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Abstract

This paper aims to investigate the existence, uniqueness, and stability properties for a class
of fractional weighted Cauchy-type problem in the variable exponent Lebesgue space Lp(.).
The obtained results are set up by employing generalized intervals and piece-wise constant
functions so that the Lp(.) is transformed into the classical Lebesgue spaces. Moreover, the
usual Banach Contraction Principle is utilized, and the Ulam-Hyers (UH) stability is studied.
At the final stage, we provide an example to support the accuracy of the obtained results.

1. Introduction

Lebesgue spaces with variable exponents were originally examined in Orlicz’s work [1] in 1931 and then in Nakano’s papers [2, 3]. More
specifically, [2] provides a precise characterization that describes Musielak-Orlicz spaces, however, it appears that Orlicz is mostly focused
on the completeness of the function spaces. Afterward, a Russian researcher named Sharapudinov in [4] individually improved variable
exponent Lebesgue spaces (VELS) on the real line. In the early 1900s, Kováčik and Rákosnı́k in [5] detailed the essential characteristics of
Lebesgue and Sobolev spaces with variable exponents. Actually, this paper has a major effect on subsequent papers and was accepted as
the norm reference providing the current basic properties. The authors offered a suitable counterpart of the Lebesgue spaces Lp and of the
Sobolev spaces W k,p and proposed the concept of Lp(x) for functions p accepting the values on [1,∞]. They also provide an application of
generalized Sobolev spaces W k,p(x) to partial differential equations involving Dirichlet conditions with coefficients of a variable growth. A
decade later, Fan and Zhao [6] deduced the same features by applying different techniques.
The basic idea behind the VELS Lp(.) is to substitute a variable exponent measurable function (VEMF) p(.) into the traditional constant
exponent p in classical Lebesgue spaces (CLS). As a result, we naturally expect that Lp(.) becomes a generalization for CLS Lp. Though the
concept seems to be complex and challenging, it has substantial effects and implications that perfectly represent several phenomena in image
processing, optimization, electrorheological(ER) fluids, etc. See [7–11] and the references therein.
A lot of papers have been published concerning the existence and uniqueness of solutions of fractional differential equations (FDEs) in the
space of continuous functions C(Λ,R), whereas relatively fewer articles exist studying the existence and uniqueness of solutions of FDEs in
Lp(Λ,R) space of integrable functions. For example; by using the well-known monotone technique combined with the method of upper
and lower solutions, Derbazi et al. [12] find the existence and uniqueness of maximal and minimal solutions in C(J,R) to an initial value
problem involving ψ-Caputo fractional derivative:{

Dα,ψ
a κ(s) = f (s,κ(s)), s ∈ J,

κ(a) = a∗.
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The existence and uniqueness of p-integrable solution in Lp(α,β ) space has been discussed in [13] for Caputo FDE with a boundary
condition having the form:{

Dϖ
a κ(s) = Φ(s,κ(s)), s ∈ [α,β ],

γκ(α)+µκ(β ) = c.

Agarwal et al. [14] proved the existence of Lp solutions of fractional order integral equations with abstract Volterra operators in separable
Banach spaces. Arshad et al. [15] have studied local and global existence results by applying a compactness-type condition for Lp solutions
for fractional integral equations in Banach spaces. The existence of the solutions of FDEs in Lp(.) actually has received little attention since
we are aware of several notable challenges in that space. Dongg et al. [16] employed the Riesz-Kolmogorov theorem to get the existence and
uniqueness of solutions for a Cauchy problem involving FDEs in VELS. Some qualitative properties of a boundary value problem in [17] and
a terminal value problem in [18] involving Riemann-Liouville(R-L) fractional operator were discussed in Lp(.) space with variable exponent.
In a very recent work [19], the results in [17, 18] have been generalized by discussing a multi-term fractional boundary value problem in
VELS. See [20–22] for the most current works regarding the subject.
In this paper, we shall investigate the following problem involving weighted Cauchy type condition in order to obtain some qualitative
properties in Lp(.)(Λ,R):{

