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Abstract   Özet  

This study presents an automated workflow for drought 

monitoring in Burdur Lake, Turkey, utilizing Sentinel-2 

satellite data and K-means clustering. Five Sentinel-2 images 

from 2019 to 2023 were processed to derive spectral water 

indices. A water mask was generated by thresholding the 

indices, allowing for the distinction of water bodies. K-

means clustering quantified changes in the lake area over 

time. The results reveal a decreasing trend in water extent 

from August 2019 to August 2023. In August 2019, the water 

extent was approximately 18.53% (138.9456 Km2), which 

declined to around 16.64% (124.7500 Km2) by August 2023, 

signifying an approximately 10.3% reduction in water extent 

between the start and end years. This approach demonstrates 

a valuable framework for the integration of freely available 

satellite data and machine learning algorithms in operational 

drought monitoring. 

 Bu çalışma, Burdur Gölü'nde kuraklık izlemesi için Sentinel-

2 uydu verileri ve K-means kümeleme kullanılarak otomatik 

bir iş akışı sunmaktadır. 2019'dan 2023'e kadar beş Sentinel-

2 görüntüsü, spektral su indekslerini üretmek için işlenmiştir. 

Su indekslerinin eşiklenmesiyle bir su maskesi oluşturulmuş, 

böylece su kütlelerinin ayırt edilmesi sağlanmıştır. K-means 

kümeleme, zaman içinde göl alanındaki değişiklikleri 

ölçümlenmiştir. Sonuçlar, Ağustos 2019'dan Ağustos 2023'e 

kadar su genişliğinde azalan bir eğilim ortaya koymaktadır. 

Ağustos 2019'da su genişliği yaklaşık %18.53 (138.9456 

Km2) iken, Ağustos 2023'e kadar yaklaşık %16.64'e 

(124.7500 Km2) düşmüş, başlangıç ve bitiş yılları arasında 

yaklaşık %10.3'lük bir su genişliği azalmasına işaret 

etmektedir. Bu yaklaşım, serbestçe erişilebilir uydu verileri 

ve makine öğrenmesi algoritmalarının operasyonel kuraklık 

izlemeye entegrasyonu için değerli bir çerçeve sunmaktadır. 

Keywords: Drought monitoring, Water mask, Sentinel-2 

imagery, K-Means clustering, Burdur Lake Türkiye 

 Anahtar kelimeler: Kuraklık izleme, Su maskesi, Sentinel-2 
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1 Introduction  

Effective water resources management, especially in 

regions under continuous climate variability as well as 

anthropogenic pressures, demands detailed monitoring and 

mapping of variations in lake water bodies. Temporal 

fluctuations in the lake areas are studied effectively using 

time series analysis of satellite images through remote 

sensing technologies [1], [2].The dynamic and 

heterogeneous nature of lake shorelines poses challenges for 

accurate mapping, necessitating automated algorithms for 

operational monitoring of lake extent changes [3], [4]. 

Burdur Lake, nestled in the scenic landscapes of Turkey, 

has played a crucial role in the ecological and socio-

economic fabric of the region. Characterized by its semi-arid 

climate, Burdur Lake has faced significant declines in water 

level and area in recent decades, primarily due to climatic 

factors and human activities [5]. The lake, spanning 

approximately 250 square kilometers, has been a subject of 

concern and study, given its vulnerability to changing 

environmental conditions [5]. 

Early studies on Burdur Lake primarily relied on optical 

satellite imagery but often encountered limitations, such as 

the need for manual digitization of lake boundaries [5]. The 

complexity of the lake's shoreline, coupled with the 

challenges posed by climate and human-induced changes, 

necessitates more advanced and automated methodologies 

for comprehensive monitoring. 

Spectral water indices such as NDWI and MNDWI have 

proven to be effective in enhancing the identification of open 

water areas across different landscapes like lakes. [6], [7]. 

These indices leverage the unique spectral signatures of 

water bodies, enabling precise discrimination between water 

and non-water pixels. Furthermore, the application of 

thresholding techniques on these indices results in binary 

water masks, facilitating the classification of pixels into 

distinct categories of water and non-water [7], [8]. 

