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contact metric manifolds endowed with a 2”*-tensor are Einstein manifolds. In this sequel,
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we accomplish that an N(k)-contact metric manifold endowed with a 2 *-tensor satisfying
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manifold endowed with a Z°*-tensor is a Sasakian manifold. To validate some of our results,
we construct a non-trivial example of an N (k)-contact metric manifold.

1. Introduction

In 1988, Tanno [1] has initiated the concept of k-nullity distribution of a contact metric manifold. A contact metric manifold with & belonging
to the k-nullity distribution is said to be N(k)-contact metric manifold (briefly, N (k)-(CMM),, ). Blair et al. [2] generalized this idea on a
contact manifold with & belongs to a (k, ut)-nullity distribution, where k and u are real constants. In particular, if 4=0, then the (k, u)-nullity
distribution reduces to a k-nullity distribution. For more details see, ( [3]- [11]).

The notion of Ricci soliton (RS) on Riemannian manifold (@, §) of dimension m is defined by [12,13]:

58,8+ +2§=0, (1.1)

* *
where 2‘*/ § is the Lie derivative of the Riemannian metric § along the vector field V, . is the Ricci tensor and A is a real constant. In

*
whole manuscript, an RS is denoted as (@, §,V,A). Metrics satisfying (1.1) are interesting and useful in physics and are often referred to

*
as quasi-Einstein metrics [14, 15]. Compact Ricci solitons are the fixed points of the Ricci flow %—? = —2.7, projected from the space of
metrics onto its quotient modulo diffeomorphisms and scaling. An RS will be expanding, steady, or shrinking depending on A >0, 4 =0 or
A < 0. Ricci solitons have been studied by several authors such as ( [16]- [28]).

According to Mantica and Molinari [29], a generalized symmetric 2 *-tensor of type (0, 2) is given by
*
Z =7+ 4§, (1.2)

where ¢ is an arbitrary function. In References ( [30]- [36]) various properties of the 2°*-tensor were pointed out. In particular cases, the
Z*-tensor have the several importance on (®, §). For example,
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. if 27%;;=0 (i.e, Z*-flat), then (®, §) reduces to an Einstein manifold [37],
LAV 2= 2 (e, 2% -recurrent), then (O, §) reduces to a GRR manifold,

LV 2=V 2% (ie., Codazzi tensor), then we find Vk@ij-vi@kaﬁ(gijvk —gk;jVi)T [38],

. the relation between the 2*-tensor and the energy-stress tensor of Einstein’s equations with cosmological constant I is 27 j=K.7 ™ ;
[39], where ¢=-% +T and K is the gravitational constant. In this case, the 27*-tensor may be considered as a generalized Einstein

AW N =

gravitational tensor with arbitrary scalar function ¢. The vacuum solution (27*=0) determines an Einstein space I'=( (7‘2}2) )T; the
conservation of TEM (Vl T *1a=0) gives (V ;7 *;=0) then this space-time gives the conserved energy-momentum density.
*
A new curvature tensor 2 of type (1,3) on (®,§), n > 2 is defined as
* * lil n n
2%, D)% = R, %)% — —[8(%,9)% — §(4,%3) %], (1.3)

. - . . ok x
is known as 2-curvature tensor [40], where W is an arbitrary scalar function. If lP=§, where x is the scalar curvature, then 2-curvature

*
tensor reduces to concircular curvature tensor % [41]. For more details about 2-curvature tensor, see [42,43]).

With the help of (1.1) and (1.2), we define:

Definition 1.1. A Riemannian metric § is called a Z*-soliton if
1
380+ 2 +A5=0, (1.4)

*
where £ is the Lie derivative and A4 a real scalar. If V is the gradient of f, 27*-soliton is referred to as a gradient Z*-soliton and then
equation (1.4) simplifies to

Vif+Z*+A5=0,
where the Hessian of the function f is V2.
As per above sequel, we obtain some results by using the 2°*-tensor on N(k)-(CMM),,, 11 with (RS)2,+1. After the introduction, Section 2,
deals with some basic concept of N(k)-(CMM),,,; 1. We also examine N (k)-(CMM),,, 1 with conditions :@(ij ). Z*=0, :02( é:’ ,%).:@:0,
((5 A g %).EZ):O and* Z* (4, é).,%zo in the Sections 3, 4, 5 and 6, respectively. In Section 7, we categorized N (k)-(CMM);,,+ which

satisfy the conditions 2.h=0, h..2=0. In the Section 8, we deal with 2 *-recurrent on N(k)-(CMM)y,+. Finally, an appropriate example
establishes the existence of a 2*-soliton on a N(k)-(CMM)3; which validates some of our results.