Dϖ
0 κ(s) = ϑ(s,κ(ψ(s))), s ∈ Λ := [0,1],

s1−ϖ κ(s)|s=0 = β ,
(1.1)

where 0 < ϖ < 1, ϑ(.,κ(.)) ∈ Lp(.)(Λ×R,R), κ ∈ Lp(.)(Λ,R) and ψ : Λ→ Λ, and Dϖ
0 denotes the left Riemann Liouville (R-L) FDE of

order ϖ in Lp(.) defined as (see [16, 23]):

(Dϖ

0+κ)(s) =
1

Γ(1−ϖ)

d
ds

∫ t

0
(s−ρ)−ϖ

κ(ρ)dρ, (1.2)

where Γ(.) is the gamma function.
On the other hand, left-sided R-L FDE of order ϖ for function κ(s) in Lp(.) is given by

Iϖ

0+κ(s) =
1

Γ(ϖ)

∫ s

0
(s−ρ)ϖ−1

κ(ρ)dρ.

The outline of the paper is as follows: Fundamental concepts and helpful lemmas that are necessary for establishing the main results are
introduced in Section 2. Critical results regarding the existence of solutions in the Lebesgue space of variable exponent for the problem (1.1),
under certain conditions are established in the subsequent section. The UH stability of the solution is demonstrated in the following section.
The last section is dedicated to a demonstrative case that supports the obtained results.

2. Mathematical Preliminaries

Definition 2.1 ( [24], [23]). By Lp([α,β ],R), 1≤ p < ∞, we express the classical space of measurable functions Φ : [α,β ]→R, provided
with the norm

‖Φ‖r =
(∫ β

α

|Φ(s)|pds
) 1

p
< ∞

and

‖Φ‖∞ = ess supα≤s≤β |Φ(s)| i f r = ∞.

Lemma 2.2 ( [23]). Let Φ1,Φ2 ∈ Lp([α,β ],R), 1≤ p < ∞ and ϖ ,β > 0 then the following properties of the left RL fractional integral and
R-L FDE are demonstrated.
(1) Iϖ

α+
Iβ

α+
f1(s) = Iϖ+β

α+
Φ1(s)

(2) Iϖ

α+
[Φ1(s)+Φ2(s)] = Iϖ

α+
Φ1(s)+ Iϖ

α+
Φ2(s)

(3) Dϖ

α+
Iϖ

α+
Φ1(s) = Φ1(s)

(4) ‖Iϖ

α+
Φ1‖p ≤ (β−α)ϖ

Γ(ϖ+1) ‖Φ1‖p.

Lemma 2.3 ( [23]). If Φ ∈ Lp([α,β ],R), 1≤ p < ∞, ϖ > 0, then Iϖ

α+
Φ ∈ Lp([α,β ],R).

Lemma 2.4 ( [23]). Let ϖ > 0, then the differential equation

Dϖ

α+ξ = 0

has a unique solution

ξ (s) = c1(s−α)ϖ−1 + c2(s−α)ϖ−2 + ...+ cn(s−α)ϖ−n

cω ∈R, 1≤ ω ≤ n, here n = [ϖ ]+1.

Lemma 2.5 ( [23]). Let α > 0, ξ ∈ L1(Λ,R), Dϖ

α+ξ ∈ L1(Λ,R), then

Iϖ

α+Dϖ

α+ξ (s) = ξ (s)+ c1(s−a)ϖ−1 + c2(s−α)ϖ−2 + ...+ cn(s−α)ϖ−n

where cω ∈R, 1≤ ω ≤ n, here n = [ϖ ]+1.
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We now recall the known Hölder inequality for integrals.

