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Kolon Kanseri Hastalığının Tanısında Evrişimsel Sinir Ağı ve ACO-

PSO Temelli Bir Yaklaşım 

An Approach based on Convolutional Neural Network and ACO-PSO 

for Colon Cancer Disease Diagnosis 

 

Highlights 

 Use CNN methods to extract the features from colon cancer images  

 Reduce the features numbers with ACO-PSO methds 

 Use the machine learning methods for classifications 
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Figure. Graphical abstract for colon cancer disease 

Aim 

The proposed research aims to address the existing gaps in colon cancer diagnosis methodologies by introducing an 

innovative approach that leverages the capabilities of CNNs for image analysis and ACO-PSO algorithms for 

optimizing the model parameters. 

Design & Methodology 

This article employs two sophisticated methods to enhance the precision of colon cancer diagnosis. It utilizes CNN 

for extracting features and Ant Colony Optimization-Particle Swarm Optimization (ACO-PSO) for reducing 

features. These methodologies significantly contribute to refining the accuracy of the colon cancer diagnosis model. 

Originality 

To identify Cologne illness regions, this article tries to integrate human learning and training with machine 

learning techniques, like neural network learning. 

Findings 

results were obtained in the evaluation of metrics, including sensitivity, specificity, accuracy, and F1 score, which 

were found to be 99.50%, 99.93%, 99.97%, and 99.97%, respectively. 

Conclusion  

The ACO-PSO algorithm in the suggested method initially improves the precision of the ACO-PSO technique for 

choosing the specified characteristic by the optimization teaching and learning process. 
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ABSTRACT 

The diagnosis of colon cancer has evolved into a global preoccupation, reflecting its profound impact on public health and 

healthcare systems worldwide. In this study, the diagnosis of colon cancer is performed using convolutional neural networks (CNN) 

and metaheuristic methods. Various CNN architectures, including GoogLeNet and ResNet-50, were employed to extract features 

related to colon disease. However, inaccuracies were introduced in both feature extraction and data classification due to the 

abundance of features. To address this issue, feature reduction techniques were implemented using combined Ant Colony 

Optimization (ACO) and particle swarm optimization (PSO). Superior convergence speed in optimizing the fitness function was 

observed in the case of ACO-PSO. With ResNet-50 producing 2048 features and GoogLeNet generating 1024 features, the 

reduction of feature dimensions proved to be crucial in identifying the most informative elements. Encouraging results were 

obtained in the evaluation of metrics, including sensitivity, specificity, accuracy, and F1 score, which were found to be 99.50%, 

99.93%, 99.97%, and 99.97%, respectively. 

 

Keywords: Convolutional Neural Network, Metaheuristic Methods, Ant Colony Optimization, Colon Cancer 

 

Kolon Kanseri Hastalığının Tanısında Evrişimsel Sinir 

Ağı ve ACO-PSO Temelli Bir Yaklaşım 

ÖZ 

Kolon kanseri tanısı, dünya çapında halk sağlığı ve sağlık sistemleri üzerindeki derin etkisini yansıtan, küresel bir endişeye 

dönüşmüştür. Bu çalışmada kolon kanseri tanısı evrişimsel sinir ağları (CNN) ve metasezgisel yöntemler kullanılarak 

gerçekleştirilmektedir. Kolon hastalığıyla ilgili özellikleri çıkarmak için GoogLeNet ve ResNet-50 dahil olmak üzere çeşitli CNN 

mimarileri kullanıldı. Ancak özniteliklerin çokluğu nedeniyle hem öznitelik çıkarımı hem de veri sınıflandırmasında yanlışlıklar 

ortaya çıkmıştır. Bu sorunu çözmek için, birleşik Karınca Kolonisi Optimizasyonu (ACO) ve parçacık sürüsü optimizasyonu (PSO) 

kullanılarak özellik azaltma teknikleri uygulandı. ACO-PSO durumunda uygunluk fonksiyonunun optimize edilmesinde üstün 

yakınsama hızı gözlemlendi. ResNet-50'nin 2048 özellik üretmesi ve GoogLeNet'in 1024 özellik üretmesi ile özellik boyutlarının 

azaltılmasının, en bilgilendirici öğelerin belirlenmesinde hayati önem taşıdığı kanıtlandı. Duyarlılık, özgüllük, doğruluk ve F1 

puanı gibi metriklerin değerlendirilmesinde sırasıyla %99,50, %99,93, %99,97 ve %99,97 olarak tespit edilen cesaretlendirici 

sonuçlar elde edildi.   

 

Anahtar Kelimeler: Evrişimsel Sinir Ağı, Metasezgisel Yöntemler, Karınca Kolonisi Optimizasyonu, Kolon Kanseri. 

 

1. INTRODUCTION 

Colon cancer, a malignant neoplasm arising from the 

large intestine's inner lining, represents a significant 

global health concern. Its prevalence and mortality rates 

underscore the critical need for effective and timely 

diagnostic methods. Early detection remains pivotal in 

improving patient outcomes and reducing the overall 

burden of the disease. With advancements in medical 

imaging, computational techniques, and data analytics, 

there is a growing opportunity to enhance the precision 

and efficiency of colon cancer diagnosis. This research 

focuses on reviewing the current landscape of colon 

cancer diagnostic approaches and exploring potential 

advancements that could lead to more accurate and 

accessible diagnostic methodologies [1][2]. 

Historically, colon cancer diagnosis heavily relied on 

traditional methods such as colonoscopy, biopsy, and 
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fecal occult blood tests. While these techniques are 

effective, they come with challenges such as 

invasiveness, patient discomfort, and cost. The pursuit of 

non-invasive and technologically advanced diagnostic 

tools has driven research toward innovative approaches 

that leverage the capabilities of medical imaging and 

computational analysis [3][4]. 

Radiological imaging modalities, including computed 

tomography (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET), have played a 

crucial role in detecting and characterizing colorectal 

lesions. These imaging techniques provide detailed 

anatomical information but may lack the sensitivity 

required for early-stage detection. Recent developments 

in imaging technology and contrast agents aim to address 

these limitations, emphasizing the need for continued 

exploration and integration with other diagnostic 

methodologies [5][6][7]. 

