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Abstract
In this note, we consider new asymptotic stability properties for solutions of several fractional delay
neutral differential equations of a certain type. To obtain the desired properties, we use Lyapunov’s
direct method, which has a wide range of applications. Finally, we draw the reader’s attention to some
examples supporting the obtained asymptotic stability properties and their plots under different initial
conditions. With this note, we extend and improve some results previously considered in the relevant
literature.
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1. Introduction
The subject of fractional calculus, which began with an exchange of information between two famous scientists,

L’ Hospital and Leibnitz, at the end of the 17th century, has spread widely in the scientific world and attracted the
attention of many scientists. Control theory, model of neurons in biology, fluid mechanics, viscoelasticity, meteorol-
ogy, biology, communication etc. fractional calculus modeled with differential equations in fields still maintains
its currency today. This subject, which has become an important area of mathematics, physics, medicine, biology
and engineering, is highly developed in terms of numerical and analytical solutions for mathematical nonlinear
dynamic modeling. For this reason, this subject, which has become the focus of attention of the international
academic community, has been addressed by many researchers and many studies published on this subject have
taken their place in the relevant literature. We recommend that interested researchers examine the studies referred
to in the bibliography and the sources in these studies.

Neutral delay differential equations, which have a wide range of applications in various fields such as applied
mathematics, physics, engineering and ecology, are expressed as equations that include delays in both state variables
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and their time-dependent derivatives. Due to these wide areas of application, many studies have been conducted
on these equations that have attracted the attention of scientists. We recommend that readers who want to learn this
information in a broader context and learn the advantages of considering these equations in more detail examine
the references in our study and the references included in them.

In 2014, Aguila-Camacho et al [1] presented a new lemma for the Caputo fractional derivative of a quadratic
function, which allows the use of classic quadratic Lyapunov functions in many stability analyses of fractional
order systems. Alkhazzan et al [2] investigated a new class of nonlinear fractional stochastic differential equations
with fractional integrals and discussed existence, uniqueness, continuity of solutions and Ulam-Hyers stability
with the help of Banach contraction theorem. Altun, investigated the asymptotic stability of Riemann-Liouville
fractional neutral systems with variable delays by using the Lyapunov-Krasovskii functional in [3]. Altun and Tunç
[4] discussed the asymptotic stability of a nonlinear fractional-order system with multiple variable delays. The
authors proved a new result on the subject by means of Lyapunov-Krasovskii functional. Diethelm [5] introduced
the Caputo derivative, which is close to the Riemann-Liouville derivative with different definitions of fractional
derivatives. Graef et al [6] investigated Stability of nonlinear system of fractional-order volterra integro delay
differential equations with Caputo fractional derivative. The authors of [6] proved some sufficient conditions for
the stability of the zero solution of these equations with the help of Lyapunov and Razumikhin methods and gave
explanatory examples of these conditions. Hristova and Tunç, obtained some new conditions for the stability of the
solutions of the nonlinear Caputo fractional derivative and limited delay volterra integro-differential equations with
the help of Lyapunov method in [7]. Kilbas et al [8] made an important contribution to the literature with a valuable
work on the theory and applications of fractional differential equations. Krol, investigated the asymptotic properties
of d-dimensional linear fractional differential equations with time delay in [9]. The author presented some necessary
and sufficient conditions by using the inverse method. He also supported his work with two examples. Liu et
al [10] discussed stability analysis of fractional nonlinear differential systems with Riemann-liouville derivative.
The authors presented several sufficient conditions on asymptotic stability of fractional nonlinear systems. They
supported their work with some examples. Moulai-Khatir discussed the asymptotic properties of some neutral
delay differential equations, including the Riemann-Liouville fractional derivative by means of Lyapunov functions
in [11]. He also supported his work with two examples. Podlubny [12] provided a valuable resource to the relevant
literature in order to provide an overview of the solution methods of fractional differential equations and their
applications. Tunç and Tunç proved some qualitative results of Caputo proportional integro differential equations
[13] and volterra integro differential equations [14]. Stability analysis was performed on delayed bidirectional
associative memory neural networks by Yang and Zhang [15] and on singular systems by Yiğit et al [16]. Yiğit and
Tunç [17] proved the asymptotical stability of zero solution of a nonlinear fractional neutral system with unbounded
delay by using Lyapunov-Krasovskii functionals. They also supported theır work with two examples. Some similar
results were also obtained on the stability of certain type equations and systems by Yiğit [18], [19] and Zhang et al
[20].