Lemma 2.6 ( [25]). Let p and ` satisfy 1 < p < ∞,1 < ` < ∞, and 1
p +

1
` = 1. If Φ1 ∈ Lp(Λ,R) and Φ2 ∈ L`(Λ,R), then Φ1,Φ2 belongs

to L1(Λ,R) and satisfies

∫
Λ

|Φ1Φ2|dx≤
[∫

Λ

|Φ1|pdx
] 1

p
[∫

Λ

|Φ2|`dx
] 1

`

.

Definition 2.7 ( [26]). Let Ω⊆Rn be an open set in Rn. By Lp(.)(Ω) we denote all space of measurable functions Φ on Ω such that

Ip(.)(Φ) =
∫

Ω

|Φ(s)|p(s)ds < ∞,

where p(s) is a VEMF on Ω with values in [1,∞). This is a Banach space given with the norm

‖Φ‖p(.) = inf{η > 0 : Ip(.)(Φ/η)≤ 1}.

We use the following notation:

p− = inf
s∈Ω

p(s), p+ = sup
s∈Ω

p(s)

`(.) the conjugate exponent of p(.):

`(.) =
p(.)

p(.)−1
,

P(Ω) is defined as the set of bounded measurable functions p(s) : Ω→ [1,∞) while P log(Ω) designates the set of exponents p ∈P(Ω)
satisfying the local Log condition:

|p(s)− p(ρ)| ≤ Ar

−log|s−ρ|
, |s−ρ| ≤ 1

2
, s,ρ ∈Ω,

where Ap > 0 is independent of t and ρ .
ℑlog(Ω) is the set off bounded exponents ϖ : Ω→R satisfying the local log condition.
Plog(Ω) is a set consisting of exponents p ∈P log(Ω) with 1 < p− ≤ p+ < ∞.
The following lemma is related to Hölder inequality in the variable exponent Lebesgue space Lp(.)(Ω).

Lemma 2.8 ( [27]). Let Ω⊆Rn be an open set in Rn and p(s), `(s) are two VEMF on Ω with values in [1 ∞) where 1≤ p(s)≤ ∞ and
1

p(s) +
1

`(s) = 1. If Φ1 ∈ Lp(.)(Λ) and Φ2 ∈ L`(.)(Λ), we have∫
Ω

|Φ1(s)Φ2(s)|ds≤ p‖Φ1‖p(.)‖Φ2‖`(.),

where p = sups∈Ω
1

p(s) + sups∈Ω
1

`(s) .

Theorem 2.9 ( [16]). Let p(.) ∈P[0,M] and 0 < 1
p− < ϖ < 1, then Iϖ

0+
is bounded in Lp(.)([0,M],R).

Definition 2.10 ( [28]). Let Λ⊂R, Λ is named as a generalized interval if it is either an interval or {a1} or /0.
A finite set P is called a partition of Λ if each x inn Λ lies in exactly one of the generalized intervals E in P .
A function p : Λ→R is named by piece-wise constant as regards to partition P of Λ if for any E ∈P , p is constant on E.

Definition 2.11 ( [29]). The problem (1.1) is Ulam-Hyers(UH) stable if there exists cϑ > 0, such that for any ε > 0 and for each solution
y ∈ Lp(Λ,R) of the following inequality

|Dϖ

0+y(s)−ϑ(s,y(s))| ≤ ε, s ∈ Λ (2.1)

there exists a solution κ ∈ Lp(Λ,R) of problem (1.1) with

|y(s)−κ(s)| ≤ cϑ ε, s ∈ Λ.