The integration of artificial intelligence, particularly 

machine learning and deep learning, has shown great 

promise in improving the accuracy and efficiency of 

colon cancer diagnosis. Automated image analysis, 

pattern recognition, and predictive modeling using AI 

algorithms contribute to early lesion detection and 

classification. Convolutional Neural Networks (CNNs) 

and support vector machines (SVMs) have demonstrated 

notable success in differentiating between benign and 

malignant lesions, paving the way for their potential 

integration into routine clinical practice [8][9][10]. 

Advancements in molecular biology have identified 

specific biomarkers associated with colon cancer, 

providing insights into its molecular pathogenesis. 

Techniques such as DNA testing, gene expression 

profiling, and detection of circulating tumor markers 

offer a complementary approach to imaging-based 

diagnostics. Integrating molecular information with 

imaging findings holds promise for personalized and 

targeted therapeutic strategies [11][12]. 

While significant progress has been made in colon cancer 

diagnostics, challenges persist, including the need for 

improved sensitivity in early detection, cost-

effectiveness, and widespread accessibility. Future 

research should focus on synergistic approaches, 

combining imaging modalities, AI algorithms, and 

molecular diagnostics to create comprehensive and 

accurate diagnostic tools. By addressing these gaps, we 

can enhance the early detection and management of colon 

cancer, ultimately improving patient outcomes and 

reducing the global burden of this disease [13].  

Colon cancer is a prevalent and potentially lethal disease 

worldwide, with a substantial impact on public health. 

Early detection and accurate diagnosis are crucial for 

effective treatment and improved patient outcomes. In 

recent years, the integration of advanced computational 

techniques with medical diagnostics has shown 

promising results in enhancing the accuracy and 

efficiency of disease diagnosis. In this context, the fusion 

of Convolutional Neural Networks (CNNs) and Ant 

Colony Optimization-Particle Swarm Optimization 

(ACO-PSO) algorithms presents a novel and powerful 

approach for the diagnosis of colon cancer [14][15][16]. 

Historically, colon cancer diagnosis has heavily relied on 

invasive procedures such as colonoscopy and biopsy. 

While these methods remain crucial for definitive 

diagnosis, their invasiveness, cost, and potential 

discomfort for patients have led researchers to explore 

alternative, non-invasive diagnostic approaches. The 

emergence of computational techniques has provided a 

new avenue for developing accurate and efficient 

diagnostic tools [17][18]. 

CNNs have gained remarkable success in various image-

based tasks, including medical image analysis. Their 

ability to automatically learn hierarchical features from 

complex images makes them well-suited for detecting 

patterns and abnormalities in medical images. In the 

context of colon cancer, CNNs have demonstrated 

impressive performance in image classification and 

segmentation tasks, paving the way for their integration 

into diagnostic frameworks [19][20]. 

The optimization algorithms, ACO and PSO, have shown 

effectiveness in solving complex problems. Integrating 

these algorithms with CNNs for medical image analysis 

introduces the potential for improved feature extraction 

and model optimization. ACO-PSO hybridization 

leverages the strengths of both algorithms, providing 

robustness and efficiency in optimizing the CNN 

parameters for enhanced diagnostic accuracy [21][22]. 

Several studies have explored the integration of machine 

learning techniques with medical imaging for cancer 

diagnosis. The combination of CNNs with optimization 

algorithms has been successfully applied in various 

medical domains, including breast cancer, lung cancer, 

and melanoma [23]. However, limited research has 

focused specifically on colon cancer diagnosis using the 

synergistic power of CNNs and ACO-PSO algorithms. 

The proposed research aims to address the existing gaps 

in colon cancer diagnosis methodologies by introducing 

an innovative approach that leverages the capabilities of 

CNNs for image analysis and ACO-PSO algorithms for 

optimizing the model parameters [13][24]. By combining 

these technologies, we anticipate achieving a more 

accurate and efficient colon cancer diagnosis, ultimately 

contributing to early detection and improved patient 

outcomes. 

In the subsequent sections of the research, we will delve 

into the methodology, experimentation, and results, 

aiming to validate the effectiveness of the proposed 

approach in the context of colon cancer diagnosis 

[25][26][27]. 

This paper proposes a new method for colon 

histopathological image classification that does not need 

to select features or use principal component analysis 

(PCA). This article proposes an intelligent feature 

selection method that uses major features to enhance the 

precision of colon cancer diagnosis. Table 1 functions as 

an essential reference guide, serving to abbreviate key 

concepts and aid readers in grasping the core ideas 

delineated within the paper. 



 

 

The proposed approach employs pre-trained CNN 

models, specifically GoogLeNet and ResNet, to extract 

features from both colon cancer and non-cancer images. 

Subsequently, a binary version of the ACO-PSO 

algorithm is utilized to select optimal features from the 

extracted attribute data. This integrated approach, 

utilizing the ACO-PSO algorithm for feature selection 

and the K-nearest neighbor (KNN) algorithm for 

classification, has led to the accurate classification of 

colon disease images. While traditional image processing 

techniques are used for diagnosing colon disease, they 

require substantial training for accurate interpretation. 

This paper aims to classify colon disease by employing a 

combination of machine learning techniques such as 

SVM, decision tree (DT), KNN, and ensemble methods. 

Notably, the proposed method employs the ACO-PSO 

algorithm to select the most relevant features from pre-

trained CNNs like GoogLeNet and ResNet-50, guided by 

an autoencoder framework. 

 

2. MATERIAL and METHOD 

This article employs two sophisticated methods to 

enhance the precision of colon cancer diagnosis. It 

utilizes CNN for extracting features and Ant Colony 

Optimization-Particle Swarm Optimization (ACO-PSO) 

for reducing features. These methodologies significantly 

contribute to refining the accuracy of the colon cancer 

diagnosis model. 

 In this diagnostic model, CNN are initially employed to 

extract crucial features from images of colon tissue. 

