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Histopathological and biochemical effects of 18β-

glycyrrhetinic acid application on lipopolysaccharide-

induced kidney toxicity in rats 

ABSTRACT 

Lipopolysaccharide (LPS) is an endotoxin found in the wall of gram-negative bacteria 

and causes acute inflammation when it enters the tissues. 18β-glycyrrhetinic acid 

(18β-GA) is a substance found in licorice root and is responsible for this plant's 

antiallergic, antioxidant, and anti-inflammatory activity. This study aimed to examine 

the possible effects of 18β-glycyrrhetinic acid on the damage caused by LPS in kidney 

tissue. The study was divided into six equal groups containing 48 Sprague Dawley 

adult male rats (n = 8). The groups were created as follows; the Control group; the 

group that received 1cc physiological saline throughout the experiment was the 

DMSO group; DMSO, an intraperitoneal carrier substance, was given. LPS group; A 

single dose of 7.5 mg/kg intraperitoneal (i.p) LPS was administered. 18β-GA50+LPS 

group; 18β-glycyrrhetinic acid was given by gavage at 50 mg/kg daily for 10 days, 

followed by a single dose of 7.5 mg/kg i.p. LPS was administered. 18β-GA100+LPS 
group; 18β-glycyrrhetinic acid was administered by gavage at 100 mg/kg daily for 10 

days, followed by a single dose of 7.5 mg/kg i.p. LPS was administered. 18β-GA100 

group; 18β-glycyrrhetinic was given by gavage at 100 mg/kg daily for 10 days. 24 

hours after LPS application to all groups, the kidney tissues of the rats were removed 

under anesthesia and placed in 10% formaldehyde. Histopathological and oxidative 

stress parameters analyses were performed in kidney tissue. These findings raised the 

possibility that 18β-GA could be an adjuvant therapy that protects kidney tissue from 

LPS-induced oxidative and tissue damage effects and reduces its side effects. 
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NTRODUCTION 

Sepsis physiopathology is a whole of complex mechanisms that 

begins with an excessive cellular immunological response 

against the infection focus that initiates the sepsis process and 

then damages the host at the level of organs and systems (Uchino et al., 

2005). Mediators and cytokines that play a role in intercellular signaling 

play an important role in the sepsis formation process (Neveu et al., 

1996; Silvester et al., 2001). Bacterial products called pathogen-

associated molecular structures (PAMPs) can be detected and 

recognized by the body's natural immunity (Lopes et al., 2009; Oppert 

et al., 2008). Lipopolysaccharides (LPS) located in the cell walls of 

gram-negative bacteria are one of the most important PAMPs and play 

a very important role in triggering the septic process (Cunningham et 

al., 2002; Knotcke et al., 2001). The event that initiates septic shock is 

the passage of LPS or toxic cell wall components into the organism's 

circulatory system as a result of the lysis of bacteria (Morelli et al., 

2013). LPS stimulates signaling pathways that lead to the synthesis and  
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release of cytokines and other mediators. Thus, 

TNF-α, interleukin-1 (IL-1), interleukin-6 (IL-6), 

and interleukin-8 (IL-8) are released from 

monocytes. IL-1 and IL-6 activate T cells and 

ensure the secretion of interferon gamma (IFN-γ), 

interleukin-2 (IL-2) and interleukin-4 (IL-4) 

(Hagiwara et al., 2009). Mediators such as TNF-α 

and IL-1 are released within 30 minutes after the 

appearance of LPS and cause the release of 

secondary cytokines, lipid mediators, and reactive 

oxygen metabolites, as well as initiating the 

release and synthesis of arachidonic acid 

metabolites, which are extremely important in 

sepsis (Mori et al., 2011). Since the events 

occurring in sepsis can affect the entire organism, 

this situation may extend to multiple organ 

failure. The most common organ failures in sepsis 

are lung, kidney, liver, and heart failure (Ogura et 

al., 2014). Various recent studies have shown that 

the use of agents with antioxidant and anti-

inflammatory effects prevents organ damage in 

kidney damage occurring in the LPS-induced 

sepsis model (Gomez et al., 2014). Various 

studies have reported that Glycyrrhiza glabra L. 