Machine learning clustering algorithms, particularly K-

means clustering, have shown potential in categorizing land 

cover types based on spectral characteristics [9], [10]. This 

study aims to build upon the foundation laid by previous 

research on Burdur Lake, introducing a comprehensive 

methodology for drought monitoring. By integrating 

Sentinel-2 image time series and leveraging advanced 

spectral indices, including NDWI, MNDWI, and AWEI, this 

study seeks to quantify changes in Burdur Lake's water 

extent over the years 2019 to 2023. 

The significance of this automated workflow lies not only 

in its capacity to provide timely and accurate insights into 

Burdur Lake's drought conditions but also in its potential 
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applicability to other regional water bodies. By harnessing 

the readily available Sentinel-2 data, this approach 

contributes to proactive water management efforts, crucial in 

the face of evolving climate patterns and human activities. 

2 Material and methods  

2.1 Study area and satellite data  

Burdur Lake (Northwest Corner: Latitude 37.857, 

Longitude 30.034, Southeast Corner: Latitude 37.619, 

Longitude 30.353) is in a closed basin in southwestern 

Turkey as seen in Figure 1. 

 

 

Figure 1. Burdur Lake 

 

Five Sentinel-2 L1C images were acquired during 

August from 2019 to 2023 which are: 

 

 S2B_MSIL2A_20190830T083609_N0213_R064_T

35SQB_20190830T123940.SAFE 

 S2B_MSIL2A_20200827T084559_N0214_R107_T

35SQB_20200827T113630.SAFE 

 S2B_MSIL2A_20210829T083559_N0500_R064_T

36STG_20230218T210145.SAFE 

 S2B_MSIL1C_20220817T084559_N0400_R107_T

35SQB_20220817T093139.SAFE 

 S2B_MSIL2A_20230809T083609_N0509_R064_T

35SQB_20230915T115214 

 

The data, available through the European Space Agency 

(ESA), was processed using the Sentinel Application 

Platform (SNAP) Desktop. 

The selection of August as the focal month for this study 

stems from its representation of crucial climatic conditions 

in the region, particularly in the semi-arid context of Burdur 

Lake. This month aligns with the growing season, making it 

instrumental for understanding water dynamics, including 

the impact on vegetation and land-water interactions. 

Historical trends and local knowledge may underscore the 

significance of August, while the availability and reliability 

of Sentinel-2 imagery during this period contribute to more 

robust assessments. Opting for August across multiple years 

allows for direct and meaningful comparative analysis, 

aiding in the identification of recurring patterns or changes. 

Ultimately, the choice of August is intricately linked to the 

research objectives, ensuring that the selected timeframe 

aligns with the goals of studying drought conditions in 

Burdur Lake [11] . 

The satellites carry a multispectral imager (MSI) that 

collects data in 13 bands with spatial resolutions ranging 

from 10 to 60 meters. The bands are used to monitor 

vegetation, water, and land use as shown in Table (1): 

 

Table.1 Sentinel-2 Bands 

Band Wavelength (nm) Resolution (m) Applications 

B1 443 60 Coastal aerosol 

B2 490 10 Blue 

B3 560 10 Green 

B4 665 10 Red 

B5 705 20 Red edge 

B6 740 20 Near-infrared 

B7 783 20 Near-infrared 

B8 842 10 Near-infrared 

B8A 865 20 Near-infrared 

B9 940 60 Water absorption 

B10 1375 60 Cirrus cloud detection 

B11 1610 20 Short-wave infrared 

B12 2190 20 Short-wave infrared 

2.2 Spectral water index derivation  

Multiple water indices were calculated using SNAP 

software, including Normalized Difference Water Index 

(NDWI), Modified NDWI (MNDWI), MNDWI5, and 

Automated Water Extraction Index (AWEI), to highlight 

water features. Thresholding techniques categorize pixels as 

either water or non-water based on the index values from 

these indices. 

2.2.1 NDWI (Normalized Difference Water Index)  

NDWI is a widely used spectral index in remote sensing 

and satellite imagery analysis. It serves as an effective tool 

for detecting the presence of water in various landscapes. 

