΣΣΣQ(x)EEE2

Q PPPQ ΦΦΦ(k)
Q,2.

(58)

Lemma 3 The approximated solution d2

dx2 UUU(k)
Q (x) in (55) has the following matrix representation

d2

dx2UUU(k)
Q (x) = Σ̂ΣΣQ(x) ÊEEQ P̂PPQ Φ̂ΦΦ

(k)
Q , (59)

where Φ̂ΦΦ
(k)
Q , Σ̂ΣΣQ(x) and P̂PPQ are defined in (54) and

ÊEEQ =

[
EEE2

Q 000
000 EEE2

Q

]
.

A sequence of collocation points will be used now. This set of points can be selected as the zeros
of Touchard polynomials as mentioned in Section 4. However, we use the equally distributed
points on [0, L]. Since we have to determine Q + 1 coefficients in the series expansion forms (50),
we consider xs = sL/Q for s = 0, 1, . . . , Q as the collocation points. We now collocate the matrix
Eqs. (51) at the aforementioned points to reach at

MMMk−1
1 (xs)

d2

dx2UUUk
Q(xs) + MMMk−1

2 (xs)UUUk
Q(xs) = HHHk−1(xs), s = 0, 1, . . . , Q, (60)

for k = 1, 2, . . . , K. We next introduce two matrices and vectors related to the coefficients of the
model as

NNNk−1,j =


MMMk−1

j (x0) 000 . . . 000
000 MMMk−1

j (x1) . . . 000
...

... . . . ...
000 000 . . . MMMk−1

j (xQ)

 , j = 1, 2, FFFk−1 =


HHHk−1(x0)

HHHk−1(x1)
...

HHHk−1(xQ)

 .
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The following notations will be also set

VVVk :=


UUUk

Q(x0)

UUUk
Q(x1)

...
UUUk

Q(xQ)

 , VVV ′′
k :=


d2

dx2 UUUk
Q(x0)

d2

dx2 UUUk
Q(x1)
...

d2

dx2 UUUk
Q(xQ)

 .

A reformulation of the set of matrix Eqs. (60) can be done by using the former matrix and vector
notations. So, we have

NNNk−1,1 VVV ′′
k + NNNk−1,2 VVVk = FFFk−1, k = 1, 2, . . . , K. (61)

To proceed, we collocate two relations (54) and (59) at the collocation nodes. Therefore, we get

Lemma 4 The matrix forms of VVVk and VVV ′′
k are obtained as

VVVk =
˜̂ΣΣΣQ P̂PPQ Φ̂ΦΦ

(k)
Q , VVV ′′

k = ˜̂ΣΣΣQ ÊEEQ P̂PPQ Φ̂ΦΦ
(k)
Q . (62)

Here, two matrices P̂PPQ, Φ̂ΦΦ
(k)
Q are defined in (54) and the block-diagonal matrix ÊEEQ is introduced in (59).

Also, we have used

˜̂ΣΣΣQ = [Σ̂ΣΣQ(x0) Σ̂ΣΣQ(x1) . . . Σ̂ΣΣQ(xQ)]
t,

where the matrix Σ̂ΣΣQ is previously defined in (54).

By placing two relations in (62) into (61) one gets the next (linear) fundamental matrix equation
(FME) {

NNNk−1,1
˜̂ΣΣΣQ ÊEEQ + NNNk−1,2

˜̂ΣΣΣQ

}
P̂PPQ Φ̂ΦΦ

(k)
Q = FFFk−1, k = 1, 2, . . . , K.