These deep neural networks possess the capability to 

discern intricate patterns within complex medical 

images, facilitating the identification of anomalies. 

Furthermore, to streamline the feature set and eliminate 

redundant or unnecessary elements, the ACO-PSO 

technique is utilized. By leveraging collective 

intelligence inspired by ant behavior and the particle 

swarm algorithm, this combined approach efficiently 

selects essential features from the high-dimensional 

feature space. 

The integration of these two methodologies forms a 

potent combination that markedly enhances the accuracy 

of colon cancer detection. By automatically identifying 

pertinent features from images and reducing feature 

space dimensions, these measures significantly bolster 

disease diagnosis accuracy, yielding superior outcomes 

in colon cancer detection. 

2.1. Convolutional Neural Networks (CNNs) for 

Feature Extraction 

CNNs were utilized to automatically extract pertinent 

features from histopathological images depicting both 

colon cancer and non-cancerous tissues. Specifically, 

architectures such as GoogLeNet and ResNet-50 were 

employed for this task. CNNs demonstrate proficiency in 

learning hierarchical features from intricate images, 

rendering them well-suited for identifying patterns and 

irregularities in medical images, including those 

portraying colon tissues. By employing pre-trained CNN 

models, the research sidestepped the necessity for manual 

feature selection or principal component analysis (PCA), 

processes that can be time-intensive and might overlook 

certain relevant features. The features extracted via 

CNNs offered comprehensive representations of the 

input images, encompassing both subtle and prominent 

visual cues indicative of colon disease. Table 2 presents 

a comparison between Principal Component Analysis 

(PCA) and Ant Colony Optimization-Particle Swarm 

Optimization (ACO-PSO) methods in reducing 

specificity for colon cancer diagnosis. 

Overall, ACO-PSO demonstrates advantages over PCA 

in terms of interpretability, handling nonlinear 

relationships, supervision, discriminative feature 

selection, adaptive optimization, integration of domain 

knowledge, and suitability for colon cancer diagnosis. 

 

2.2. Ant Colony Optimization-Particle Swarm 

Optimization (ACO-PSO) for Feature 

Reduction: 

The profusion of features extracted by CNNs can 

introduce challenges such as overfitting and heightened 

computational complexity. Consequently, employing 

feature reduction techniques becomes imperative to 

tackle these issues. To address this, the ACO-PSO hybrid 

algorithm was utilized to pinpoint the most informative 

features from the high-dimensional feature space 

generated by CNNs. The ACO-PSO algorithm harnesses 

collective intelligence inspired by ant foraging behavior 



 

 

and the swarm behavior observed in bird migrations to 

efficiently explore optimal feature subsets. Through 

iterative refinement of the feature subset using ACO-

PSO, the model effectively identifies discriminative 

features associated with colon disease while discarding 

irrelevant or redundant ones. Feature reduction proves 

instrumental in mitigating the curse of dimensionality, 

thereby enhancing model generalization and improving 

computational efficiency during both training and 

inference phases. 

 

2.3. Integration of Techniques: 

The combination of CNNs for feature extraction and 

ACO-PSO for feature reduction constituted a synergistic 

approach in the realm of colon cancer diagnosis. 

CNNs served as an Effective instrument for discerning 

intricate patterns from raw image data, whereas ACO-

PSO optimized the feature space to concentrate on the 

most informative attributes. 

This integration yielded a model in precisely categorizing 

histopathological images of colon tissues, resulting in 

elevated accuracy rates across diagnosis metrics such as 

sensitivity, specificity, accuracy, and F1 score. 

In essence, the utilization of CNNs for feature extraction 

coupled with ACO-PSO for feature reduction 

complemented each other, culminating in a precise and 

streamlined model for colon cancer diagnosis. This 

methodology facilitated the automated identification of 

pertinent image features while addressing challenges 

associated with high-dimensional data, ultimately 

contributing to enhanced diagnostic accuracy and 

favorable patient outcomes. Table 3 illustrates the 

amalgamation of methodologies for detecting colon 

cancer. 

2.4. Ant Colony Optimization Algorithm  

Ants are observed to exhibit intelligent foraging 

behavior, allowing them to find optimal food sources and 

minimize the distance traveled. Inspired by this behavior, 

this study introduces a modified ACO-PSO algorithm to 

achieve optimal results [28][29]. 

First, a graphical model is introduced to represent all the 

features in the dataset. The graphical model is a network 

of interconnected nodes, where each node represents a 

feature. Then, the quantity of ants and the number of 

iterations is established [29]. The parameter τ represents 

the pheromone trail, and its initial value is set to 1 for all 

attributes. The parameter η represents heuristic 

information, and it is inversely proportional to the 

distance between attributes [30] [31]. Once the initial 

values are determined, the ACO-PSO algorithm can be 

applied. At each step, an ant is assigned a random node. 

To define the subsequent node, the transition probability 

is applied, which is given by Equation (1): 

𝑃𝑖
𝑘(𝑡) =

| τ𝑖(𝑡)|𝛼∗.|η𝑖(𝑡)|𝛽

∑ | τ𝑖(𝑡)|𝛼.
𝑢∈𝑗𝑘  |η𝑖(𝑡)|𝛽

 𝑖𝑓(𝑞 > 𝑞0)                   (1) 

𝑗 = max
𝑢∈𝑗𝑘

 (τ𝑖(𝑖)𝛼 . η𝑖(𝑖)𝛽) 𝑖𝑓(𝑞 < 𝑞0)                 (2) 

The values of τ and η are adjusted to enhance their 

effectiveness by determining the values of α and β. The 

set 𝑗𝑘 represents the traits that the ant has not yet 

encountered, with a value of zero assigned to traits 

previously observed by the ant. The parameter 𝑞0 

significantly influences the selection process, impacting 

both the greedy and probabilistic methods. q is a random 

number between 0 and 1.  