In this note, inspired by the above discussions and motivated by the paper of Kilbas et al [8], Moulai-Khatir
[11] and Yiğit [18] and the references in these papers, we study the new asymptotic properties for solutions of
fractional delay neutral differential equations. We use Lyapunov’s direct method, which is widely used in practice,
to obtain the properties we seek. By constructing new Lyapunov functions, we obtain three new asymptotic stability
properties for three different equations. We draw the readers’ attention to three examples that show the practical
applicability of these properties we obtained theoretically, with their annotated solutions and graphs.

The next flow of our note is as follows. The second Section contains some definitions and lemmas. In the third
Section, asymptotic stability conditions are obtained for some neutral delay differential equations. In the fourth
Section, some application examples are given to show the applicability of the obtained conditions. The fifth Section
is the conclusion section.

2. Preliminaries

We now present some definitions and lemmas to be used in the processes or applications for sufficient criteria to
be obtained in the details of the our work.
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Definition 2.1. [8] The Riemann-Liouville fractional derivative and integral of order α for a function x(t) are
defined as

t0D
α
t x(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

(t− s)n−α−1x(s)ds, (2.1)

0 ≤ n− 1 ≤ α < n, n ∈ Z+,

t0D
−α
t x(t) =

1

Γ(α)

∫ t

t0

(t− s)α−1x(s)ds, α > 0, t > t0,

where Γ denotes the Gamma function and is defined as

Γ(α) =

∫ +∞

0

sα−1e−sds.

Lemma 2.1. [11] If β > α > 0 and x(t) is integrable, then

t0D
α
t (t0D

−β
t x(t)) =t0 D

α−β
t x(t) (2.2)

is satisfied.

Lemma 2.2. Assume that x(t) ∈ R be a continuous and differentiable function. If the derivative of x(t) is integrable, then the
following relationship is satisfied as:

0.5t0D
α
t x

2(t) ≤ x(t)t0D
α
t x(t),∀α ∈ (0, 1). (2.3)

Proof. To claim inequality (2.3) is equivalent to prove only that

x(t)t0D
α
t x(t)− 0.5t0D

α
t x

2(t) ≥ 0,∀α ∈ (0, 1). (2.4)

According to Newton-Leibnitz formula, we have

x(t) = x(t0) +

∫ t

t0

x′(s)ds = x(t0) +t0 D
−1
t x(t). (2.5)

Substituting (2.5) into (2.1) and applying (2.2), we have

t0D
α
t x(t) =t0 D

α
t x(t0) +t0 D

α−1
t x(t)

=
1

Γ(1− α)
[
x(t0)

(t− t0)α
+

∫ t

t0

(t− s)−αx′(s)ds].

From here, we get

x(t)t0D
α
t x(t) =

1

Γ(1− α)
[
x(t)x(t0)

(t− t0)α
+

∫ t

t0

(t− s)−αx(t)x′(s)ds].

Also, a similar calculation shows that

0.5t0D
α
t x

2(t) =
1

Γ(1− α)
[
x2(t0)

2(t− t0)α
+

∫ t

t0

(t− s)−αx(s)x′(s)ds].

Therefore, inequality (2.4) can be rewritten as

1

Γ(1− α)
[
x(t)x(t0)− 1

2x
2(t0)

(t− t0)α
+

∫ t

t0

(t− s)−α(x(t)− x(s))x′(s)ds] ≥ 0. (2.6)

Let us integrate by parts the second term of inequality (2.6), then we have∫ t

t0

(t− s)−α(x(t)− x(s))x′(s)ds =
(x(t)− x(t0))2

2(t− t0)α
+
α

2

∫ t

t0

(x(t)− x(s))2

(t− s)α+1
ds.