The calculation of NDWI involves utilizing the near-infrared 

(NIR) and shortwave-infrared (SWIR) bands from satellite 

data. The formula for NDWI is straightforward as shown in 

Equation 1: 

 

NDWI = (𝑁𝐼𝑅 −  𝑆𝑊𝐼𝑅) / (𝑁𝐼𝑅 +  𝑆𝑊𝐼𝑅). (1) 

 

This index operates on a scale ranging from -1 to 1, with 

higher values indicating a higher likelihood of water 

presence. Generally, water bodies exhibit positive NDWI 

values, while land surfaces and other features display lower 

values. NDWI is instrumental in applications related to water 

resource management, hydrology, and land cover 

classification [6]. NDWI is widely used to identify surface 

water changes due to its sensitivity and easy interpretation 

but can also detect snow/ice and has noise contamination 

issues. In summary, while NDWI is simple and flexible, the 

other indices make trade-offs in noise reduction, vegetation 

suppression, and customization to different environments - 

improving water discrimination capability but requiring 

additional data and customization. 

2.2.2 MNDWI (Modified Normalized Difference Water 

Index) 

MNDWI is a specialized adaptation of the NDWI 

designed explicitly for water detection. It offers valuable 
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insights into the identification of water bodies within remote 

sensing imagery. MNDWI is computed using the green (G) 

and shortwave-infrared (SWIR) bands, and its formula 

shown in Equation 2: 

 

𝑀𝑁𝐷𝑊𝐼 =  (𝐺 −  𝑆𝑊𝐼𝑅) / (𝐺 +  𝑆𝑊𝐼𝑅). (2) 

Like NDWI, MNDWI values fall within the -1 to 1 range, 

with positive values signifying the presence of water. 

Researchers and professionals frequently utilize MNDWI in 

projects associated with wetland mapping, flood monitoring, 

and environmental assessments [7]. (MNDWI) enhances 

water discrimination from other land covers through the use 

of a SWIR band. However, it saturates over dense vegetation 

which reduces its utility in inundated forests. 

2.2.3 MNDWI5 (Modified Normalized Difference Water 

Index 5) 

MNDWI5 is an extension of the NDWI and MNDWI 

family of indices, serving a similar purpose of water body 

detection. It is constructed using the green (G) and 

shortwave-infrared (SWIR) bands. The MNDWI5 formula 

as shown in Equation 3: 

 

𝑀𝑁𝐷𝑊𝐼5 =  (𝐺 −  𝑆𝑊𝐼𝑅) / (𝐺 +  𝑆𝑊𝐼𝑅 +  0.5) (3) 

 

This index, much like its counterparts, delivers insights 

into the likelihood of water presence. Positive values in 

MNDWI5 are indicative of water, while negative values 

represent land or non-water features. Professionals and 

researchers employ MNDWI5 in applications such as lake 

monitoring, water quality assessments, and land cover 

analysis [12]. MNDWI5 implementation substitutes the 

SWIR band to mitigate dense vegetation saturation at the 

expense of some open water detection capacity. 

2.2.4 AWEI (Automated Water Extraction Index) 

AWEI is a versatile spectral index that plays a vital role 

in water feature detection and analysis. AWEI integrates 

information from multiple bands, typically including blue 

(B), green (G), and near-infrared (NIR). The specific formula 

shown in Equation 4: 

𝐴𝑊𝐸𝐼 = 4 × (𝐺𝑟𝑒𝑒𝑛 − 0.25 × 𝑅𝑒𝑑 − 0.32 × 𝑁𝐼𝑅
− 0.25 × 𝑆𝑊𝐼𝑅2)  

(4) 

may vary depending on the intended application, but it 

generally combines these bands to identify water features. 

AWEI has proven effective in various areas, such as 

assessing water availability, mapping water bodies, and 

monitoring changes in aquatic ecosystems. Researchers and 

experts rely on AWEI to enhance their understanding of 

water-related phenomena and environmental dynamics [13]. 
AWEI) aims to tune water extraction algorithms to specific 

land cover types in a scene, enabling better early drought 

detection through characterization of variable terrain 

backgrounds. However, AWEI requires extensive 

calibration data and has a relatively complex formulation. 