(licorice root) has antioxidant and anti-

inflammatory effects (Eisenbrand, 2006; Kang et 

al., 2014). The reason why this plant exhibits the 

mentioned properties is due to the many 

biological compounds found in its structure 

(Hasan et al., 2015; Mahmoud and Al Dera, 2015; 

Wu et al., 2015). Its main component is 

glycyrrhizin, which makes up approximately 10% 

of the dry weight of licorice root. Glycyrrhizin is 

a glycyrrhetinic acid glycoside containing two 

glucuronic acid residues. After oral 

administration, glycyrrhizin is rapidly and almost 

completely metabolized to glycyrrhetinic acid by 

intestinal bacteria (Ishii et al., 2000; Ma et al., 

2016). Glycyrrhetinic acid, specifically 18β-

Glycyrrhetinic acid, is the main active metabolite 

of glycyrrhizin and is responsible for most 

pharmacological properties. Studies have 

demonstrated the pharmacological and health-

promoting effects of 18β-Glycyrrhetinic acid, 

including antioxidant, anti-inflammation, 

anticancer, and metabolic regulation (Itoh et al., 

1999; Kalaiarasi and Pugalendi, 2009; Young, 

1995; Zeller et al., 1984). In line with all this 

information, present study aims to introduce the 

possible protective effects of 18β-GA in the LPS-

induced acute kidney toxicity model in rats, 

which has not yet been reported in the literature, 

and to contribute to filling the gap in this field. 

MATERIALS AND METHODS 

In the present research, we were studied the renal 

toxicity model induced by LPS (O55:B5, Sigma-

Aldrich) (7.5 mg/kg, i.p., single dose) in rats, and 

18β-GA (Cayman Chemical Company-11845) 

(50 mg/kg) and 18β-GA (100 mg/kg, dose i.g., 10 

days) was applied. Experimental animals were 

obtained from Atatürk University Medical 

Experimental Research and Application Center. 

Rats were fed ad-libitum until the time of study 

and kept in a ventilated environment with a 12-

hour light-dark cycle and a room temperature of 

approximately 25°C. To provide sufficient kidney 

tissue samples in each group, 8 rats were used, 

and 6 groups were formed. A total of 48 12-week-

old adult Sprague Dawley male rats weighing 

220-250 g were used. The experimental groups 

were formed as presented in Table 1 and the 

experimental procedure was applied as written. 

 All animals were subjected to standard care 

and feeding conditions. At the end of the 

experimental applications, after the live weight of 

the rats was weighed, kidney tissues were taken 

following intracardiac blood collection and 

cervical dislocation under sevoflurane anesthesia. 

After weighing these tissues, a portion of the 

kidney tissue of 8 rats from each group was 

immediately placed in 10% formaldehyde after 

washing with physiological saline for 

histopathological examinations. The remaining 

part of the kidney tissue of the rats was washed 

with physiological saline and then immediately 

placed in liquid nitrogen and frozen until 

biochemical analysis. 
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Table 1: Experimental groups and experimental procedure. 