3. Existence and Uniqueness of Solutions

Let us begin with the following assumption:

(H1) Let the finite sequence of points {Mω}n
ω=0 satisfy 0 = M0 < Mω < Mn = 1, and Λω be defined as Λω = (Mω−1, Mω ], ω = 1,2, ...,n,

n ∈ N. Then P =
⋃n

ω=1 Λω would be a partition of the interval Λ.
For each ω = 1,2, ...,n, the notation ϒω = Lpω (Λω ,R) denotes the Banach space of VEMF from Λω into R equipped with the norm:

‖κ‖ϒω
=
(∫

Λω

|κ|pω dx
) 1

pω < ∞,

where 1≤ ω ≤ n.
Let p(s) : Λ→ [1,∞) be a piece-wise constant function with regard to P , i.e., p(s) = ∑

n
ω=1 pω Iω (s), where 1≤ pω < ∞ are constants

and Iω is the indicator of the interval Λω , ω = 1,2, ...,n
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Iω (s) =
{

1, f or s ∈ Λω ,
0, f or elsewhere.

So, for any s ∈ Λω , 1≤ ω ≤ n, the left R-L FDE for the function defined by (1.2), can be written as

(Dϖ

0+κ)(s) =
1

Γ(1−ϖ)

d
ds

∫ s

0
(s−ρ)−ϖ

κ(ρ)dρ

=
1

Γ(1−ϖ)

(ω−1

∑
ı=1

d
ds

∫ Mı

Mı−1

(s−ρ)−ϖ
κ(ρ)dρ +

d
ds

∫ s

Mω−1

(s−ρ)−ϖ
κ(ρ)dρ

)
. (3.1)

Thus, the problem (1.1) can be explained for any s ∈ Λω ,1≤ ω ≤ n in the form:

1
Γ(1−ϖ)

(ω−1

∑
ı=1

d
ds

∫ Mı

Mı−1

(s−ρ)−ϖ
κ(ρ)dρ +

d
ds

∫ s

Mω−1

(s−ρ)−ϖ
κ(ρ)dρ

)
= ϑ(s,κ(ψ(s))) (3.2)

Let the function κ ∈ Lpω (Λω ) with κ ≡ 0 on s ∈ [0,Mω−1] and it solves integral equation (3.2).
Then, (3.2) is reduced to

(Dϖ
Mω−1

κ)(s) = ϑ(s,κ(ψ(s))), s ∈ Λω .

For any 1≤ ω ≤ n, we look at the following auxiliary weighted Cauchy type problem of constant order :{
Dϖ

Mω−1
κ(s) = ϑ(s,κ(ψ(s))), s ∈ Λω ,

s1−ϖ κ(s)|s=Mω−1 = b.
(3.3)

Lemma 3.1. Let 1≤ ω ≤ n be a natural number, 0 < ϖ < 1, ϑ ∈ Lpω (Λω ×R,R). A function κω ∈ ϒω is a solution of (3.3) if and only if
κω ∈ ϒω solves the integral equation

κω (s) = bsϖ−1 +
1

Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
ϑ(ρ,κω (ψ(ρ)))dρ (3.4)

Proof. To show the necessity, we can write from (3.3)

s1−ϖ
κω (s) = b+ s1−ϖ Iϖ

Mω−1
ϑ(s,κω (ψ(s))).

which implies

s1−ϖ
κω (s)|t=Mω−1 = b.

Also, applying I1−ϖ

Mω−1
on both sides of (3.4), then

I1−ϖ

Mω−1
κω (s) = b0 + IMω−1 ϑ(s,κω (ψ(s))).

Differentiating both sides of order one, we achieve

Dϖ
Mω−1

κω (s) = ϑ(s,κω (ψ(s)))

Inversely, let κω be a solution of (3.3), by integrating both sides, then

I1−ϖ
κω (s)− I1−ϖ

κω (s)|t=0 = I1
Mω−1

ϑ(s,κω (ψ(s))).

Operating by Iϖ
Mω−1

on both sides of the last equation, we have

Iκω (s)− IϖC = I1+ϖ

Mω−1
ϑ(s,κω (ψ(s))).

taking the ordinary derivative of the first order, it follows that

κω (s)−C1sϖ−1 = Iϖ
Mω−1

ϑ(s,κω (ψ(s))),

By recalling the initial condition, we find that C1 = b, then we obtain (3.4), i.e., problem (3.3) and equation (3.4) are equivalent to each
other.