2.3 Water mask generation    

Several studies have developed binary water masking 

approaches using thresholding of spectral water indices 

derived from satellite imagery. Common indices include the 

Normalized Difference Water Index (NDWI), Modified 

NDWI (MNDWI), MNDWI5, and Automated Water 

Extraction Index (AWEI) [6], [7], [13]. Thresholding 

techniques classify pixels as water or non-water based on 

index values. For example, McFeeters (1996) [6] originally 

proposed an NDWI threshold of zero for water body 

delineation. 

In this study, we utilize a thresholding equation 

integrating four water indices. 

While other studies have used thresholds on individual 

indices or dual index combinations, our equation 

incorporates four indices using OR logic for robust water 

extraction. The additional indices help better discriminate 

water under different environmental conditions. For 

instance, MNDWI5 enhances open water detection in urban 

areas. AWEI improves differentiation of water from dark 

surfaces like shade and shadow [13]. 

Compared to Li et al  [14] who used NDWI and MNDWI, 

our equation adds MNDWI5 and AWEI, but does not 

incorporate MNDWI5. The unique combination of four 

indices in our methodology aims to optimize automated 

water mapping across diverse land cover types. We derive 

this multi-index thresholding equation based on published 

literature on the utility of different water indices for surface 

water extraction. 

The study commenced with the importation of Sentinel-

2 satellite imagery files into the Sentinel Application 

Platform (SNAP) desktop tool. The data underwent a 

resampling process within SNAP to homogenize spatial 

resolution, ensuring uniformity across all images for 

subsequent analyses. A focused examination on Burdur Lake 

was carried out through SNAP's subset operation 

(approximately 1068 km²), extracting the pertinent region of 

interest from the resampled Sentinel-2 data. 

Spectral water indices, crucial for water body detection, 

were then computed from the subsetted Sentinel-2 data. 

These included the Normalized Difference Water Index 

(NDWI), Modified NDWI (MNDWI), and (AWEI). 

Subsequently, a binary water mask was generated using a 

thresholding technique. The thresholding logic, based on 

NDWI, MNDWI, MNDWI5, and AWEI, classified pixels as 

water (1) or non-water (0) as shown in Equation (5)  

 

𝑊𝑎𝑡𝑒𝑟 𝑚𝑎𝑠𝑘 =  𝐼𝑓 (𝑀𝑁𝐷𝑊𝐼 ≥  0 𝑂𝑅 𝑁𝐷𝑊𝐼 
≥  0 𝑂𝑅 𝑀𝑁𝐷𝑊𝐼5 
≤  0 𝑂𝑅 𝐴𝑊𝐸𝐼 
≥  0) 𝑊𝑎𝑡𝑒𝑟 𝑚𝑎𝑠𝑘 
=  1 𝐸𝑙𝑠𝑒 𝑊𝑎𝑡𝑒𝑟 𝑚𝑎𝑠𝑘 =  0 

(5) 

Note that: B means Band. 

 

By combining multiple indices using an OR logic, a more 

inclusive water mask can be generated, with less omission of 

actual water pixels. Similar thresholding approaches have 

been widely used for water body extraction and flood 

mapping in various studies[15], [16], [17]. 

SNAP Desktop played a pivotal role in the entire 

methodology, overseeing resampling, subset extraction, 

spectral index computation, and water mask generation. This 

comprehensive approach ensured accuracy and reliability 
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throughout the process. The resulting TIFF images vividly 

depict the temporal changes in water extent in Burdur Lake 

over the study period. 

Additionally, SNAP Desktop's significance extended to 

the preprocessing steps, ensuring data accuracy and 

reliability from subset extraction to the production of the 

water mask TIFF image. The use of SNAP's processing 

capabilities facilitated a consistent and standardized 

approach to image manipulation. 