If we rephrase the last equations, we have for k = 1, 2, . . . , K

WWWk Φ̂ΦΦ
(k)
Q = FFFk−1, or [WWWk;FFFk−1], WWWk :=

(
NNNk−1,1

˜̂ΣΣΣQ ÊEEQ + NNNk−1,2
˜̂ΣΣΣQ

)
P̂PPQ. (63)

Still, we are required to implement the boundary conditions (10) or (11) and incorporate them into
the matrix Eq. (63). For the first Dirichlet boundary condition in (10), we consider (54) followed
by approaching x to zero. Similarly, for the second one, we tend x to L. In both cases, we have

WWW0
k Φ̂ΦΦ

(k)
Q = BBBk

0, WWW0
k := Σ̂ΣΣQ(0) P̂PPQ,

WWWL
k Φ̂ΦΦ

(k)
Q = BBBk

L, WWWL
k := Σ̂ΣΣQ(L) P̂PPQ.

If the Neumann boundary conditions (5) are given, we first combine two relations (54) and (56) to
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obtain {
v ′

k,Q(x) = ΣΣΣQ(x)EEEQ PPPQ ΦΦΦ(k)
Q,1,

w ′
k,Q(x) = ΣΣΣQ(x)EEEQ PPPQ ΦΦΦ(k)

Q,2.

Now, we let x approaches to 0, L to reach at

WWW0
k Φ̂ΦΦ

(k)
Q = BBBk

0, WWW0
k := Σ̂ΣΣQ(0)EEEQ P̂PPQ,

WWWL
k Φ̂ΦΦ

(k)
Q = BBBk

L, WWWL
k := Σ̂ΣΣQ(L)EEEQ P̂PPQ.

In either case of boundary conditions, we use [WWW0
k , BBBk

0] or [WWWL
k , BBBk

L] to substitute the first four rows
of the FME [WWWk;FFFk−1]. We denote the resultant modified system given by

[W̃WWk; F̃FFk−1], k = 1, 2, . . . , K. (64)

Once we solve (64), the unknown Touchard coefficients ϕ
(k)
q,r for q = 0, 1, . . . , Q and r = 1, 2 are

obtained at each time level k for k = 1, 2, . . . , K.
The strategy of the residual error function (REF) will now be utilized to measure the accuracy of
the presented Taylor-Touchard collocation procedure. Toward this end, we insert the acquired
approximate solutions into (2). Thus, the REFs are defined by the following relations[

Res(k)v,Q(x)

Res(k)w,Q(x)

]
=

∣∣∣MMMk−1
1 (x)

d2

dx2UUUk
Q(x) + MMMk−1

2 (x)UUUk
Q(x)− HHHk−1(x)

∣∣∣ ∼= 0, (65)

for k = 1, 2, . . . , K. We note that the foregoing REF formula is useful especially when the exact
solutions of system (2) are out of reach for various values of model parameters.

6 Graphical and numerical results

In this part, diverse simulation experiments are conducted to illustrate the utility of the Taylor-
Touchard matrix collocation strategy once applied to the Lotka-Volterra competition model (2).
Two test case studies with diverse model parameters are solved numerically to testify to the
accuracy and performance of the combined approximation technique. All simulation results are
performed by utilizing Matlab version R2021a on a digital computer.

Example 1 We consider the Lotka-Volterra competition system (2) with the next initial conditions [17]

f (x) = g(x) = 0.1 exp(−8x2).

The Dirichlet boundary conditions are taken as

v0(τ) = w0(τ) = f (0), vL(τ) = wL(τ) = f (L).

In the following diverse coefficient parameters Ai, Bi, Ci, and Di, for i = 1, 2 will be considered.

We first set Q = 5. We also use L, T = 1 and ∆τ = 0.01. All parameters are set as unity except
that D1 = 0.5. The approximate solutions using the presented Taylor-Touchard method at the first
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time level τ = ∆τ are given by

v1,5(x) = 0.45827 x5 − 1.64989 x4 + 2.10134 x3 − 0.991429 x2 − 0.0182481 x + 0.1,

w1,5(x) = 0.377296 x5 − 1.39838 x4 + 1.83421 x3 − 0.889391 x2 − 0.0237062 x + 0.1.