When the nth ant completes node scanning, update node 

pheromone levels using Equation (3): 

𝜏𝑖(𝑡 + 1) = (1 − 𝜌)𝜏𝑖(𝑡) + ∑ ∆𝜏𝑖
𝑘(𝑡)𝑛

𝑖=1                    (3) 

The parameter ρ needs to be established to mitigate its 

impact. ∆𝜏𝑖
𝑘 represents the inverse of the error achieved 

using the Wrapper method and corresponds to the 

number of nodes chosen on average in the Filter method 

[31]. 

 

2.5. Feature Selection with the Particle Swarm 

Optimization Algorithm 

Scientists have long believed that birds use celestial 

bodies such as the moon, sun, and stars to navigate during 

Table 2: Comparison of PCA and ACO-PSO for feature reduction in colon cancer diagnosis 
Feature PCA ACO-PSO 

Interpretability Lower: Principal components may not 

directly relate to biological 

characteristics 

Higher: Selected features can be analyzed for 

biological relevance 

Underlying Assumption Linear relationships between features Can capture non-linear relationships 

Supervised vs. Unsupervised Unsupervised: Doesn't consider class 

labels 

Supervised: Can incorporate class labels for 

targeted selection 

Feature Selection Select features based on variance Selects discriminative features for classification 

Optimization Limited Adaptive: Iteratively searches for optimal subsets 

Nonlinear Feature Selection No Yes 

Domain Knowledge Integration No Can prioritize features based on biological 

relevance 

Overall Suitability for Colon Cancer 

Diagnosis 

May not be ideal for complex data Well-suited for identifying discriminative features 

 

Table 3: Integration of techniques for colon cancer 

diagnosis 

Technique Integration 

CNNs Feature Extraction 

ACO-PSO Feature Reduction 

Combined Approach Colon Cancer Diagnosis 

 



 

 

migration. However, recent research has shown that birds 

initially fly in random directions. Then, through 

interactions with each other, they agree on a common 

path. This suggests that bird migration is a collective 

effort involving the movement of large groups of birds. 

[32][33][34][35].            

The goal of particle swarm optimization (PSO) is to 

discover the best solution for the entire swarm and each 

particle. PSO achieves this by modifying the positions 

and velocities of particles throughout the optimization 

process. Equations rooted in the velocity equation 

provided below are employed to update particle positions 

and velocities iteratively, with the introduction of 

uniform random variables ranging from 0 to 1 to 

introduce stochastic variation. 

In this context, the inertia factor is represented by 𝑣𝑖, k, 

and 𝛼 stands for the self-confidence learning parameter, 

while 𝛽 denotes the swarm influence learning parameter. 

At the same time, r1 and r2 are random variables ranging 

from 0 to 1. Also, vi, k corresponds to the velocity of 

particle i during iteration k. It's worth noting that particle 

i has never surpassed a more favorable state than PB, and 

no member of the population has ever attained a more 

superior state than GB. The position of the particle is 

denoted as 𝑥𝑖, k. Therefore, this algorithm can be 

formulated as follows: 

𝑣𝑡+1 = 𝑣𝑡 + 𝜑1𝛽1(𝑝𝑖 − 𝑥𝑖) + 𝜑1𝛽1(𝑝𝑔 − 𝑥𝑖)                  (4) 

𝑣𝑖,𝑘+1 = 𝑤 ∗ 𝑣𝑖,𝑘 + 𝛼 ∗ 𝑟1 ∗ (𝑃𝐵 − 𝑥𝑖,𝑘) + 𝛽 ∗ 𝑟2 ∗ (𝐺𝐵 − 𝑥𝑖,𝑘)      (5)                                      

𝑥𝑡+1 = 𝑣𝑡 + 𝑣𝑡+1                     (6) 

𝑥𝑖,𝑘+1 = 𝑥𝑖,𝑘 + 𝑣𝑖,𝑘                      (7) 

In Figure 1, the diagram illustrates the updating of 

particle locations and velocities, where Pi represents the 

best local outcome, and Pg represents the optimal global 

outcome. Extensive research conducted by Hassan et al. 

[36][37] demonstrates that particle swarms exhibit a 

notably faster and more efficient convergence toward 

similar solutions when compared to genetic algorithms. 

 
Figure 1. Diagram Illustrating Velocity and Position Updates 

in PSO[36] 

 

The lower and upper bounds of the search area 

determined the constriction parameter. The maximum 

number of iterations in the proposed PSO-based method 

has been set as a variable. Figure 2 illustrates the 

flowchart of the algorithm, providing an overview of how 

it operates. 

 
Figure 2. Diagrammatic Representation of PSO Algorithm 

 

The equation of the PSO algorithm is presented below 

[38]:  

𝑣𝑖
𝑑(𝑡 + 1) = 𝑤𝑣𝑖

𝑑(𝑡) + 𝑐1𝑟1 ( pbest 𝑖
𝑑(𝑡) − 𝑥𝑖

𝑑(𝑡)) +

𝑐2𝑟2 ( gbest 𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡))                     (8) 

Throughout each iteration, every particle receives two 

'best' values as updates. In this context, '𝑣' represents 

velocity, constrained by the limits set by ' 𝑤𝑚𝑎𝑥', and ' 

𝑤𝑚𝑖𝑛 ', where 'w' stands for inertia weight, and 'x' 

represents the solution. Furthermore, 't' corresponds to 

the number of iterations, 'I' signifies the practicality of 

order within the population, and the search space is 

denoted by 'd'. 'c1' and 'c2' represent the acceleration 

factors, while 'r1' and 'r2' independently generate random 

values. In the context of PSO, the global solution is a 

record of the optimal outcome achieved so far by any 

particle across the entire population, while 'pbest' 

represents an individual particle's personal best solution, 

reflecting its own best result. 

Following this step, as indicated in the subsequent 

formula, the velocity is transformed into a probability 

value: 

𝑠(𝑣𝑖
𝑑(𝑡 + 1)) =

1

1+exp (−𝑣𝑖
𝑑(𝑡+1))

                     (9) 

The practical position and ' 𝑝𝑏𝑒𝑠𝑡 ' in relation to '𝑔𝑏𝑒𝑠𝑡' 

are transformed using these equations: 

𝑥𝑖
𝑑(𝑡 + 1) = {

1,      if  rand < 𝑆(𝑣𝑖
𝑑(𝑡 + 1))

0,      otherwise 
              (10) 

Start 

Setting up of PSO parameters, randomly 

initialization of particle position and 

Assess the Fitness function for every 

individual particle 

Is current 

fitness 

value 

Update pbest with 

current fitness 

Keep previous pbest 

Assign best particle pbest value to gbest 

Are the stooping 

criteria met? 