2.4 Clipping for accurate lake analysis  

To ensure the precision and quality of the K-Means 

clustering results, a careful clipping process was 

implemented using QGIS. The water mask TIFF image, 

derived from the multi-temporal Sentinel-2 data, underwent 

a clipping operation. The objective was to isolate the water 

area specifically associated with Burdur Lake, mitigating the 

influence of surrounding features like farms and water 

infrastructure. Clipping was deemed essential to focus the 

analysis solely on the lake and enhance the accuracy of the 

K-Means clustering outcomes. This step guarantees that the 

subsequent assessments and quantifications accurately 

represent changes in the lake's water extent, providing a 

more reliable basis for drought monitoring. 

2.5 K-Means clustering  

K-means clustering is an uncomplicated unsupervised 

machine learning method for efficiently grouping unlabeled 

data by minimizing within-cluster variation through a 

repetitive procedure of cluster assignment and centroid 

recalculations [18]. 

The K-Means Clustering algorithm works by first 

arbitrarily choosing k starting points to represent initial 

cluster centers. It then groups each data point with the closest 

cluster center based on distance. After that, it recalculates the 

cluster centers by finding the mean of all data points assigned 

to that cluster. These steps of grouping points to their closest 

cluster and recalculating the cluster centers are repeated 

iteratively until the cluster assignments stop changing or a 

maximum number of iterations is met. The goal of K-Means 

is to minimize the total squared distance between data points 

and their cluster's centroid, as represented in the equation 

showing the sum of squared error criteria. In summary, K-

Means iteratively groups data into k clusters by assigning 

points to their closest cluster center and recalculating the 

centers until an optimal configuration that minimizes the 

total within-cluster variance is reached. as shown in Equation 

(10): 

 

η(m) = Σ(i=1 to K) Σ(j=1 to N) ||x(j) - c(i)||^2 (10) 

where: 

K is the number of clusters, N is the number of data points 

x(j) is the jth data point, c(i) is the centroid of the ith 

cluster, 

||x(j) - c(i)||^2 is the squared Euclidean distance between 

the jth data point and the ith cluster centroid. 

K-means clustering is one of the most commonly used 

unsupervised learning methods for classification tasks. Its 

straightforwardness, efficiency, and adaptability make K-

means very appropriate for large-scale classification 

applications. K-means is uncomplicated to understand and 

put into practice. Compared to hierarchical clustering 

approaches, it has lower computational intricacy, allowing it 

to converge more rapidly when dealing with large data sets. 

The algorithm is also versatile - extensions like feature 

weighting and handling of non-spherical clusters have 

expanded its capabilities. One key advantage of K-means is 

that it inherently structures data by grouping similar points 

together. This data ordering can be helpful for additional 

analysis. The cluster centroids can be decoded as 

representative features that characterize each group. 

Visualizing and decoding K-means results is 

straightforward, providing insight into the data. 

As K-means is capable of functioning in an unsupervised 

capacity, obviating the necessity for labelled training data, it 

results in the conservation of both financial resources and 

exertion otherwise expended in the acquisition of said data. 

Points are assigned class labels based on their cluster 

memberships. The simplicity, speed, scalability, and 

unsupervised learning ability of K-means make it very well 

suited for classification problems, especially when dealing 

with large unlabelled datasets. K-means clustering has 

become a cornerstone unsupervised learning method for 

classification tasks. 

The annual water masks were classified into water/non-

water using K-means clustering. Water pixel percentages 

were calculated to assess changes over time using Python 

(see Appendix). 

3 Results and discussions  

3.1 Subset and resampled files 

The Sentinel-2 satellite imagery underwent 

preprocessing steps in SNAP Desktop, including subset 

extraction and resampling. The resulting images provide a 

clear representation of the study area as seen in Figure 2. 

3.2 Spectral water index derivation 

Spectral water indices, such as NDWI, MNDWI, 

MNDWI5 and AEWI, were computed from the subsetted 

and resampled Sentinel-2 data. These indices play a crucial 

role in enhancing the detection of water bodies (colour bars 

added by Python) as seen in Figure 3 for 2019, Figure 4 for 

2020, Figure 5 for 2021, Figure 6 for 2022 and Figure 7 for 

2023. 