Banach Contraction Principle (BCP) is implemented to arrive at the conclusion of the following result.

Theorem 3.2. Suppose that Lemma 3.1 is satisfied and we have a constant M > 0 such that |ϑ(s,κ1)−ϑ(s,κ2)| ≤M|κ1−κ2|, for any
κ1, κ2 ∈ Lpω (Λω ) s ∈ Λω and moreover the inequality

Wϖ ,M,pω ,Mω−1,Mω
< 1, (3.5)

holds where

Wϖ ,M,pω ,Mω−1,Mω
=
[( M(

`ω (ϖ −1)+1
) 1

`ω
Γ(ϖ)

)pω (Mω −Mω−1)
pω (`ω (ϖ−1)+1)

`ω
+1

pω (`ω (ϖ−1)+1)
`ω

+1

] 1
pω

.

Then, for every 1≤ ω ≤ n there exists a unique solution on Λω for the problem (3.3).
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Proof. We use a transformation for the problem (3.4) so that it returns to a fixed point problem. Let the operator

S : Lpω (Λω ,R)→ Lpω (Λω ,R)

which is given by

(Sκω )(s) = bsϖ−1 +
1

Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
ϑ(ρ,κω (ψ(ρ)))dρ.

BCP is used as the main tool to determine that S has a unique fixed point. To do that, let κω ,xω ∈ Lpω (Λω ), then we have

‖S(κω (s))−S(xω (s))‖pω = ‖ 1
Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1(
ϑ(ρ,κω (ρ))−ϑ(ρ,xω (ρ))

)
dρ‖pω

=
∫ Mω

Mω−1

∣∣∣ 1
Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
(

ϑ(ρ,κω (ρ))−ϑ(ρ,xω (ρ))
)

dρ

∣∣∣pω

ds

≤ 1
(Γ(ϖ))pω

∫ Mω

Mω−1

∣∣∣∫ s

Mω−1

(s−ρ)ϖ−1
(

ϑ(ρ,κω (ρ))−ϑ(ρ,xω (ρ))
)

dρ

∣∣∣pω

ds

≤ Mpω

(Γ(ϖ))pω

∫ Mω

Mω−1

(∫ s

Mω−1

(s−ρ)ϖ−1
∣∣∣κω (ρ))− xω (ρ))

∣∣∣dρ

)pω

ds

≤ Mpω

(Γ(ϖ))pω

∫ Mω

Mω−1

[(∫ s

Mω−1

(s−ρ)`ω (ϖ−1)dρ

) 1
`ω ×

(∫ s

Mω−1

∣∣∣κω (ρ)− xω (ρ)
∣∣∣pω

dρ

) 1
pω

]pω

ds.

Observe that we have utilized the Hölder Inequality. If we proceed with calculations

‖S(κω (s))−S(xω (s))‖pω ≤ Mpω

(Γ(ϖ))pω

∫ Mω

Mω−1

(s−Mω−1)
pω (`ω (ϖ−1)+1)

`ω(
`ω (ϖ −1)+1

) pω

`ω

(∫ s

Mω−1

∣∣∣κω (ρ)− xω (ρ)
∣∣∣pω

dρ

)
ds

≤
[ M

(`ω (ϖ −1)+1)
1
`ω Γ(ϖ)

]pω

∫ Mω

Mω−1

(s−Mω−1)
pω (`ω (ϖ−1)+1)

`ω ×
(∫ s

Mω−1

∣∣∣κω (ρ)− xω (ρ)
∣∣∣pω

dρ

)
ds.