Stop 

No 

Yes 

Update particle velocities 

Update particle positions 

No Yes 



 

 

Where 𝑟𝑎𝑛𝑑 is a random number between 0 and 1.  

 pbest 
𝑖
(𝑡 + 1) = {

𝑥𝑖(𝑡 + 1),      if 𝐹(𝑥𝑖(𝑡 + 1)) < 𝐹 ( pbest 
𝑖
(𝑡))

 pbest 
𝑖
(𝑡),      otherwise 

     (11) 

𝑔 best (𝑡 + 1) = {
𝑝best 𝑖

(𝑡 + 1), if 𝐹( pbest 
𝑖
(𝑡 + 1)) < 𝐹( gbest (𝑡))

gbest (𝑡), otherwise 
(12) 

Where 𝐹 the Fitness function.  

𝑤 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (
𝑡

𝑇𝑚𝑎𝑥
)                  (13) 

 

2.6. Enhancing Colon Cancer Diagnosis Accuracy 

Through Autoencoder-PSO Integration 

In the initial phase of the research, the utilization of the 

Autoencoder and PSO algorithm aimed to refine the 

precision of colon cancer diagnosis by extracting and 

minimizing features, respectively. This process can be 

elaborated upon and visualized as follows: Utilizing the 

Autoencoder for Dataset Processing: Initially, the dataset 

about colon illness underwent processing through the 

Autoencoder. This neural network, designed for 

unsupervised learning, was entrusted with the task of 

distilling pertinent features from the input images 

depicting colon tissues. Through iterative training, the 

Autoencoder acquired the ability to condense the input 

data into a lower-dimensional latent space representation, 

capturing crucial features while excluding extraneous 

noise or irrelevant data. Dimensionality Reduction via 

the PSO algorithm: After feature extraction by the 

Autoencoder, the subsequent step involved the reduction 

of feature space dimensions using the PSO algorithm. 

The PSO algorithm, a hybrid optimization technique 

amalgamating principles from ACO and PSO, aimed to 

systematically explore and select the most informative 

subset of features from the multi-dimensional feature 

space. Drawing inspiration from collective intelligence 

observed in ant foraging behavior and bird migration 

swarm behavior, PSO iteratively refined the feature 

subset to concentrate on the most distinctive attributes 

associated with colon disease. Integration of 

Methodologies: The features extracted by the 

Autoencoder were then input into the PSO algorithm, 

which methodically honed the feature subset. This 

integrated approach was geared towards augmenting the 

accuracy and efficiency of colon cancer diagnosis by 

reducing the dimensionality of the feature space while 

retaining pertinent discriminative information. Through 

the synergistic utilization of both the Autoencoder and 

PSO, the model demonstrated adeptness in effectively 

discerning and categorizing histopathological images of 

colon tissues, resulting in elevated accuracy rates across 

diverse evaluation metrics. To summarize, the initial 

phase of the experimental investigation encompassed the 

preprocessing of the colon disease dataset utilizing the 

Autoencoder for feature extraction, followed by 

dimensionality reduction of the feature space via the PSO 

algorithm. This concerted methodology facilitated the 

precise classification of colon disease images, thereby 

contributing to the advancement of diagnostic accuracy 

and ultimately, patient care outcomes. 

 

 

2.7. Reduction and Features 

In the scenario where ACO-PSO collaborated with the 

Autoencoder, the process involved utilizing the 

Autoencoder for feature extraction and ACO-PSO for 

feature reduction. Here's a more detailed explanation of 

how ACO-PSO was merged with the Autoencoder: 

Utilizing the Autoencoder for Feature Extraction: 

Initially, the dataset associated with colon illness 

underwent processing by the Autoencoder. An 

Autoencoder, a type of neural network used for 

unsupervised learning, aims to acquire efficient 

representations of input data. In this instance, the 

Autoencoder extracted pertinent features from images of 

colon tissues. Trained to condense input data into a 

lower-dimensional latent space representation, the 

Autoencoder captured significant features while filtering 

out noise or extraneous information. 

Employing ACO-PSO for Feature Reduction: Following 

feature extraction using the Autoencoder, the subsequent 

step involved reducing the dimensionality of the feature 

space through ACO-PSO. ACO-PSO, a hybrid 

optimization algorithm combining ACO and PSO 

techniques, aims to effectively explore and select the 

most informative subset of features from the high-

dimensional feature space. 

Integration of Techniques: The features extracted by the 

Autoencoder were inputted into the ACO-PSO 

algorithm, which systematically refined the feature 

subset to focus on the most distinguishing attributes 

pertinent to colon disease. Leveraging the collective 

intelligence inspired by ant foraging behavior and swarm 

behavior observed in bird migrations, ACO-PSO 

efficiently searched for the optimal feature subset that 

optimized classification performance. 

Classification: Upon completing the feature reduction 

process, the reduced feature set served as input for 

various classifiers to categorize the colon disease images. 

In this scenario, six different classifier types were 

employed, including Decision Tree, SVM, KNN, 

Ensemble, and Naive Bayes. These classifiers were 

evaluated based on metrics such as accuracy, true 

positive rate (TPR), true negative rate (TNR), false 

positive rate (FPR), false negative rate (FNR), precision 

(PPV), negative predictive value (NPV), F1-score, and 

misclassification rate (MR). 

In summary, the integration of ACO-PSO with the 

Autoencoder involved using the Autoencoder for feature 

extraction to obtain a high-dimensional feature 

representation of colon disease images, followed by 

ACO-PSO for feature reduction to select the most 

informative subset of features. This collaborative 

approach aimed to enhance the accuracy and efficiency 

of colon cancer diagnosis by reducing the dimensionality 

of the feature space while retaining relevant 

discriminative information. 