Therefore, inequality (2.6) is reduced to the following form

1

Γ(1− α)
[

x2(t)

2(t− t0)α
+
α

2

∫ t

t0

(x(t)− x(s))2

(t− s)α+1
ds] ≥ 0. (2.7)

This result shows that inequality (2.7) is clearly true. This completes the proof of Lemma 2.2.
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3. Analysis of asymptotic stability conditions for fractional neutral equations

In this section, we will establish asymptotic stability criteria for some neutral equations with mixed delays. For
this, we will use the Lyapunov’s direct method and some inequalities. We will also give a brief evaluation of the
equations we have examined at the end of this section.

Now, we describe a new fractional neutral differential equation with constant and variable delays as:

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))

−e(t)h(x(t− τ2(t)))− u(t)

∫ t

t−δ1
x(s)ds− s(t)

∫ t

t−δ2
x(s)ds, (3.1)

t0D
−(1−α)
t x(t) = ϑ(t), t ∈ [−ρ, 0], ρ > 0, ρ ∈ R,

for α ∈ (0, 1) and for all t ≥ t0 + ρ, where c(t), d(t), e(t), u(t), s(t), f(x(t)), g(x(t)) and h(x(t)) are continuous
functions in their respective arguments, with a+ b < 1 and f(0) = g(0) = h(0) = 0. The time variable delays τ1(t)
and τ2(t) are continuous and differentiable functions and satisfying

0 ≤ τ1(t) ≤ τk and τ ′1(t) ≤ τK ,
0 ≤ τ2(t) ≤ τn and τ ′2(t) ≤ τN ,

where τk, τn, σ1, σ2, δ1 and δ2 are real positive numbers and ϑ ∈ C([−ρ, 0];R) with ρ = max{τk, τn, σ1, σ2, δ1, δ2}.
Moreover, we assume that f ′(x(t)), g′(x(t)) and h′(x(t)) are exist and continuous.

Now, we describe the operator N by:

N(t) = x(t) + ax(t− σ1) + bx(t− σ2),

then the equation (3.1) can be rewritten as in the form below:

t0D
α
t N(t) =− c(t)f(x(t))− d(t)g(x(t− τ1(t)))

−e(t)h(x(t− τ2(t)))− u(t)

∫ t

t−δ1
x(s)ds− s(t)

∫ t

t−δ2
x(s)ds, (3.2)

t0D
−(1−α)
t x(t) = υ(t), t ∈ [−ρ, 0], ρ > 0, ρ ∈ R,

Before going into the details of our study, let us assume that the following sufficient criteria are met.

A. Assumptions

(A1) We assume that there exist positive numbers cj , dj , ej , uj , sj , fj , gj and hj , (j = 1, 2) and ∀x ∈ R−{0}, such
that

i) c1 ≤ c(t) ≤ c2, d1 ≤ d(t) ≤ d2, e1 ≤ e(t) ≤ e2, u1 ≤ u(t) ≤ u2, s1 ≤ s(t) ≤ s2

ii) |f ′(x)| ≤ f2, f(x)x ≥ f1

iii) |g′(x)| ≤ g2, g(x)x ≥ g1

iv) |h′(x)| ≤ h2, h(x)x ≥ h1

v) 2c1f1 > χ

where

χ = d2 + e2 + u2 + s2 + (c2f
2
2 + c2 + d2 + e2 + u2 + s2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2)(1 + a+ b).

Theorem 3.1. We suppose that the assumptions (A1) are met, then the zero solution of fractional neutral differential equation
(3.1) is asymptotically stable.
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Proof. Let us choose a new suitable Lyapunov function that can clearly be seen to be positive definite by

V (t) = 0.5t0D
α−1
t N2(t) + µ1

∫ t

t−σ1

x2(s)ds+ µ2

∫ t

t−σ2

x2(s)ds

+ λ1

∫ t

t−τ1(t)
x2(s)ds+ λ2

∫ t

t−τ2(t)
x2(s)ds

+ η1

∫ 0

−δ1

∫ t

t+s

x2(θ)dθds+ η2

∫ 0

−δ2

∫ t

t+s

x2(θ)dθds,

where µ1, µ2, λ1, λ2, η1 and η2 are positive numbers.