2. Preliminaries

A contact metric manifold (@, §) of dimension m(=2n+1),(n > 1) is a quadruple (@, ,1,§), where @ is a (1, 1)-tensor field, ¢ is a vector
field, 7] is a 1-form on (@, §) and § is a Riemannian metric, such that

P9 =-9+0@)E, Al =1 ¢{=0, fop=0, 2.1
(041, 04) = 8(%,%) — 1(%)71 (%), (2.2)
§(%,0%) = —3(04.,%), 8%.,0)=n%) 2.3)

for all vector field 41, % € I'(®). On (©,§), a (1,1)-tensor field 4 is defined by hz%Sé(@, which is symmetric and satisfies (see [44,45])

h = —@h, Trh=Tr., §h=0, h =0,

Vg, § = —¢% — ph), 24)
8(h%,%) = §(%1,h%), 2.5)
fi(h%) =0. (2.6)

In 1995, Blair et al. introduced the notion of N (k, it )-(CMM), for real numbers k and u as a distribution [2,46]

Nk, ) : p = Np(k, 1) = [ € T,0: B(%h, %)%
= (kI +uh)(§(%,%9)% — §(4,9)%)].
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If u=0, the (k, u)-nullity distribution reduces to k-nullity distributions and defined as [1,47]

N(K) : p = Np(K) = [%5 € T, : B(%, %)%
=k{8(%, %)% - 8(4, %)%},

2.7)
where k is constant. In particular, if k=1, then (@, §) is Sasakian and if k=0, then (@, §) is locally isometric to the product E"+1(0) x §"(4)
for n > 1 and flat for n=1 [2,47]. In N(k)-(CMM),,,..1, we have

W= (k=1)¢* k<1, 2.8)

(Ve 9)% = 8(% + 1%, %) — () (@) + 1),

RO D)E = k0B~ 1(%)%], 2.9)
R0t = K ()% - 5%, D), 2.10)
B9t = K3 D)~ 1 @)4], @1
3’(%,%) =2(n—1)8(4,%)+2(n—1)§(h,%) +2(nk— (n— 1)) (47N (%), (2.12)

(09, 0%) = 7 (91,%) — 2nkN) (1) (42) — 4(n— 1)§(h%1,%),

S(%1,8) = 2mkA) (), 2.13)
248, %) = (2nk+ @) (%), (2.14)
2*(8.8) = (2nk+ ¢) 2.15)

for any vector field ¢4;,% € I'(®).
Now, we recall some propositions, which will be used later on as follows:

N * N
Lemma 2.1 ( [48]). A contact metric manifold ®(§,§,1,§) fulfills the criteria Z(%,%>)C=0 for all 9,,%, is locally isometric to the
Riemannian product of a flat (n+ 1)-dimensional manifold and an n-dimensional manifold of positive curvature 4, i.e., E"t1(0) x 8" (4) for
n > 1 and flat forn = 1.

3. N(k)-(CMM),,.,, Admitting 2(¢,94,). 2=0

*
The condition 2({,%;).2*=0 on (@, §) implies that

ff*(:@(é»%)%,%)+5*(%7:@(5,5¢1)%):0~ (3.1

Using (1.3), (2.11), (2.14), and (2.15) in (3.1), we obtain

(k= 3 )k OIS0 + 2k @RI B) - A2 (0.5~ 1(53) 2" (5. 92)] =0, 62)

Putting 43 = é’ in (3.2) and using (1.2), (2.3) and (2.14), we find

(k- 3, ) ka9~ (61,521 =0,

o * 9
which implies that either k=%, or L (%,%)=2nk§(%,%,). If k # 2% then one can get

*

LG, %) = 2nka(%,%). (3.3)