The obtained approximations at the last time level τ = T are as follows

v100,5(x) = 0.00744598 x5 − 0.012201 x4 + 0.0307353 x3 − 0.0894343 x2 − 0.0365125 x + 0.1,

w100,5(x) = 0.00808672 x5 − 0.0193222 x4 + 0.0294968 x3 − 0.049399 x2 − 0.0688288 x + 0.1.

Figure 1 shows the whole approximate solutions using the above-mentioned parameters on space-
time domain [0, 1]× [0, 1]. While the left picture presents the population density v, the right plot
graphically shows the population density w. The snapshots of the associated REFs defined via (65)
are also depicted in Figure 2 at different time levels τ = τk for k = 1, 2, . . . , 100. It is seen that the
same results for both approximate solutions v, w are obtained on the unit square [0, 1]× [0, 1]. To
see the discrepancy, we need to go beyond this domain.
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Figure 1. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 0.01, for
(x, τ) ∈ [0, 1]× [0, 1].

Let us consider L = 10 and T = 100 in the computations. In Figure 3, we show the approximate
solutions for the population densities v and w using the same parameters as above except that we
take a relatively large time step ∆τ = 1. In fact, the obtained solutions at τ = 50 are given as

v50,5(x) = 0.000472878 x5 − 0.0149354 x4 + 0.168979 x3 − 0.836871 x2 + 1.66751 x + 0.1,

w50,5(x) = 0.0000459759 x5 − 0.00140024 x4 + 0.0151665 x3 − 0.0746089 x2 + 0.159923 x + 0.1.

The profile of population densities at x = 5 is visualized in Figure 4. One can easily see from Fig-
ure 3 and Figure 4 that the population density v(x, τ) will ultimately survive with low diffusion
rates D1 = 0.5 while the second one, w(x, τ), with higher diffusion value D2 = 1 will die out on
τ ∈ [0, 100].
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Figure 2. Visualization of REfs Res(k)v,5(x) (left) and Res(k)w,5(x) (right) via Taylor-Touchard matrix algorithm
in Example 1 with Q = 5, A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 0.01, for (x, τ) ∈
[0, 1]× [0, 1] .
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Figure 3. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 1, for
(x, τ) ∈ [0, 10]× [0, 100] .

We next examine the impact of utilizing the growth factors A1 and A2 on the interaction between
two species. In this respect, we set [17]

A1 = 0.8, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1, D2 = 1.

From these parameters, the following approximations for the competition system are obtained.
The two first ones are related to τ = ∆τ as follows

v1,5(x) = −2.9310−6 x5 + 0.000120498 x4 − 0.00195727 x3 + 0.0157298 x2 − 0.0627584 x + 0.1,

w1,5(x) = −2.7123−6 x5 + 0.000112368 x4 − 0.00184439 x3 + 0.0150341 x2 − 0.0611469 x + 0.1.
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Figure 4. Graphing of population densities via Taylor-Touchard matrix algorithm in Example 1 with Q = 5,
A1, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1 = 0.5, D2 = 1, ∆τ = 1, at x = 5 .

The obtained approximations at the final time τ = T are given by

v100,5(x) = −3.31577−7 x5 + 0.0000265815 x4 − 0.000681488 x3 + 0.00781148 x2

− 0.0432318 x + 0.1,

w100,5(x) = 0.000392573 x5 − 0.0123676 x4 + 0.140267 x3 − 0.713172 x2 + 1.5369 x + 0.1.

The graphical representations of two population species are visualized on Figure 5 on the whole
domain (x, τ) ∈ [0, 10]× [0, 100]. The profile of population densities at x = 5 and for τ ∈ [0, 100]
are depicted on Figure 6.
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Figure 5. Graphing of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1 = 0.8, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1, D2 = 1, ∆τ = 1, for
(x, τ) ∈ [0, 10]× [0, 100] .