3.3 Image processing for water detection refinement 

A binary water mask was generated using a thresholding 

technique based on NDWI, MNDWI, MNDWI5, and AWEI. 

The resulting mask distinguishes water (1) and non-water (0) 

pixels. 

To enhance water mask accuracy, the image underwent 

precise clipping and manual correction in QGIS, focusing on 

the study area boundaries. Subsequently, Python processing 

applied K-Means clustering to unveil temporal and spatial 

patterns in water bodies. This integrated approach ensures a 

comprehensive analysis of the study area's water dynamics, 

as seen in Figure 8. 
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2019 2020 2021 

   
2022 2023 

Figure. 2.  Subset and resampled image  

 

  
AWEI MNDWI 

  

MNDWI5 NDWI 

Figure. 3.  Spectral water index derivation for 2019 
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AWEI MNDWI 

  

MNDWI5 NDWI 

Figure. 4.  Spectral water index derivation for 2020 

 

 

  

AWEI MNDWI 

  

MNDWI5 NDWI 

Figure. 5.  Spectral water index derivation for 2021 
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AWEI MNDWI 

  

MNDWI5 NDWI 

Figure. 6.  Spectral water index derivation for 2022 

 

  
AWEI MNDWI 

  

MNDWI5 NDWI 

Figure. 7.  Spectral water index derivation for 2023 
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2019 2020 2021 

  

 
 
 
 
 

 

2022 2023  

Figure. 8.  Final result: water mask image  

 

3.4 Time series analysis of lake water extent with 

clustering  

Applying K-Means clustering on the water index images 

enabled effective quantification of the temporal variations in 

total water body coverage of Burdur Lake from 2019-2023 

as shown in Table (2). The area values in the table were 

calculated by multiplying the percentage of water pixels by 

the total image area in square meters. 

 

Table 2. Temporal Variation in Water Percentage (2019-

2023) 

No Data Area (km2) Water% Change compared to 2019 

1 2019 138.9456 18.53% 0% 

2 2020 127.8732 17.06% −7.96% 

3 2021 125.9279 16.80% −9.36% 

4 2022 123.8665 16.52% −10.86% 

5 2023 124.7500 16.64% −10.19% 

 

 

Figure 9. Time series of Burdur Lake's water coverage 

percentage from 2019-2023 

The table presents the water percentage in Burdur Lake 

for each year from 2019 to 2023. The values indicate the 

proportion of water coverage in the lake for the respective 

years, highlighting any variations in water extent over the 

study period.  

As the line chart trend in Figure 9 depicts, the lake 

exhibited a 10.3% reduction in the classified water extent 

area, decreasing from around 18.53% of total lake area in 

August 2019 to 16.64% by August 2023. 

The chart’s x-axis denotes the timespan in years, while 

the y-axis presents the mapped percentage of water pixels 

relative to the full lake area for each date. Visually, the line 

chart showcases the ability of the unsupervised clustering 

method to delineate the pronounced inter-annual fluctuations 

in Burdur's surface water coverage in response to drought. 

The captured trend highlights an overall drying period, with 

some volatility in specific years. 

This demonstrates how K-Means clustering can produce 

insights into total water body spatial dynamics across time, 

quantifying expansion and contraction of lakes over multi-

year climatic events. The revealed 10.3% ((18.53% - 

16.64%) / 18.53% = 10.3%).  decline in Burdur Lake's extent 

emphasizes concerning local impacts from regional drought 

conditions between 2019 and 2023. 

The evaluation of Lake Burdur's water coverage 

alterations between 2019 and 2023, as presented in this 

study, offers fresh insights beyond the prior examination 

conducted by Sarp and Ozcelik [5] covering the period from 

1987 to 2011. While both studies utilized satellite imagery to 

detect changes in surface area, this current research 

investigates a more recent timeframe employing distinct 

methodologies. 
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Unlike Sarp and Ozcelik, who utilized supervised SVM 

classification and spectral water indexes, this study 

introduces a novel approach employing unsupervised K-

means clustering on water index images to delineate lake 

extents. The results reveal a continuous reduction in water 

coverage over the past five years, a trend not captured in the 

earlier study. Specifically, from 2019 to 2023, Lake Burdur 

experienced a notable 10.3% decrease in classified water 

area. 