So, we have:
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* A o
Theorem 3.1. An N(k)-(CMM)y,+1 admitting Z*-tensor fulfills the criteria 2(8,4).2*=0 is an Einstein manifold provided k # %
*
Corollary 3.2. An N(k)-(CMM)y,11 admitting 2 *-tensor satisfying the condition €(8,%)).2°*=0 is an Einstein manifold provided
k# 2n(2’r(l+l)'
Again from (1.2), (1.4) and (3.3), we have

1

E/Q&@(gl,gz)+[2nk+¢+l]ﬁ(gl,g2) =0. 3.4
Taking ¢=%=e; in (3.4) and summing over i, (1 <i<2n+1), we get

1

5%, 8leisei) + [2nk+ @ + AJf(ei er) =0
which is equivalent to

*

div(V)+ 2nk+ @ +A)(2n+1) = 0. (3.5)
If V is solenoidal that is, div(V ) 0, then (3.5) reduces to

A =—(2nk+¢).

*
Also if V=grad(f). So from (3.5), we yield

V(f)=—[2nk+¢+A](2n+1),
where V(f) is the Laplacian of smooth function f. Thus we conclude:

* s

Corollary 3.3. An N(k)-(CMM),,,\ admitting gradient % *-soliton fulfills the criteria 2(8,%).2*=0, then

V(f)=—[2nk+¢+A](2n+1)
provided k # %

* A *

Corollary 3.4. An N(k)-(CMM )y, with Z*-soliton satisfies the condition 2(C,%)).2*=0, where V is solenoidal, then the soliton is
increasing, stable, or reducing depending on ¢ < —2nk, ¢=2nk, or ¢ > 2nk.

N(k)-(CMM),,,, With 2(£,4,).2=0

The condition ( (C 4%).2 )(%,%)% 0 on (O, g) implies that

DE ) 20,9 — 22 )90, 93)9s — (G, 28,99 — 2(9,93) 28, )94 = 0. 78}
Also from (2.7) and (1.3) we have

22(’51 h)G = (k* %) [6(4,9)% — 8(%,93)%], 4.2)
:9(57«%)% = (k— %) [8(%,%93)C —71(9)%), “4.3)

N (e | ORI S T NN @)
é(é(&% )%>,%3)%4 = (k* %) [B(% ,%)5(57%)% - ﬁ(%),@(gl 93)%4], 4.5)
2, (8999 = (k— 23) 690,95) 2%, )94 — 1(95) 295, 9%, 4.6)
:9(%,%):@(57%)% = (k— %) 6(¢,9)2 (%7%)5 (¥ ) (%,93)4]. 4.7

Using (4.3), (4.4), (4.5), (4.6) and (4.7) in (4.1), we get

(k= 50 ) B0 200,850~ (20051000, ~ 51,9 20E 4

~ ! A X s N * 4.8
+1(%)2(%, )% — §(9,93)2(%, C) %4 +1(4)2(%, %)% “-8)

—8(%9,9)2(%, %)+ 1 (9) 2(%,%)%] = 0
Taking the inner product of (4.8) with é’ and using (4.1), (4.3), we find
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* A * o
Theorem 4.1. An N(k)-(CMM)y,+1 always fulfills the condition 2(§,%4)).2 =0, provided k # %

Corollary 4.2. An N(k)-(CMM )y, always satisfy the condition %(C ). (f 0, provided k # P ’; )

o *
5. N(k)-(CMM),,,.| Satisfying (({ Az 4).2)=0
Let the condition (( A -4, ).:@)(%ﬁ%)%:O holds on (®, §). Then we have

LG, 2.9 E — X8, 20, D) 9% — 2 (%, %) 28 ) + 27 (8. %) 2 ()%

. . . N 5.1)
— Z(9,93)2(%,0)%% + Z7(C,%3) 2(%, % )94 — 3”*(5417544)3(%7%)5 +2(¢, %) (,%3)% =
Using (1.2) and (2.14) in (5.1), we get
TG, 25, 9)9)E + 08((%, 2, 95)4)E — (2nk+ ¢ o (2. 99, - 7 (%, %) 28,99
— 03(%,9)2(¢C, %)fm<2nk+<p>n<%>é<%,s¢3> S, G) 2%, 8 — 93(%,95) 2%, )4 (5:2)
+(2nk+¢)ﬁ(%)3(%y%)%*5”(%7544) (%,%)5 D3(1,4) 2(2,3)E + (2nk+ 9)1 (44) 2(%2,93)%1 = 0.
Taking inner product of (5.2) with &:’ and using (4.2) and (4.3), we obtain
lil * N N R N N * N N R N N
(k= 30 ) 1 IR0 + 04051 S2) (1 (%5) ~ (. BI85 o)A () (%) .