Number of groups Number of animals Application 

Group 1 (n=8) Control i.p saline 10 days 

Group 2 (n=8) DMSO 0.1 ml i.p DMSO injection 

Group 3 (n=8) LPS 7.5mg/kg i.p LPS single dose 

Group 4 (n=8) 18β-GA50+LPS 18β-GA at 50 mg/kg i.g dose for 10 days and 7.5mg/kg i.p LPS as a single dose for 10 days 

Group 5 (n=8) 18β-GA100+LPS 18β-GA at 100 mg/kg i.g dose for 10 days and 7.5mg/kg i.p LPS as a single dose for 10 days 

Group 6 (n=8) 18β-GA100 18β-GA at 100 mg/kg i.g dose for 10 days 

   

Biochemical analyzes 

At the end of the experiment, 50 mg of kidney 

tissue obtained from rats was weighted and 

homogenized with tissue homogenate buffer at 30 

hz for 3 minutes in tissue liser (Qiagen 

TissueLyser II). It was then centrifuged at 12000 

rpm at 4°C for 15 minutes. The supernatant 

obtained was taken and GSH analysis was 

performed according to Sedlak et al., 1968. For 

MDA analysis, 50 mg of kidney tissue obtained 

from rats at the end of the experiment was 

weighted and homogenized with tissue 

homogenate buffer at 30 hz for 3 minutes in tissue 

liser (Qiagen TissueLyser II). It was then 

centrifuged at 4000 rpm at 4°C for 15 minutes.  

The supernatants obtained were analyzed 

according to the method of Ohkawa et al., (1979). 

Histopathological analysis 

Rat kidney tissues obtained at the end of the 

experiment were placed in 10% neutral 

formaldehyde solution and fixed for 72 hours. 

Then, they were passed through graded alcohol 

and xylol series and embedded in paraffin blocks 

and 5µ thick sections were taken with a 

microtome device (Leica RM2125 RTS) for 

histopathologic evaluations. For histopathologic 

examination, tissue damage was evaluated by 

staining the sections with Mallory's Triple 

Staining method modified by Crossman. Each 

section was scored from 0 to 4 to evaluate 

histopathologic damage in the kidney tissue. 0 

indicates no tissue damage, 1 indicates mild 

damage, 2 indicates moderate damage, 3 indicates 

severe damage and 4 indicates very severe 

damage (Niu et al., 2019). A trinocular 

microscope (Zeiss AXIO Scope.A1, German) 

with computer and camera attachment was used 

for microscopic examination. 

RESULTS  

Biochemical results 

When the MDA level was compared between the 

groups, we observed that the kidney tissue MDA 

level of the LPS-treated groups increased 

significantly compared to the control and other 

groups. On the other hand, we determined that the 

application of 18β-GA prevented this LPS-

induced increase. When the GSH level was 

compared between the groups, the kidney tissue 

GSH level of the LPS-treated groups increased 

significantly and decreased compared to the 

control and other groups. On the other hand, we 

determined that 18β-GA application prevented 

this LPS-induced decrease. Biochemical results of 

all groups are presented in Figure 1. 

 
Figure 1. The effects of LPS and 18β-GA administration 
on MDA (A), and GSH (B) levels in the experimental 

groups (There are statistically significant differences 

between the values expressed with different symbols 

between the control group.  

Histopathological results 

In the current study, kidney tissue was observed 

to be normal in the Control, DMSO, and 18β-

GA100 groups, and glomerular and tubules in 

the cortex and medulla tubules were observed to 

be healthy. In the LPS group, it is observed that 
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the normal structure of the kidney is completely 

disrupted and the glomerul and tubules lose 

their normal structure. It is observed that the 

Bowman space in the glomerul is widened and 

the glomerular tangle shrinks and exhibits a 

degenerative appearance. Widespread 

hemorrhagic areas are noted in the cortex and 

medulla. 

 
Figure 2. Kidney tissues stained with Mallory's Triple 

Stain Modified by Crossman. gl: Renal glomerulus, t: 

Renal tubules, Arrow: Bowman's space, Red circle: 

Degenerative glomerulus, Arrowhead: Degenerative 

tubule, Curved arrow: Hemorrhagic area. 

 

 While the recovery is better, especially in the 

18β-GA100+LPS group, a near-normal 

appearance is observed in the glomerular and 

tubules in the 18β-GA50+LPS group. It is 

noteworthy that the Bowman space is normal 

and the degeneration in the tubules is reduced. 