 

 



 

 

2.8. Crafting a Tailored Pre-Trained ResNet-50 

Architecture for Colon Cancer Detection Using 

ACO-PSO 

The development of the pre-trained ResNet-50 

architecture using ACO-PSO adheres to a methodical 

approach: 

 The setup phase involves initializing parameters for 

the ACO-PSO algorithm and preparing the dataset. 

 Iterative refinement occurs, where adjustments to 

pheromone levels and heuristic information are made 

to enhance feature selection. 

 The process focuses on selecting a subset of features 

that are most relevant for diagnosing colon cancer. 

 The pre-trained ResNet-50 model is constructed, 

incorporating the chosen feature subset as input. 

 The model undergoes training to fine-tune its 

parameters, optimizing its ability to classify colon 

cancer effectively. 

 Validation and evaluation procedures are employed 

to gauge the model's performance, utilizing various 

metrics to ensure accurate diagnosis of colon cancer 

from histopathological images. 

In essence, this structured methodology ensures the 

development of a ResNet-50 model tailored specifically 

for colon cancer detection, striking a balance between 

feature relevance and computational efficiency. 

 

2.9.  Optimizing Colon Cancer Detection: Developing 

Pre-Trained GoogLeNet Architecture with ACO-

PSO 

The creation of the pre-trained GoogLeNet architecture 

based on ACO-PSO followed a systematic process to 

optimize feature selection for colon cancer detection. 

Here's a detailed explanation of how this architecture was 

developed: 

Initialization and Dataset Preparation: The process 

commenced with initializing parameters for the ACO-

PSO algorithm and preparing a dataset containing 

histopathological images relevant to colon cancer. This 

dataset ensured comprehensive coverage of both 

cancerous and non-cancerous tissues. 

Iterative Refinement: Through iterative refinement, the 

ACO-PSO algorithm adjusted pheromone levels and 

heuristic information, optimizing feature selection for 

colon cancer diagnosis. This iterative process ensured the 

selection of the most informative subset of features. 

Feature Subset Selection: Utilizing the ACO-PSO 

algorithm, the most relevant features for colon cancer 

diagnosis were selected from the high-dimensional 

feature space. This prioritized selection process focused 

on discriminative features associated with colon disease, 

thereby enhancing the accuracy of the diagnostic model. 

Construction of Pre-trained GoogLeNet Model: The 

selected feature subset served as input for constructing 

the pre-trained GoogLeNet architecture. Leveraging 

GoogLeNet's robust feature extraction capabilities, this 

architecture extracted intricate patterns and 

abnormalities from colon tissue images effectively. 

Training and Fine-tuning: The constructed GoogLeNet 

model underwent training to fine-tune its parameters for 

accurate colon cancer classification. This training 

process optimized the model's ability to classify 

histopathological images of colon tissues, further 

enhancing diagnostic accuracy. 

Validation and Evaluation: The performance of the pre-

trained GoogLeNet model was validated and evaluated 

using various metrics such as accuracy, sensitivity, 

specificity, precision, F1-score, and misclassification 

rate. These metrics assessed the model's effectiveness in 

accurately diagnosing colon cancer from 

histopathological images. 

In summary, the creation of the pre-trained GoogLeNet 

architecture based on ACO-PSO involved parameter 

initialization, iterative refinement of feature subsets, 

selection of relevant features, construction of the 

GoogLeNet model, training, and validation. This 

systematic approach ensured the tailored development of 

a GoogLeNet model optimized specifically for colon 

cancer detection, thereby improving diagnostic accuracy 

and patient outcomes. 

2.10. Dataset 

The dataset likely contains a collection of 

histopathological images specifically related to lung and 

colon cancer [39]. Images in the dataset are expected to 

be microscopic views of tissue samples obtained from 

lung and colon cancer patients. These images may show 

the cellular and tissue-level details of cancerous changes. 

Pathologists use such images to identify cancer cells, 

assess the degree of malignancy, and understand the 

histological characteristics of tumors. The dataset may 

include annotations or labels indicating regions of 

interest, such as areas with cancerous cells, normal 

tissue, and potentially other features relevant to diagnosis 

and research. The dataset may encompass different 

subtypes of lung and colon cancer, considering the 

histological diversity within these cancer types. Image 

resolution and size can vary, but they are likely to be 

high-resolution images to enable detailed analysis. 

Information such as patient demographics, clinical 

history, and potentially treatment outcomes might be 

included in the dataset. This additional data can be 

valuable for comprehensive research and analysis [39]. 

 

3. RESULTS and DISCUSSION 

3.1. Classification Using Learnable Classifiers for 

PSO 

To determine the ideal combination of techniques, a 

thorough investigation was done. An autoencoder 

method and a PSO algorithm were employed 

collaboratively on datasets associated with colon disease 

to isolate and choose the most critical attributes from the 

input training dataset. The identical datasets used in the 

first model were categorized using a pre-trained CNN in 

conjunction with the PSO method. A number of 

important metrics, such as accuracy, F1-score, etc., were 

applied to assess the performance of methods created 



 

 

from the confusion matrix. For multiclass classification, 

the following metrics are used: total accuracy, class 

detection rate, and class FP rate. Our basic terms are 

False Positive (FP), True Positive (TP), True Negative 

(TN), and False Negative (FN), which stand for positive 

and negative classifications, respectively.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ×  100              (14) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅)) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ×  100%  (15) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑇𝑁𝑅)) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ×  100%                                           

(16) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉)) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ×  100%                                  

(17) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 ×  100%       (18) 

   𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑃𝑃𝑉×𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
 × 100%       (19) 

 

3.2. Using Auto-Encoder with PSO for Colon Disease 

Dataset 

Various scenarios were developed and assessed to 

validate the effectiveness of the proposed technique and 

to compare different combinations. In the initial stage, a 

dataset related to colon illness was processed by the 

Autoencoder, along with six different classifier types. 

The outcomes of the colon illness dataset using the 

Autoencoder and the PSO algorithm are presented in 

Table 4. 