+(2nk + )8(1,93)1 (92) 1 (44) — (2nk + 9)8(1,%2) 71 (43)7 (44)] = 0.

For, fix 43 = 5 in (5.3) and using (2.3), we get

<"’ %) L7 (G Do) (D) — 20k3(%1,9) A (9s)] =

So, we mention the result:

n *
Theorem 5.1. An N(k)-(CMM)y,+1 admitting % *-tensor satisfying the criteria ((§ N+ 9)).2)=0, is an Einstein manifold provided
k# 4.

R *
Corollary 5.2. An N(k)-(CMM)y,,+\ admitting & *-tensor satisfying the condition ((C N+ 4).€)=0, is an Einstein manifold provided

k# 2n(2§+1)'

Likewise Section 3, we state the followings:
*
Corollary 5.3. Ifa gradient 2*-soliton (g,V,A) on N(k)-(CMM)ap+1 satisfies the criteria (& Ay- ). ) 0, then

V(f) = —[2nk+@+A](2n+1)

provided k # 7 an)

* A * *
Corollary 5.4. If a gradient % *-soliton (g,V,A) on N(k)-(CMM)y,+1 satisfies the condition ((C A+ 91).€)=0, where V is solenoidal,
then the soliton is increasing, stable, or reducing depending on ¢ < —2nk, ¢p=2nk, or ¢ > 2nk.

* A * *
Corollary 5.5. An N(k)-(CMM )y, admits gradient Z*-soliton (g,V,A) fulfills the criteria (({ N+ 41).2)=0, where V is the gradient
of a smooth function f, then we have

V(f)=—[2nk+¢+A](2n+1)
provided k # %

* a * *
Corollary 5.6. An N(k)-(CMM)y,,.1 with gradient Z*-soliton (g,V, ) satisfying the condition ((§ N g+ 41).2)=0, where V is solenoidal,
then the soliton is expanding, steady or shrinking according as ¢ < —2nk, ¢=2nk, or ¢ > 2nk.
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N(k)-(CMM),,,., Satistying (%, ).%=0

We suppose that (@, §) satisfies the below the condition

A *
(Z%(,6)-%)(94,95)%5 =0, 6.1)
which implies that
(27, 0).-2)(%1.95)% = (D Nz §). %) (43,95) %3, (62)
where the endomorphism (4 A g« 94)%s is defined as
(G Ny Gn)Y5 = 27 (94, 95)% — 27 (9, %5)%s. (6.3)

Now, from (6.2) we have

(2D, 8).5) (G0, 95)9s = (%) A E)H) G0, 95)Gs — R( % Ny E)4.95)%

N . N . 6.4)
— (G4, (9 N+ C)95)93 — T (94,%5) (51 N+ )G

Also, in view of (6.1), (6.3) and (6.4) we get
o@w*(&%(%,%)%)% — N9, R(G4.95)9)C — 2 (8, 9% (%ﬁs)%va*(gh%) (5 EQEZ ©5)
— (8. %5)% (%,%)%+f*(%,%)%(%,§)% -2 %)% (%7%)% + X9, %)% (%7%)5 0.

Using (1.2), (2.9), (2.10), (2.12) and (2.14) in (6.5) and then taking the inner product with C, we obtain
K[=0(43)N(95)-7 (91,94) — 0N (D)1 (95)8(%, %) + 1 (95)1N (%) (91,95) 6.6)
+oN(D)N(9)8(%1,%5) — (2nk+ Q)N (S3)N(94)8(%1,95) + (2nk + ¢)7(93)1 (94)8(%1,95)] = 0.