By looking at the plotted Figure 5 and Figure 6 we infer that under the assumption on the growth
rates A1 < A2 the population v(x, τ) will wipe out at the end. However, the population w(x, t)
will remain alive for a long time life. The conclusion is that if the invasive population is weak,
then the population will become extinct finally.
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Figure 6. Graphing of population densities via Taylor-Touchard matrix algorithm in Example 1 with Q = 5,
A1 = 0.8, A2 = 1, B1, B2 = 1, C1, C2 = 1, D1, D2 = 1, ∆τ = 1, at x = 5 .

In the last experimental simulations for Example 1, let us investigate the competitive coexistence
of two population species in the system. For this purpose, we set [17]

A1 = 0.9, A2 = 1, B1, B2 = 1, C1 = 0.8, C2 = 1, D1 = 0.3, D2 = 1.

We run our Taylor-Touchard collocation matrix algorithm with a time step ∆τ = 1 as before. Using
Q = 5 we get the next approximations evaluated at time τ = ∆τ as

v1,5(x) = −3.9490−6 x5 + 0.000157353 x4 − 0.00245291 x3 + 0.0186658 x2 − 0.0692296 x + 0.1,

w1,5(x) = −2.7123−6 x5 + 0.000112368 x4 − 0.00184439 x3 + 0.0150341 x2 − 0.0611469 x + 0.1.

The obtained approximations at the given final time τ = T are given by

v100,5(x) = 0.000499975 x5 − 0.0157776 x4 + 0.177961 x3 − 0.872004 x2 + 1.69182 x + 0.1,

w100,5(x) = 0.0000344845 x5 − 0.00103192 x4 + 0.0109967 x3 − 0.0555938 x2 + 0.133343 x + 0.1.

Besides the preceding polynomial solutions, we visualize the approximate solutions vk,5(x, τ)

and wk,5(x, τ) for all k = 1, 2, . . . , 100 in Figure 7 on the whole space-time domain (x, τ) ∈
[0, 10]× [0, 100]. The competition results of two populations for (x, τ) ∈ {5}× [0, 100] are shown
in Figure 8.
From graphics presented in the former Figure 7 and Figure 8 one observes that both populations
arrived at a coexistence state. In other words, the two competing species are equal in status, with
neither complete victory nor loss in competition.

Example 2 The second test example related to the Lotka-Volterra competition system (2) is devoted to the
Neumann boundary conditions. That is, we take the following initial conditions

f (x) = g(x) = 0.1 sin2(2.4 π x) + 0.28 sin2(−0.05 π x),

which is borrowed from [18]. The Neumann boundary conditions are set as follows:

v0(τ) = w0(τ) = f ′(0), vL(τ) = wL(τ) = f ′(L).
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Figure 7. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 1 with Q = 5, A1 = 0.9, A2 = 1, B1, B2 = 1, C1 = 0.8, C2 = 1, D1 = 0.3, D2 = 1, ∆τ = 1,
for (x, τ) ∈ [0, 10]× [0, 100]
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Figure 8. Visualization of population densities via Taylor-Touchard matrix algorithm in Example 1 with Q = 5,
A1 = 0.9, A2 = 1, B1, B2 = 1, C1 = 0.8, C2 = 1, D1 = 0.3, D2 = 1, ∆τ = 1, at x = 5

Below, we only use the coefficient parameters Ai, Bi, Ci, and Di, for i = 1, 2 in the form

A1 = 0.4, A2 = 0.5, D1 = D2 = 0.001, B1 = 0.4, B2 = 0.5, C1 = 0.5, C2 = 0.8.

Using the aforementioned parameters and by running the Taylor-Touchard algorithm with Q = 5
and ∆τ = 1, we get the next approximate solutions computed at τ = ∆τ and for 0 ≤ x ≤ 1 as

v1,5(x) = 0.232195 x5 − 0.774398 x4 + 0.966988 x3 − 0.48004 x2 − 3.4−107 x + 0.145598,

w1,5(x) = 0.232362 x5 − 0.775521 x4 + 0.96977 x3 − 0.482383 x2 − 6.1−107 x + 0.153403.