The most crucial factor in assessing this classification 

model is accuracy, which is based on the true values of 

the tested images that were classified. The SVM 

classifier achieved a higher accuracy rate of 79.21%, 

resulting in an error rate of 2.41%. 

 

3.3. Using Auto-Encoder with ACO-PSO for Colon 

Disease Dataset 

Using this second well-known dataset for colon 

disorders, which includes five distinct classes (non-

cancer lung tissue, Squamous cell carcinoma of the lung, 

Adenocarcinoma of the lung, non-cancer colon tissue, 

and Adenocarcinoma of the colon), the model 

successfully classified medical images. Table 5 presents 

the outcomes obtained from the Autoencoder applied to 

the colon disease dataset with the utilization of the ACO-

PSO algorithm. 

The Ensemble classifier achieved 82.76% accuracy in the 

categorization of the classes of the ACO-PSO algorithm 

for selecting optimal features.  

 

3.4. Pre-trained CNN with ACO-PSO for Colon 

Disease Dataset 

The assessment of pre-trained CNN with ACO-PSO was 

conducted using the dataset related to colon diseases. 

Figure 3 illustrates the diagnostic rates for colon disease 

within this model. The simulation outcome, employing 

the ant colony optimization method in conjunction with 

the pre-trained ResNet-50 network, is presented in Figure 

3. 

 
Figure 3. The result of the simulation based on the ResNet-50 

and ACO-PSO 

 

Figure 3 illustrates that the accuracy for the decision tree, 

SVM, KNN, and ensemble methods has been achieved at 

97.63%, 100.00%, 99.97%, and 99.97%, respectively. 

The SVM classification method achieved 100% 

accuracy, which was the best result. SVMs are linear 

classifiers that are more accurate than other methods such 

as KNN, decision trees, and ensemble methods. 

Additionally, in this scenario, the highest accuracy was 

achieved using the SVM classifier with features that were 

obtained using the ACO-PSO algorithm and a pre-trained 

Table 5. Using autoencoder and ACO-PSO feature selection for the colon disease dataset. 

Method ACC TPR TNR FPR FNR PPV NPV F1-score MR 

Decision Tree 78.86 79.1 79.1 32.99 32.99 79.51 79.51 79.07 21.95 

SVM 78.41 84.21 84.21 36.71 36.71 90.81 90.81 81.98 22.4 

KNN 82.36 83.47 83.47 30.27 30.27 84.81 84.81 83.04 18.45 

Ensemble 82.76 84.96 84.96 30.69 30.69 87.31 87.31 83.98 28.05 

Naive Bayes 74.56 89.28 89.28 31.75 31.75 100.41 100.41 82.01 26.25 

 

Table 4. Dataset on colon disease auto-encoder using PSO feature selection algorithm. 

Method ACC TPR TNR FPR FNR PPV NPV F1-scoce MR 

(Misclassification Rate) 

Decision Tree 68.61 68.75 68.75 33.15 33.15 69.01 69.01 68.74 3.01 

SVM 79.21 74.64 74.64 35.83 35.83 80.61 80.61 72.44 2.41 

KNN 76.16 77.86 77.86 26.96 26.96 79.31 79.31 76.91 5.46 

Ensemble 73.81 75.44 75.44 29.23 29.23 77.11 77.11 74.67 7.81 

Naive Bayes 67.41 73.55 73.55 37.74 37.74 80.91 80.91 71.38 4.21 

 

https://en.wikipedia.org/wiki/Positive_predictive_value


 

 

ResNet-50 network. Additionally, this study assessed the 

performance of decision tree, SVM, KNN, and ensemble 

methods with the F1 score metric, yielding scores of 

97.64%, 100.00%, 99.97%, and 99.97% for these 

algorithms, respectively. As seen from the F1 score 

results it can be understood that the SVM has higher 

accuracy than other methods. The mismatch ratio for the 

SVM, using ResNet-50 and ACO-PSO, is recorded as 

0%.  

The simulation results, based on the ACO-PSO method 

in conjunction with the pre-trained GoogLeNet network, 

are depicted in Figure 4. 

 

Figure 4. Simulation result based on the GoogLeNet with 

ACO-PSO 

As shown in Figure 4, the accuracy for the decision tree, 

SVM, KNN, and ensemble methods has been obtained as 

99.50%, 99.93%, 99.97%, and 99.97%, respectively. The 

best result for accuracy is 99.97%, obtained from the 

KNN and Ensemble classifier methods. In this scenario, 

the KNN and ensemble method has higher performance 

than other methods. In this scenario, it can be understood 

that the classification with KNN and Ensemble and the 

features obtained by using the ACO-PSO and pre-trained 

network with the GoogLeNet the highest accuracy has 

been obtained. In this study also, the F1 score has been 

implemented, and the result for the decision tree, SVM, 

KNN, and Ensemble methods has been obtained as 

99.50%, 99.93%, 99.97%, and 99.97%, respectively. As 

seen from the F1 score result, it can be understood that 

the KNN and Ensemble have the highest accuracy than 

other methods. The mismatch ratio for the KNN and 

Ensemble based on the GoogLeNet and ACO-PSO has 

been obtained as 0.03%. 

Table 6 presents an overview of the validation outcomes 

of the colon cancer diagnosis model, covering various 

aspects of the research methodology and findings. It 

delineates the utilization of diverse datasets, 

methodologies, and validation criteria to assess the 

model's effectiveness and generalizability in identifying 

colon cancer. 

The aim of examining different datasets is to assess the 

model's performance across various scenarios and data 

sources, including those relevant to lung and colon 

cancer. These datasets encompass a wide range of 

histopathological images, including both cancerous and 

non-cancerous tissues from the lung and colon. 

Regarding methodologies, the study employed feature 

extraction and classification techniques such as 

autoencoders, CNNs, and ACO-PSO algorithms. Various 

classifiers, including decision trees, Support Vector 

Machines (SVM), KNN, and ensemble methods, were 

utilized to assess the model's resilience and adaptability 

across different approaches. This evaluation aims to 

understand how feature selection and classification 

methods impact the model's performance. 