Putting 5 = QA’ in (6 6), we get
k[-7(4) (g17%)+2nk71(%) (“1,44)] = 0. (6.7)

Again putting % = £ in (6.7), we find
*
k= (91, %4) + 2nk§(4, %)) =
which implies that either k=0 or,
*
(G, %) = 2nk§(91,%).
Now, if k=0, then in view of (2.9) and Proposition 2.1, we state the following results:

~ *
Theorem 6.1. If an N(k)-(CMM ), admitting Z*-tensor fulfills the criteria Z*(%,,().%Z=0, then (©,§) is either locally isometric to
the Riemannian product E"1(0) x §™(4) or the manifold is an Einstein.

*
Corollary 6.2. A Z*-soliton (g,V,A) on locally isometric to the Riemannian product E"*1(0) x §"(4), is reducing, stable or increasing
depending upon the sign of scalar curvature.

* *
. N(k)-(CMM);,,+1 Equipped With 2.h =0,h.2=0

The condition (:@(% ,%,).h)43=0 on (O, §) implies that
2(9,)hs;3 — h(2(%,%)9) =0 (7.1)
for any 4 ,%,%5 € I'(®). Putting 4 = ¢ in (7.1), we have

2(8,9)n%s — h(2(8,9)%) = 0. (7.2)
Using (2.6), (4.3) in (7.2), we obtain

v PN
(k=55 ) -+ (2] =o. a3
Replacing ¢; by h¥; in (7.3) and using (2.1), (2.2), (2.6), (2.8), we obtain

(ke ) (k= 1309, 095) =

and hence

<k_ 23) (k= 1)d7 (9%, %) =

which implies that either k=1, or (k — )dn (¢%,%43)=0. Thus we state:
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Theorem 7.1. If an N(k)-(CMM )y,+ satisfies the criteria 2.h=0, then (©,§) is Sasakian manifold provided k # %

*

Next, we assume that N(k)-(CMM)y,,4; fits the criteria (h.2)(%),%)%3=0, that is

W2, D)%) — 26, 92)% — 2% h9)Gs — 2(%) Gn)hD3 = O (7.4)
for any 4),%,% € I'(®). Putting ¢ = ¢ in (7.4) and using h¢ = 0, we are leads to

W2 D))~ 28 )05~ 28 B)iis =0, @5)
Using (2.5), (2.6), (4.3) in (7.5), we find

(k- %)@(h%,%) —o0. 7.6)

Replacing % by 1%, in (7.6) and by making use of (2.1), (2.2), (2.6), (2.8), the equation (7.6) reduces to

2(k=1) (k= 5)8(0%2, §%3) = 0.
So, we conclude the results as:

Theorem 7.2. If an N(k)-(CMM )y,,+ satisfying the condition h.2=0, then the (©,8) is Sasakian manifold, provided k # %

In view of Theorem 7.1 and Theorem 7.2, we turn up the below outcome:

o * *
Corollary 7.3. In an N(k)-(CMM)a,41 with k # 5., we have 2.h = h.2.

8. Z*-Recurrent on N (k)-(CMM),,, ;|

For Z*-recurrent on (®, §), we get

(Ve 27) (G, 95) = () 27 (94, %5). 8.1
Since, we have

(Vg Z5)V(4,%5) =9 27 (90,%5) — 2" (Ve 94,%5) — 27 (94, V 9,Y5). (8.2)
With the help of (8.1) and (8.2) we yield

DL (94, %5) — 2" (V90 %5) — 27 (94, V4, 95) = N(D) 2 (94,5). (8.3)
Fix % =% = (’;' in (8.3) and using (2.1), (2.4), (2.14) and (2.15), we obtain

G (2nk + @) =0 (%)(2nk + ¢).
We state the following:
Theorem 8.1. In a Z*-recurrent N(k)-(CMM )3, 11, we have
9 (2nk+ @) =1 (%)(2nk + ¢),
forall9, € T(®).
A Z*-recurrent manifold is 2°*-symmetric if and only if the 1-form 1} is zero. So we notice:
Corollary 8.2. In a Z*-symmetric N(k)-(CMM )y, 1, 2nk+@=constant.
Corollary 8.3. Ifan N(k)-(CMM )y is Z*-recurrent and if 2nk+@ is constant, then either 2nk+@=0 or, (®,§) reduces to a Z*-symmetric.