In light of the fact that Lemma 2.1 and Lemma 2.2, by the time-derivative of V (t) on the solution of equation
(3.2), we can write the inequality given by

V ′(t) ≤ N(t)t0D
α
t N(t) + µ1x

2(t)− µ1x
2(t− σ1) + µ2x

2(t)− µ2x
2(t− σ2) + λ1x

2(t)− λ1(1− τ ′1(t))x2(t− τ1(t))

+ λ2x
2(t)− λ2(1− τ ′2(t))x2(t− τ2(t))

+ δ1η1x
2(t)− η1

∫ t

t−δ1
x2(s)ds+ δ2η2x

2(t)− η2
∫ t

t−δ2
x2(s)ds

≤ (µ1 + µ2 + λ1 + λ2 + δ1η1 + δ2η2)x2(t)− µ1x
2(t− σ1)

− µ2x
2(t− σ2)− λ1(1− τK)x2(t− τ1(t))− λ2(1− τN )x2(t− τ2(t))

− η1

∫ t

t−δ1
x2(s)ds− η2

∫ t

t−δ2
x2(s)ds− c(t)f(x(t))x(t)

− d(t)g(x(t− τ1(t)))x(t)− e(t)h(x(t− τ2(t)))x(t)

− u(t)

∫ t

t−δ1
x(s)dsx(t)− s(t)

∫ t

t−δ2
x(s)dsx(t)− ac(t)f(x(t))x(t− σ1)

− ad(t)g(x(t− τ1(t)))x(t− σ1)− ae(t)h(x(t− τ2(t)))x(t− σ1)

− au(t)

∫ t

t−δ1
x(s)dsx(t− σ1)− as(t)

∫ t

t−δ2
x(s)dsx(t− σ1)

− bc(t)f(x(t))x(t− σ2)− bd(t)g(x(t− τ1(t)))x(t− σ2)

− be(t)h(x(t− τ2(t)))x(t− σ2)− bu(t)

∫ t

t−δ1
x(s)dsx(t− σ2)

− bs(t)

∫ t

t−δ2
x(s)dsx(t− σ2).

With the help of the inequality 2|$ν| ≤ $2 + ν2 and the assumptions given in (A1), the following result is reached:

V ′(t) ≤ 1

2
(−2c1f1 + d2 + e2 + c2f

2
2 (a+ b) + 2µ1 + 2µ2 + 2λ1 + 2λ2 + 2δ1η1 + 2δ2η2 + u2 + s2)x2(t)

+
1

2
(−2µ1 + a(c2 + d2 + e2 + u2 + s2))x2(t− σ1)

+
1

2
(−2µ2 + b(c2 + d2 + e2 + u2 + s2))x2(t− σ2)

+
1

2
(−2λ1(1− τK) + d2g

2
2(1 + a+ b))x2(t− τ1(t))

+
1

2
(−2λ2(1− τN ) + e2h

2
2(1 + a+ b))x2(t− τ2(t))

+
1

2
(−2η1 + u2(1 + a+ b))

∫ t

t−δ1
x2(s)ds

+
1

2
(−2η2 + s2(1 + a+ b))

∫ t

t−δ2
x2(s)ds.
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Let

2µ1 = a(c2 + d2 + e2 + u2 + s2), 2µ2 = b(c2 + d2 + e2 + u2 + s2),

2λ1 =
d2g

2
2(1 + a+ b)

(1− τK)
, 2λ2 =

e2h
2
2(1 + a+ b)

(1− τN )
,

2η1 = u2(1 + a+ b), 2η2 = s2(1 + a+ b).

From here, we can deduce

V ′(t) ≤ 1

2
[(−2c1f1 + d2 + e2 + u2 + s2

+ (a+ b)(c2f
2
2 + c2 + d2 + e2 + u2 + s2)

+ (1 + a+ b)(
d2g

2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2]x2(t).

Therefore, we have

V ′(t) ≤ −m0x
2(t),

where

m0 = 2c1f1 − χ > 0.

with

χ = d2 + e2 + u2 + s2 + (c2f
2
2 + c2 + d2 + e2 + u2 + s2)(a+ b)

+ (
d2g

2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2)(1 + a+ b).

From here, we can deduce that the zero solution of fractional neutral differential equation (3.1) is asymptotically
stable. This completes the proof.