After rearranging the integrals, we reach at∫ Mω

Mω−1

(s−Mω−1)
pω (`ω (ϖ−1)+1)

`ω

(∫ s

Mω−1

∣∣∣κω (ρ)− xω (ρ)
∣∣∣pω

dρ

)
ds =

∫ Mω

Mω−1

(s−Mω−1)
θω σω (s)ds = I,

where

θω =
pω (`ω (ϖ −1)+1)

`ω

, σω (s) =
∫ s

Mω−1

∣∣∣κω (ρ)− xω (ρ)
∣∣∣pω

dρ.

Integrating by parts formula yields

I =
(Mω −Mω−1)

θω+1

θω +1
σω (Mω )−

∫ Mω

Mω−1

(s−Mω−1)
θω+1

θω +1
σ
′
ω (s)ds

=
(Mω −Mω−1)

θω+1

θω +1
σω (Mω )−

∫ Mω

Mω−1

(s−Mω−1)
θω+1

θω +1
σ
′
ω (s)ds.

Since the integral∫ Mω

Mω−1

(s−Mω−1)
θω+1

θω +1
σ
′
ω (s)ds≥ 0

then,

‖S(κω (s))−S(xω (s))‖ ≤
[( M(

`ω (ϖ −1)+1
) 1

`ω
Γ(ϖ)

)pω (Mω −Mω−1)
pω (`ω (ϖ−1)+1)

`ω
+1

pω (`ω (ϖ−1)+1)
`ω

+1

] 1
pω [σω (Mω )]

1
pω

=
[( M(

`ω (ϖ −1)+1
) 1

`ω
Γ(ϖ)

)pω (Mω −Mω−1)
pω (`ω (ϖ−1)+1)

`ω
+1

pω (`ω (ϖ−1)+1)
`ω

+1

] 1
pω ‖κω − xω‖ϒω

.

As a result, by (3.5), the operator S is a contraction. Therefore, by BCP, S has a unique fixed point κ̃i ∈ Lpω (Λω ), that yields the unique
solution of the problem (3.3).

We are now ready to prove the existence result for (1.1).
Let us consider the following condition:

(H2) There exist a constant M > 0 such that,
|ϑ(s,κ1)−ϑ(s,κ2)| ≤M|κ1−κ2|, for any κ1, κ2 ∈ Lp(.)(Λ) and s ∈ Λ.
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Theorem 3.3. Assume that (H1), (H2) and inequality (3.5) fulfill for all 1≤ ω ≤ n. Then, problem (1.1) has at most a solution in Lp(.)(Λ)

Proof. As mentioned in Theorem 3.2, for each 1≤ ω ≤ n, (3.3) possesses a unique solution κ̃ ∈ ϒω .
For any 1≤ ω ≤ n we give the function as follow;

κω =

{
0, i f s ∈ [0 Mω−1],
κ̃, i f s ∈ Λω .

Therefore, κω ∈ Lp([0, Mω−1],R) is a solution for the integral equation (3.2) for s ∈ Λω meaning that it solves (3.3) for s ∈ Λω .
Then the function:

κ(s) =



κ1(s) ∈ Lp1(Λ1,R),
κ2(s) ∈ Lp2(Λ2,R),
.
.
.
κn(s) ∈ Lpn(Λn,R).

is a unique solution of the problem (1.1) in Lp(.)(Λ).

4. Ulam-Hyers Stability

Theorem 4.1. Assume that (H1),(H2), and inequality (3.5) hold. Then, (1.1) is UH stable .

Proof. Take ε as an arbitrary positive number and the function y(s) from y ∈ Lpω (Λω ,R) satisfy inequality (2.1).
For any ω ∈ {1,2, ...,n} we define the functions y1(s)≡ y(s),s ∈ [0,M1] and for ω = 2,3, ...,n

yω (s) =


0, s ∈ [0,Mω−1],

y(s), s ∈ Λω .
(4.1)

According to equality (3.1) for any ω ∈ {1,2, ...,n} and t ∈ Λω we get

(Dϖ

0+yω )(s) =
1

Γ(1−ϖ)

d
ds

∫ s

Mω−1

(s−ρ)−ϖ y(ρ)dρ.