* A
Finally, we consider 2 *-soliton with V = { on N(k)-(CMM)y,,+1. Then from (1.4), we have

L28(%1, ) +227 (%, %) +206(%1,%) = 0. (8.4)
Using (2.3) and (2.4), we find
Qgﬁ(gl ,gz) = *2@(([3]’1%] ,gz). (8.5)

Now using (1.2), (8.5) in (8.4), we obtain

P (D) = 5051, 6%) — (9 +2)8(%, %), 3.6)
In view of (2.13) and (8.6) we have

2nk+¢+AIn(4) =0,
which implies that

A =—2nk+ ).

As per above, we mention the result:
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Theorem 8.4. If an N(k)-(CMM )y, 11 admitting % *-soliton, then we have
(i) Z*-soliton is expanding if ¢ < —2nk
(ii) Z*-soliton is shrinking if ¢ > —2nk
(iit) Z*-soliton is steady if ¢ = —2nk

Corollary 8.5. A Z7*-symmetric N(k)-(CMM )y,,+1 admitting 2 *-soliton is always shrinking.
Corollary 8.6. A Z7*-soliton on Z*-recurrent N(k)-(CMM),11 is always steady if 2nk+@=constant.

9. Example

Let a 3-dimensional manifold ® = {(r,s,t) € R3 : (r,s,¢) # 0}, where (r,s,7) are standard coordinates in R>. Let (¥, 9, 13) be the
orthogonal system of vector fields at each point of ©, defined as

P) P) P)
_ 19 _ 42 __9
D=eg =g h=—7

and
[01,02] =0, [01,03] = D, [Dr,B5] = Da.
Let, we define the metric § as follows
R 0, i#j=12,3.
gij = { 1, i=j } .
If 7} the 1-form have the significance
() = 8%, %)
for any ¢, € T'(0®). Let ¢ be the (1, 1)-tensor field defined by
¢V =0, Qh=-1 ="
Making use of the linearity of ¢ and § we have
() =1,
P (%) =% +1 (%)%,
(091, 0%) =8(4,%) — 1(91)N (%),
for any 4;,%, € I'(®). Thus for ﬁlzf the structure (, (f ,71,8) leads to a contact metric structure in R3. We recall the Koszul’s formula

28(Vy,%,%3) = 91(8(%,4)) + % (8(4,%)) —4(8(%,%)) -6, (%, 4) — §(%, [%1,%)) +5(%3,[1,%)).

3

Making use Koszul’s formula we have:

Vot =—03, Vyth=0 Vyid=75,
Vﬂ2192:07 Vﬂzt%:%a Vl%ﬂlzoa
Vg, 3 =0, Vu =0, Vydh=0

Also we recall the following formula
Vg, 8 = — 0% — oh%,.
Using above formula, one can easily calculate

hdy = =0, hd3 = =03, ht =0.

*
The non-vanishing component of % as follows:

FO0)0 =02, (03,0001 =05, (02,0091 = s,
K (V1,0)0, =V, K(01,03)03 =01, F(D,03)03 =1,
‘@(025193)192:71937 ‘%(1917193)19321917 '%(193701)191:133

*

A *
We conclude that k=1 and u=0. Consequently ¥,=¢ € N(1,0)-nullity distribution. Also the value of . as below:

*

F(01,01) = .7 (0, 2) = F(D3,03) = 2. ©.1)

In this case, equation (8.6) reduces to

*

* *
S (01,0) =S (%, ) = (93,03) = = (A + ). 9.2)
It is clear that from (9.1) and (9.2) that A=—(2 + ¢) and hence k=1, for n=1. Therefore, the Theorem 8.4 is verified.
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10. Conclusion

The exploration of the Z*-tensor in pseudo-Riemannian manifolds and space-times delves into their geometric characteristics, curvature
patterns, and overall behavior using mathematical methods like differential forms. This research into such manifolds not only enhances our
comprehension of geometric structures with limited symmetries but also has practical implications in various fields, including physics. For
instance, Mantica and Molinari defined the Z*-tensor [29] in 2012 and introduced many interesting results and applications in physics.
Thereafter many authors study various properties of these tensors ( [49]- [51]). Inspired by these works we study some geometric properties
of N(k) — (CMM),,, 1, whose metrics are the 2*-soliton and deduce some interesting results.
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