Hemorrhagic areas have decreased 

considerably. Histopathological evaluation 

results of all groups are presented in Figure 2 

and 3. 

 
Figure 3. Assessment of renal histopathology. 

DISCUSSION 

LPS is the structure found in the cell wall of 

gram-negative bacteria and is responsible for 

the inflammation and apoptosis caused by these 

bacteria in the tissue (Hayashi et al., 2001; Tsao 

et al 2004). LPS administration causes toxicity 

in the lung, brain, kidney, and testicular tissues 

as well as the liver (Boveris and Cadenas, 1997; 

Kadkhodaee and Osami, 2004; Tiwan et al., 

2005). If toxicity develops in organs, 

disruptions in the physiological functions of the 

organ, loss of function, and organ failure occur 

(Gündoğdu et al., 2023; Iguchi et al., 1992; 

Kobayashi et al., 2015). The effects of 18β-GA, 

a flavonoid compound with antioxidant and 

anti-inflammatory effects, in experimental 

organ toxicity models have been reported in 

many studies (Kao et al., 2010). In the present 

study, the possible effects of 18β-GA on LPS-

induced oxidative stress and tissue damage 

were investigated. 
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 Imbalances in the typical cellular redox state 

cause perturbations in biological components 

such as lipids, proteins, and DNA (Gelen et al., 

2023). The extent of ROS production 

determines the extent of cell membrane damage 

and leads to the occurrence of lipid peroxidation 

through oxidative modification of 

polyunsaturated fatty acids within the 

composition of the membrane (Alwazeer, 2023; 

Kara et al., 2016). In the present study, MDA, 

one of the lipid peroxidation indicators, 

increased, and 18β-GA application significantly 

reduced the MDA level. Oxidative stress can be 

defined as the disproportion between oxidant 

and antioxidant defense systems. MDA is a 

suitable lipid peroxidation biomarker (Kara et 

al., 2023). The elevation observed after LPS 

kidney injury was significantly attenuated by 

oral dosage of 18β-GA. Oxidative stress can be 

described as the disruption of the balance 

between the mechanisms that produce oxidants 

and the mechanisms that provide antioxidant 

protection. The production of reactive oxygen 

species (ROS) effectively counteracts both 

enzymatic (such as SOD, GSH-Px, and CAT) 

and non-enzymatic (such as GSH) antioxidant 

defenses (Gelen et al., 2021; Gelen et al., 2023). 

LPS significantly decreased GSH levels while 

increasing MDA levels in kidney tissue. In a 

study, it was determined that 18β-GA had an 

antioxidant role in nephrotoxicity in rats (Abd 

El-Twab et al., 2016). In the present study, we 

determined that LPS induces oxidative stress in 

kidney tissue and 18β-GA application prevents 

these changes. 

 In some previous studies, it was observed 

that LPS application caused congestion, 

interstitial edema, degeneration of cells, 

necrosis and calcification in rat kidney tissue 

(Ban et al., 2022). In the present study, LPS 

application caused the integrity of the kidney 

tissue to completely deteriorate and the 

glomerulus to lose its normal structure. In 

previous studies, it was determined that LPS 

administration caused damage to kidney tissue 

(Raghavan and Weisz, 2015). The data obtained 

in these studies are compatible with the data 

obtained in the present study. On the other 

hand, it was determined that 18β-GA 

application significantly prevented these 

changes. Various studies have shown that 18β-

GA application prevents kidney tissue damage 

caused by some toxic agents. These data are 

compatible with the data we obtained. 

CONCLUSION 

In conclusion, the findings obtained in this 

study show that LPS administration triggers 

ROS production and causes kidney tissue 

damage. These findings raised the possibility 

that 18β-GA could be an adjuvant therapy that 

protects kidney tissue from LPS-induced 

oxidative and tissue damage effects and 

reduces its side effects. 
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