Validation metrics, such as accuracy, sensitivity, 

specificity, precision, F1-score, and misclassification 

rate, were employed to provide comprehensive insights 

into the model's effectiveness. These metrics help in 

understanding how the model performs across diverse 

datasets and methodologies. 

The consistency of results is emphasized, indicating 

consistent and high levels of accuracy and other metrics 

across experiments. For instance, the SVM classifier 

achieved 100% accuracy in a specific scenario, 

highlighting the efficacy of the model. Other classifiers 

also demonstrated high levels of performance, further 

emphasizing the reliability of the proposed method. 

Table 6. Validation results of colon cancer diagnosis model 

Category Description 

Different Datasets 1- Employed datasets related to colon disease 

2- Included datasets specifically related to lung and colon cancer  

3- Diverse range of histopathological images: non-cancerous lung/colon 

tissues, various cancerous tissues 

Purpose 1-Evaluate model performance across different scenarios and datasets 

2-Assess the generalizability of the model 

Different 

Methodologies 

1- Feature extraction and classification techniques: autoencoders, CNNs, 

ACO-PSO algorithms.  

2-Classifiers: decision trees, SVM, KNN, ensemble methods 

Purpose 1-Evaluate model robustness and generalizability across different approaches 

 2-Assess feature selection and classification impact 

Validation Metrics 1-Accuracy, sensitivity, specificity, precision, F1-score, misclassification rate 

Purpose 1-Provide comprehensive insights into model performance 

2-Understand performance across datasets and methodologies 

Consistency of Results 1-Reported consistent and high levels of accuracy and other metrics across 

experiments 

2- Example: SVM classifier achieved 100% accuracy in a scenario 

3-Other classifiers also demonstrated high performance 

 



 

 

In summary, through the utilization of diverse datasets, 

methodologies, and validation metrics, the study aimed 

to thoroughly evaluate the generalizability and efficacy 

of the proposed model for diagnosing colon cancer. 

 

4. LIMITATIONS or CHALLENGES 

Data Quality and Quantity: A primary hurdle in any 

machine learning investigation, particularly in medical 

imaging, is securing access to sufficient quantities of 

high-quality data. Specifically, histopathological images 

necessitate meticulous annotation and validation by 

expert pathologists. Limited or inferior data could 

introduce bias or inaccuracies during model training, 

thereby impacting the model's performance and its ability 

to generalize effectively in diagnosing colon cancer. 

Feature Extraction and Selection: Despite the 

effectiveness of CNNs in extracting features from 

intricate medical images, the selection of the appropriate 

CNN architecture and feature extraction process is 

critical. Choosing unsuitable CNN architectures or 

inadequately optimizing feature selection methods might 

lead to subpar feature representation, consequently 

affecting the accuracy of the diagnostic model. 

Algorithmic Complexity: Incorporating metaheuristic 

optimization algorithms such as ACO and PSO with 

CNNs introduces additional complexity to the model. 

Fine-tuning hyperparameters, like pheromone levels in 

ACO and inertia weight in PSO, demands careful 

consideration and may impact the optimization process's 

convergence and effectiveness. 

Interpretability and Explain ability: Deep learning 

models, including CNNs, often lack interpretability and 

explain ability. This is particularly problematic in 

medical contexts where understanding the model's 

decision-making process is crucial for clinical decision-

making. Ensuring transparency and interpretability in the 

model's decision-making process is vital for its 

acceptance and integration into clinical settings. 

Generalization and Robustness: Evaluating the model's 

ability to generalize across diverse datasets and 

populations is essential. Overfitting to training data or 

failing to capture variations in disease presentation may 

compromise the model's robustness and real-world 

applicability. Comprehensive validation across multiple 

datasets and rigorous evaluation under various conditions 

are necessary to establish the model's reliability. 

Ethical Considerations and Bias: The deployment of AI-

based diagnostic tools in healthcare raises ethical 

concerns regarding patient privacy, consent, and 

algorithmic bias. Biases present in training data or 

algorithmic decisions could disproportionately affect 

certain demographic groups, leading to healthcare 

outcome disparities. Addressing these ethical 

considerations and mitigating algorithmic biases are 

crucial for the responsible development and deployment 

of AI models in healthcare. 

Clinical Validation and Regulatory Approval: 

Transitioning AI-based diagnostic models from research 

to clinical practice necessitates rigorous clinical 

validation and regulatory approval. Collaborating with 

healthcare institutions, conducting prospective clinical 

trials, and navigating regulatory pathways are resource-

intensive processes. Ensuring the model's safety, 

efficacy, and compliance with regulatory standards is 

paramount for its adoption in clinical settings. 

Computational Resources and Infrastructure: Training 

and deploying deep learning models, especially those 

involving large datasets and complex architectures, 

require substantial computational resources and 

infrastructure. Access to high-performance computing 

resources and expertise in managing and scaling 

computational workflows are crucial for conducting 

large-scale studies and deploying AI models in real-

world healthcare environments. 

Addressing these challenges mandates interdisciplinary 

collaboration among clinicians, data scientists, ethicists, 

and regulatory experts to develop robust, interpretable, 

and ethically sound AI-based diagnostic tools for 

enhancing colon cancer diagnosis and patient care 

 

5. CONCLUSION 

Colorectal cancer is the third most deadly cancer in the 

world. Benign adenomatous polyps may bring on CRC, 

sometimes referred to as adenomas, which can 

subsequently transform into malignant polyps. The 

current suggested strategy for reducing mortality from 

CRC is routine screening for polyps, and colonoscopy is 

the preferred screening tool. To identify Cologne illness 

regions, this article tries to integrate human learning and 

training with machine learning techniques, like neural 

network learning. The ACO-PSO algorithm in the 

suggested method initially improves the precision of the 

ACO-PSO technique for choosing the specified 

characteristic by the optimization teaching and learning 

process. Then, using learning based on the neural 

network, the disease-affected areas are divided. The 

component reduction method has also been employed in 

this paper to enhance the knowledge and information in 

the image. 
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