Moreover, if the integral terms given in system (3.1) are taken to be zero then the following neutral mixed delay
equation is obtained. We define the neutral mixed delay equation as:

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))− e(t)h(x(t− τ2(t))), (3.3)

t0D
−(1−α)
t x(t) = ϑ(t), t ∈ [−ρ, 0],ρ > 0, ρ ∈ R,

for α ∈ (0, 1) and for all t ≥ t0 + ρ, where c(t), d(t), e(t), f(x(t)), g(x(t)) and h(x(t)) are continuous functions in
their respective arguments, with a+ b < 1 and f(0) = g(0) = h(0) = 0. The time variable delays τ1(t) and τ2(t) are
continuous and differentiable functions and satisfying

0 ≤ τ1(t) ≤ τk and τ ′1(t) ≤ τK ,
0 ≤ τ2(t) ≤ τn and τ ′2(t) ≤ τN ,

where τk, τn, σ1 and σ2 are real positive numbers and ϑ ∈ C([−ρ, 0];R) with ρ = max{τk, τn, σ1, σ2}. Moreover, we
assume that f ′(x(t)), g′(x(t)) and h′(x(t)) are exist and continuous.

For simplicity, we describe the operator N by:

N(t) = x(t) + ax(t− σ1) + bx(t− σ2),

then the equation (3.3) can be rewritten as in the form below:

t0D
α
t N(t) = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))− e(t)h(x(t− τ2(t))). (3.4)

Before going into the details of proof of Theorem 3.2, let us assume that the following sufficient criteria are met.

B. Assumptions

(B1) We assume that there exist positive numbers cj , dj , ej , fj , gj and hj , (j = 1, 2) and ∀x ∈ R− {0}, such that
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i) c1 ≤ c(t) ≤ c2, d1 ≤ d(t) ≤ d2, e1 ≤ e(t) ≤ e2

ii) |f ′(x)| ≤ f2, f(x)x ≥ f1

iii) |g′(x)| ≤ g2, g(x)x ≥ g1

iv) |h′(x)| ≤ h2, h(x)x ≥ h1

v) 2c1f1 > χ

where

χ = d2 + e2 + (c2f
2
2 + c2 + d2 + e2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
)(1 + a+ b).

Theorem 3.2. We suppose that the assumptions (B1) are met, then the zero solution of fractional neutral differential equation
(3.3) is asymptotically stable.

Proof. Let us choose a new suitable Lyapunov function that can clearly be seen to be positive definite by

V (t) = 0.5t0D
α−1
t N2(t) + µ1

∫ t

t−σ1

x2(s)ds+ µ2

∫ t

t−σ2

x2(s)ds

+ λ1

∫ t

t−τ1(t)
x2(s)ds+ λ2

∫ t

t−τ2(t)
x2(s)ds,

where µ1, µ2, λ1 and λ2 are positive numbers.

In light of the fact that Lemma 2.1 and Lemma 2.2, by the time-derivative of V (t) on the solution of equation
(3.4), we can write the inequality given by

V ′(t) ≤ N(t)t0D
α
t N(t) + µ1x

2(t)− µ1x
2(t− σ1) + µ2x

2(t)

− µ2x
2(t− σ2) + λ1x

2(t)− λ1(1− τ ′1(t))x2(t− τ1(t))

+ λ2x
2(t)− λ2(1− τ ′2(t))x2(t− τ2(t))

≤ (µ1 + µ2 + λ1 + λ2)x2(t)− µ1x
2(t− σ1)

− µ2x
2(t− σ2)− λ1(1− τK)x2(t− τ1(t))− λ2(1− τN )x2(t− τ2(t))

− c(t)f(x(t))x(t)− d(t)g(x(t− τ1(t)))x(t)− e(t)h(x(t− τ2(t)))x(t)

− ac(t)f(x(t))x(t− σ1)− ad(t)g(x(t− τ1(t)))x(t− σ1)

− ae(t)h(x(t− τ2(t)))x(t− σ1)− bc(t)f(x(t))x(t− σ2)

− bd(t)g(x(t− τ1(t)))x(t− σ2)− be(t)h(x(t− τ2(t)))x(t− σ2).