In comparison, Sarp and Ozcelik observed a 20% decline 

from 1987 to 2000 and a further 10% from 2000 to 2011. The 

higher temporal resolution in the current analysis provides 

fresh evidence of yearly fluctuations, underscoring the 

influence of drought conditions on the lake's size. 

Overall, the utilization of unsupervised learning presents 

a novel technique for detecting changes in water bodies over 

time. The ongoing decline in Lake Burdur's water coverage 

highlighted in this study underscores the importance of 

frequent monitoring to track variations in response to 

climatic events. The contributions of this research include 

recent trends in water coverage and an enhanced 

methodology for assessing changes over multiple time 

periods. 

4 Conclusions 

This study presented a new methodology for quantifying 

drought impacts on lake water availability using multi-

temporal Sentinel-2 analysis over Burdur Lake from 2019 to 

2023. By combining widely used spectral water indices, 

binary masking techniques, and K-means classification, the 

approach effectively delineated and characterized a 10.3% 

decline in total lake water extent across the 5-year 

monitoring period. 

The observed trend of decreasing water coverage 

signifies falling lake water availability, likely driven by 

shifting precipitation patterns and increasing 

evapotranspiration rates as regional warming accelerates. 

Operationally updated satellite measurements classified with 

machine learning algorithms can provide vital data to inform 

local water management policies amid more extreme, 

prolonged droughts. 

As demonstrated in Burdur Lake, integrating Earth 

observations with water extraction methods can generate 

valuable time series analytics on inland water body 

variability in drylands worldwide. The framework’s 

quantification of a full 10.3% reduction in lake area from 

2019-2023 supports concerning conclusions of significant 

climate change impacts already materializing. More work 

must be done to monitor and conserve vulnerable water 

supplies as drought risk escalates. 
In conclusion, the framework's analysis shows a 

reduction of 10.3% in lake area from 2019-2023, indicating 

significant impacts of climate change. This is consistent with 

previous studies by Sarp and Ozcelik, who observed a 

decline of 20% from 1987 to 2000 and a further 10% from 

2000 to 2011. The current analysis provides new evidence of 

yearly fluctuations, highlighting the impact of drought 

conditions on the lake's size. These findings highlight the 

need for increased efforts to monitor and preserve at-risk 

water supplies as the risk of drought intensifies. 

While powerful for retrospective analysis, pairing the 

demonstrated methodology with forecast data and 

consumption metrics could strengthen capabilities for 

predictive modelling scenarios to guide mitigation planning. 

This could aid stakeholders in protecting Burdur Lake as an 

essential ecosystem service under acute climate uncertainty 

moving forward over both near- and long-term horizons. The 

tools and Earth observation assets exist for science-based 

action. 
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Appendix 

A. Software Tools and Data Source 

This study exclusively utilized free-source software tools 

for data processing and analysis: 

 Sentinel Application Platform (SNAP) 

Desktop: Employed for importing, 

preprocessing, and initial analysis of Sentinel-2 

images. 

 QGIS (Quantum Geographic Information 

System): Utilized for clipping the water mask 

image and manual removal of unwanted pixels. 

 Visual Studio Code: Employed for coding and 

implementing the K-Means clustering 

algorithm. 

 

B. Data Acquisition 

 The Sentinel-2 satellite imagery for this study 

was obtained from the Copernicus Open Access 

Hub [^1^]. The images cover the period from 

2019 to 2023 and were downloaded using the 

Copernicus Data Browser: 

https://dataspace.copernicus.eu/browser. 

 

C. Code Implementation 

 This study presents the implementation and 

analysis of K-Means clustering using (Python 

3.12) by (Visual Studio Code 1.84.2) in 

(Windows 11 Home 23H2) as codded here: 

https://github.com/raqein/Drought-Monitoring-

in-Burdur-Lake-Turkey-with-Water-Mask-

using-K-Means-Clustering-.git. 
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