Similarly, at time level τ = T = 100, we get

v100,5(x) = −0.0137547 x5 + 0.0372937 x4 − 0.0340702 x3 + 0.0130377 x2

− 1.7−108 x + 0.0183703,

w100,5(x) = −0.0139798 x5 + 0.0381177 x4 − 0.0346481 x3 + 0.0128192 x2 + 1.21895.
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In Figure 9, we present the above approximate solutions for k = 1, 100 together with other values
2 ≤ k ≤ 99. While the left picture shows the population density v, the right plot depicts the
approximate solution w on the whole domain (x, τ) ∈ [0, 1]× [0, 100]. At x = 0.5, we further
plot the snapshots of approximation v(x, τ), w(x, τ) over the long time domain τ ∈ [0, 100] as
shown in Figure 10. If we look at Figure 9 and Figure 10, we can observe that the population v
will eventually disappear and the population w will survive.
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Figure 9. Visualization of approximate solutions v(x, τ) (left) and w(x, τ) (right) via Taylor-Touchard matrix
algorithm in Example 2 with Q = 5, A1 = 0.4, A2 = 0.5, B1 = 0.5, B2 = 0.4, C1 = 0.5, C2 = 0.8, D1 = D2 = 0.001,
∆τ = 1, for (x, τ) ∈ [0, 1]× [0, 100].
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Figure 10. Graphing of population densities via Taylor-Touchard matrix algorithm in Example 2 with Q = 5,
A1 = 0.4, A2 = 0.5, B1 = 0.5, B2 = 0.4, C1 = 0.5, C2 = 0.8, D1 = D2 = 0.001, ∆τ = 1, at x = 5.

In terms of achieved REFs, we fix ∆τ = 0.01 and consider two different values of Q = 4, 8 in the
computations. The other parameters are given as above for the second test example. These REFs
associated with the approximate solutions v(x, τ) and w(x, τ) are displayed in Figure 11. The time
domain is [0, 1] and the results are plotted at x = 5. The magnitude of REFs is decreased if one
increases the number of basis functions Q.
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Figure 11. Visualization of REFs with Q = 4 (left) and Q = 8 (right) via Taylor-Touchard matrix algorithm
in Example 2 with A1 = 0.4, A2 = 0.5, B1 = 0.5, B2 = 0.4, C1 = 0.5, C2 = 0.8, D1 = D2 = 0.001, ∆τ = 0.01, at

x = 5

7 Conclusion

This study introduces a novel combined semi-discretized spectral matrix collocation algorithm for
solving the Lotka-Volterra competition system with diffusion. The proposed algorithm utilizes the
well-known Taylor series formula for the time-marching procedure and the Touchard family of
polynomials for solving the resulting linear systems of ODEs using spectral matrix collocation. The
convergence and error analysis of the proposed algorithm are discussed in detail. Additionally, a
comprehensive qualitative analysis of the system is provided through stability analysis. Based
on the performed stability analysis, equilibrium points for the system are obtained along with
the conditions for a stable solution. Numerical simulations with diverse model parameters and
boundary conditions are conducted to illustrate the applicability and effectiveness of the developed
algorithm. The presented outcomes demonstrate that the proposed algorithm is accurate, efficient,
and capable of providing stable solutions for the Lotka-Volterra competition system with diffusion.
The residual error function technique is employed to further validate the accuracy and advantages
of the proposed algorithm. Through the complete analysis, the accuracy of the proposed method
increases with the number of used basis functions, validating the applicability of the method for
solving similar complex problems.
This study makes significant contributions to the field of simulations of nonlinear PDEs and
underscores the potential of the combined semi-discretized spectral matrix collocation algorithm
for solving similar problems in diverse fields of science and engineering. The proposed algorithm
serves as a powerful tool for modeling and simulating complex systems in areas such as ecology,
biology, economics, and physics. Future research endeavors could extend the proposed algorithm
to take into account other factors such as the extension of the current model to three or more
species or incorporating the climate effect and investigate the effects of various parameters on the
method’s performance.
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