With the help of the inequality 2|$ν| ≤ $2 + ν2 and the assumptions given in (B1), the following result is reached:

V ′(t) ≤ 1

2
(−2c1f1 + d2 + e2 + c2f

2
2 (a+ b) + 2µ1 + 2µ2 + 2λ1 + 2λ2)x2(t)

+
1

2
(−2µ1 + a(c2 + d2 + e2))x2(t− σ1)

+
1

2
(−2µ2 + b(c2 + d2 + e2))x2(t− σ2)

+
1

2
(−2λ1(1− τK) + d2g

2
2(1 + a+ b))x2(t− τ1(t))

+
1

2
(−2λ2(1− τN ) + e2h

2
2(1 + a+ b))x2(t− τ2(t)).

Let

2µ1 = a(c2 + d2 + e2), 2µ2 = b(c2 + d2 + e2),

2λ1 =
d2g

2
2(1 + a+ b)

(1− τK)
, 2λ2 =

e2h
2
2(1 + a+ b)

(1− τN )
.
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From here, we can deduce

V ′(t) ≤ 1

2
[(−2c1f1 + d2 + e2 + (a+ b)(c2f

2
2 + c2 + d2 + e2) + (1 + a+ b)(

d2g
2
2

1− τK
+

e2h
2
2

1− τN
]x2(t).

Therefore, we have

V ′(t) ≤ −m1x
2(t),

where

m1 = 2c1f1 − χ > 0.

with

χ = d2 + e2 + (c2f
2
2 + c2 + d2 + e2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
)(1 + a+ b).

From here, we can deduce that the zero solution of fractional neutral differential equation (3.3) is asymptotically
stable. This completes the proof.

Further, we define the following fractional neutral equation (3.3) with

e(t)h(x(t− τ2(t))) = 0, τ1(t) = τ(t)

and

ax(t− σ1) + bx(t− σ2) = ax(t− σ),

t0D
α
t [x(t) + ax(t− σ)] = −c(t)f(x(t))− d(t)g(x(t− τ(t))), (3.5)

t0D
−(1−α)
t x(t) = ϑ(t), t ∈ [−ρ, 0],ρ > 0, ρ ∈ R,

for α ∈ (0, 1) and for all t ≥ t0 + ρ, where c(t), d(t), f(x(t)) and g(x(t)) are continuous functions in their respective
arguments, with a < 1 and f(0) = g(0) = 0. The time variable delay τ(t) is continuous and differentiable function
and satisfying

0 ≤ τ(t) ≤ τk and τ ′(t) ≤ τK ,

where τk and σ are real positive numbers and ϑ ∈ C([−ρ, 0];R) with ρ = max{τk, σ}. Moreover, we assume that
f ′(x(t)) and g′(x(t)) are exist and continuous.

For simplicity, we describe the operator M by:

M(t) = x(t) + ax(t− σ),

then the equation (3.5) can be rewritten as in the form below:

t0D
α
t M(t) = −c(t)f(x(t))− d(t)g(x(t− τ(t))). (3.6)

Before going into the details of proof of Theorem 3.3, let us assume that the following sufficient criteria are met.

C. Assumptions

(C1) We assume that there exist positive numbers cj , dj , fj and gj , (j = 1, 2) and ∀x ∈ R− {0}, such that

i) c1 ≤ c(t) ≤ c2, d1 ≤ d(t) ≤ d2

ii) |f ′(x)| ≤ f2, f(x)x ≥ f1

iii) |g′(x)| ≤ g2, g(x)x ≥ g1

iv) 2c1f1 > d2 + a(c2f
2
2 + c2 + d2) +

d2g
2
2(1+a)

1−τK
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Theorem 3.3. We suppose that the assumptions (C1) are met, then the zero solution of fractional neutral differential equation
(3.5) is asymptotically stable.

Proof. Let us choose a new suitable Lyapunov function that can clearly be seen to be positive definite by

V (t) = 0.5t0D
α−1
t M2(t) + µ

∫ t

t−σ
x2(s)ds+ λ

∫ t

t−τ(t)
x2(s)ds,

where µ and λ are positive numbers.

In light of the fact that Lemma 2.1 and Lemma 2.2, by the time-derivative of V (t) on the solution of equation
(3.6), we can write the inequality given by

V ′(t) ≤ M(t)t0D
α
t M(t) + µx2(t)− µx2(t− σ)

+ λx2(t)− λ(1− τ ′1(t))x2(t− τ(t))

≤ (µ+ λ)x2(t)− µx2(t− σ)− λ(1− τK)x2(t− τ(t))

− c(t)f(x(t))x(t)− d(t)g(x(t− τ(t)))x(t)

− ac(t)f(x(t))x(t− σ)− ad(t)g(x(t− τ(t)))x(t− σ).