Taking Iϖ

M+
ω−1

of both sides of the inequality (2.1), we get

∣∣∣yω (s)−bsϖ−1− 1
Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
ϑ(ρ,yω (ψ(ρ)))dρ

∣∣∣≤ ε
(s−Mω−1)

ϖ

Γ(ϖ +1)
≤ ε

(Mω −Mω−1)
ϖ

Γ(ϖ +1)
.

According to Theorem 3.3, (1.1) has a unique solution κ ∈ Lp(.)(Λ) defined by κ(s) = κω (s) for s ∈ Λω , ω = 1,2, ...,n, where

κω =

{
0, s ∈ [0,Mω−1],
κ̃ω , s ∈ Λω ,

(4.2)

and κ̃ω ∈ ϒω is a unique solution of problem (3.3).
In view of Lemma 3.1, the integral equation

κ̃ω (s) = bsϖ−1 +
1

Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
ϑ(ρ, κ̃ω (ψ(ρ)))dρ (4.3)

holds.
For t ∈ Λω , ω = 1,2, ...,n, by (4.1), (4.2) we have,

|y(s)−κ(s)|= |y(s)−κω (s)|= |yω (s)− κ̃ω (s)|
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Then, by (4.3) we get

‖y−κ‖pω

ϒω
= ‖y−κω‖pω

ϒω
= ‖yω − κ̃ω‖pω

ϒω

= ‖yω (s)−bsϖ−1− 1
Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
ϑ(ρ, κ̃ω (ρ))dρ‖pω

ϒω

≤ ‖yω (s)−bsϖ−1− 1
Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1
ϑ(ρ,yω (ρ))dρ‖pω

ϒω
+‖ 1

Γ(ϖ)

∫ s

Mω−1

(s−ρ)ϖ−1(ϑ(ρ,yω (ρ))−ϑ(ρ, κ̃ω (ρ)))dρ‖pω

ϒω

≤ ε
pω

(Mω −Mω−1)
ϖ pω+1

Γpω (ϖ +1)
+

1
Γpω (ϖ)

∫ Mω

Mω−1

(
∫ s

Mω−1

(s−ρ)ϖ−1|ϑ(ρ,yω (ρ))−ϑ(ρ, κ̃ω (ρ))|dρ)pω ds

≤ ε
pω

(Mω −Mω−1)
ϖ pω+1

Γrω (ϖ +1)
+

1
Γpω (ϖ)

∫ Mω

Mω−1

[(∫ s

Mω−1

(s−ρ)`ω (ϖ−1)dρ

) 1
`ω ×

(∫ s

Mω−1

∣∣∣ϑ(ρ,yω (ρ))−ϑ(ρ, κ̃ω (ρ))
∣∣∣pω

dρ

) 1
pω

]pω

ds

≤ ε
pω

(Mω −Mω−1)
ϖ pω+1

Γpω (ϖ +1)
+

1
Γpω (ϖ)

∫ Mω

Mω−1

(s−Mω−1)
pω (`ω (ϖ−1)+1)

`ω(
`ω (ϖ −1)+1

) pω

`ω

(∫ s

Mω−1

∣∣∣ϑ(ρ,yω (ρ))−ϑ(ρ, κ̃ω (ρ))
∣∣∣pω

dρ

)
ds

≤ ε
pω

(Mω −Mω−1)
ϖ pω+1

Γpω (ϖ +1)
+
[ Mpω

Γpω (ϖ)
(
`ω (ϖ −1)+1

) pω

`ω

(Mω −Mω−1)
pω (`ω (ϖ−1)+1)

`ω
+1

pω (`ω (ϖ−1)+1)
`ω

+1

]
‖yω − κ̃ω‖pω

ϒω

≤ ε
pω

(Mω −Mω−1)
ϖ pω+1

Γpω (ϖ +1)
+ τ‖y−κ‖pω

ϒω
,

where

τ = max
ω=1,2,...,n

[ Mpω

Γpω (ϖ)
(
`ω (ϖ −1)+1

) pω

`ω

(Mω −Mω−1)
pω (`ω (ϖ−1)+1)

`ω
+1

pω (`ω (ϖ−1)+1)
`ω

+1

]
.

Then,

‖y−κ‖ϒω
≤ (Mω −Mω−1)

ϖ pω+1
pω

(1− τ)
1

pω Γ(ϖ +1)
ε.

We obtain,

‖y−κ‖p ≤
1

Γ(ϖ +1)

(ω=n

∑
ω=1

(Mω −Mω−1)
ϖ pω+1

pω

(1− τ)
1

rω

)
ε := cϑ ε.

Therefore, the (1.1) is UH stable.

5. Example

Consider the flowing fractional weighted Cauchy type problem:

{
D0.5κ(s) = |κ(s)|

(2+es)(1+κ(s)) , s ∈ Λ := [0,1],
s0.5κ(s) = 0.

(5.1)

Let

ϑ(s,ψ(κ)) =
|κ(s)|

(2+ es)(1+κ(s))
, s ∈ [0,1].

Then, we have

|ϑ(s,ψ(x))−ϑ(s,ψ(κ))|= 1
(2+ es)

| x
1+ x

− κ

1+κ
|

=
|x−κ|

(2+ es)(1+ x)(1+κ)

≤ |x−κ|
2+ es

≤ 1
2
|x−κ|.

Thus the condition (H2) is satisfied with M = 1
2 .

Let

p(s) =
{

p1 = 4, i f s ∈ [0,0.5],
p2 = 5, i f s ∈]0.5,1]. (5.2)
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According to (3.3), we consider two auxiliary 3.3, the problem (5.1) is equivalent to the followings problems:

{
D0.5κ(s) = |κ(s)|

(2+es)(1+κ(s)) , s ∈ Λ1 := [0,0.5],
s0.5κ(s) = 0,

(5.3)

and {
D0.5κ(s) = |κ(s)|

(2+es)(1+κ(s)) , s ∈ Λ2 :=]0.5,1],
s0.5κ(s) = 0.

(5.4)

Next, we demonstrate that (3.5) is satisfied for ω = 1, p1 = 4. Indeed,

Wϖ ,M,p1,M0,M1 = 0,172681927 < 1.

As a consequence, the inequality (3.5) is satisfied.
Thus, in light of Theorem (3.2), the (5.3) has a unique solution κ̃1 ∈ L4(Λ1,R).
We have revealed that the inequality (3.5) is valid for ω = 2, p2 = 5. Indeed,

Wϖ ,M,p2,M1,M2 = 0,202489255 < 1.

Then, the inequality (3.5) is fulfilled.
Taking into account Theorem 3.2, the (5.4) provides a unique solution. κ̃2 ∈ L5(Λ2,R).
Hence, in view of Theorem (3.3), the (5.1) possesses a unique solution.

κ(s) =
{

κ̃1(s) ∈ L4(Λ1,R),

κ2(s) ∈ L5(Λ2,R),

where

κ2(s) =
{

0, s ∈ Λ1,
κ̃2(s), s ∈ Λ2.

Clearly, one can show that by Theorem 4.1, solution of problem (5.1) is UH stable.

6. Conclusion

We investigate some qualitative properties of a weighted Cauchy problem (1.1) in Lebesgue spaces with variable exponent Lp(.). Our main
proofs are based on exploiting the generalized intervals and piece-wise constant functions that transform Lp(.) to the classical Lebesgue
spaces. Additionally, we support the theoretical results by constructing a numerical example.
There have been only a few investigations conducted in this area due to the complex structure of the variable exponent Lebesgue spaces. As a
result, the fundamental results provided in this paper offer several opportunities for further investigations.
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