With the help of the inequality 2|$ν| ≤ $2 + ν2 and the assumptions given in (C1), the following result is
reached:

V ′(t) ≤ 1

2
(−2c1f1 + d2 + ac2f

2
2 + 2µ+ 2λ)x2(t)

+
1

2
(−2µ+ a(c2 + d2))x2(t− σ)

+
1

2
(−2λ(1− τK) + d2g

2
2(1 + a))x2(t− τ(t)).

Let

2µ =a(c2 + d2),

2λ =
d2g

2
2(1 + a)

(1− τK)
.

From here, we can deduce

V ′(t) ≤ 1

2
[(−2c1f1 + d2 + a(c2f

2
2 + c2 + d2) +

d2g
2
2(1 + a)

1− τK
]x2(t).

Therefore, we have
V ′(t) ≤ −m2x

2(t),

where

m2 = 2c1f1 − d2 − a(c2f
2
2 + c2 + d2)− d2g

2
2(1 + a)

1− τK
> 0.

From here, we can deduce that the zero solution of fractional neutral differential equation (3.5) is asymptotically
stable. This completes the proof.

Remark 3.1. If τ(t) = r is taken, then the equation (3.5) we discussed turns into equation (1) discussed in article [11].
Similarly, if bx(t− σ2) = 0,

d(t)g(x(t− τ1(t))) + e(t)h(x(t− τ2(t))) = b(t)f(x(t− r))

and

u(t)
∫ t
t−δ1 x(s)ds+ s(t)

∫ t
t−δ2 x(s)ds = e(t)

∫ t
t−δ x(s)ds,

then the equation (3.1) we discussed turns into equation (2) discussed in article [11]. It is clear from here that
the sufficient conditions we obtained include the conditions obtained in the article [11]. In addition, it should be
noted that some delay terms in our study are variable dependent. This shows that our article is more general.
Furthermore, in the Numerical applications section, i.e. in the next section examples that embody the sufficient
conditions we have obtained theoretically and images of different initial conditions will be included.
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4. Numerical applications

In this section, we will give examples and explanatory solutions showing that the sufficient conditions we have
obtained for asymptotic stability are applicable in practice. We will also include graphs showing that asymptotic
stability is achieved at different initial conditions with the help of MATLAB-Simulink.

Example 4.1. Let us define the following fractional delay differential equation, which is the special case of fractional
neutral differential equation (3.1).

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))

−e(t)h(x(t− τ2(t)))− u(t)

∫ t

t−δ1
x(s)ds− s(t)

∫ t

t−δ2
x(s)ds. (4.1)

The values in this equation are as follows,

c1 = 8 ≤ c(t) = 8 +
1

5 + t2
≤ 8.2 = c2,

d1 = 0.2 ≤ d(t) = 0.2 +
2

5 + t2
≤ 0.6 = d2,

e1 = 0.3 ≤ e(t) = 0.3 +
1

2 + t2
≤ 0.8 = e2,

u1 = 0.4 ≤ u(t) = 0.4 +
1

10 + t2
≤ 0.5 = u2,

s1 = 0.6 ≤ s(t) = 0.6 +
1

5 + t2
≤ 0.8 = s2,

a =
1

100
< 1, b =

3

100
< 1, a+ b =

1

25
< 1, α ∈ (0, 1),

0 ≤ τ1(t) = 0.15sin2t ≤ 0.15 = τk, τ
′
1(t) = 0.15sin2t ≤ 0.15 = τK ,

0 ≤ τ2(t) = 0.2sin2t ≤ 0.2 = τn, τ
′
2(t) = 0.2sin2t ≤ 0.2 = τN ,

f(x) = 0.4x+
x

10 + |x|
, g(x) = x+

2x

10 + |x|
, h(x) = 0.7x+

2x

10 + |x|
.

It is clear that f(0) = g(0) = h(0) = 0. Additionally, ∀x ∈ R, 0 ≤ 2
10+|x| ≤ 1, we can deduce

∀x ∈ R− {0}, f(x)

x
≥ 0.4 = f1,

g(x)

x
≥ 1 = g1,

h(x)

x
≥ 0.7 = h1.

Furthermore, we can get

|f ′(x)| = |0.4 +
10

(10 + |x|)2
| ≤ 0.5 = f2,

|g′(x)| = |1 +
20

(10 + |x|)2
| ≤ 1.2 = g2,

|h′(x)| = |0.7 +
20

(10 + |x|)2
| ≤ 0.9 = h2,

With the help of a simple mathematical calculation, the following conclusion is reached.

−2c1f1 + d2 + e2 + u2 + s2 + (c2f
2
2 + c2 + d2 + e2 + u2 + s2)(a+ b)

+ (
d2g

2
2

1− τK
+

e2h
2
2

1− τN
+ δ1u2 + δ2s2)(1 + a+ b) = −0.91.

From the solutions explained above, it can be seen that all criteria of Theorem 3.1. are met. Thus, the zero solution
of fractional neutral differential equation (4.1) is asymptotically stable. Also, the graph showing the orbital behavior
of the fractional neutral differential equation (4.1) is as follows.
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Figure 1. Orbital behavior of the fractional neutral differential equation (4.1).

Example 4.2. Let us define the following fractional delay differential equation, which is the special case of fractional
neutral differential equation (3.3).

t0D
α
t [x(t) + ax(t− σ1) + bx(t− σ2)] = −c(t)f(x(t))− d(t)g(x(t− τ1(t)))− e(t)h(x(t− τ2(t))). (4.2)

The values in this equation are as follows,

c1 = 6 ≤ c(t) = 6 +
1

5 + t2
≤ 6.2 = c2,

d1 = 0.3 ≤ d(t) = 0.3 +
3

10 + t2
≤ 0.6 = d2,

e1 = 0.5 ≤ e(t) = 0.5 +
3

10 + t2
≤ 0.8 = e2,

a =
1

100
< 1, b =

3

100
< 1, a+ b =

1

25
< 1, α ∈ (0, 1),

0 ≤ τ1(t) = 0.15sin2t ≤ 0.15 = τk, τ
′
1(t) = 0.15sin2t ≤ 0.15 = τK ,

0 ≤ τ2(t) = 0.2sin2t ≤ 0.2 = τn, τ
′
2(t) = 0.2sin2t ≤ 0.2 = τN ,

f(x) = 0.4x+
x

10 + |x|
, g(x) = 0.9x+

4x

10 + |x|
, h(x) = 0.7x+

2x

10 + |x|
.

It is clear that f(0) = g(0) = h(0) = 0. Additionally, ∀x ∈ R, 0 ≤ 4
10+|x| ≤ 1, we can deduce

∀x ∈ R− {0}, f(x)

x
≥ 0.4 = f1,

g(x)

x
≥ 0.9 = g1,

h(x)

x
≥ 0.7 = h1.

Furthermore, we can get

|f ′(x)| = |0.4 +
10

(10 + |x|)2
| ≤ 0.5 = f2,

|g′(x)| = |0.9 +
40

(10 + |x|)2
| ≤ 1.3 = g2,

|h′(x)| = |0.7 +
20

(10 + |x|)2
| ≤ 0.9 = h2,

With the help of a simple mathematical calculation, the following conclusion is reached.

−2c1f1 + d2 + e2 + (c2f
2
2 + c2 + d2 + e2)(a+ b) + (

d2g
2
2

1− τK
+

e2h
2
2

1− τN
)(1 + a+ b) = −0.95.
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From the solutions explained above, it can be seen that all criteria of Theorem 3.2 are met. Thus, the zero solution of
fractional neutral differential equation (4.2) is asymptotically stable. Also, the graph showing the orbital behavior
of the fractional neutral differential equation (4.2) is as follows.

Figure 2. Orbital behavior of the fractional neutral differential equation (4.2).

Example 4.3. Let us define the following fractional delay differential equation, which is the special case of fractional
neutral differential equation (3.5).

t0D
α
t [x(t) + ax(t− σ)] = −c(t)f(x(t))− d(t)g(x(t− τ(t))). (4.3)

The values in this equation are as follows,

c1 = 1 ≤ c(t) = 1 +
2

5 + t2
≤ 1.4 = c2, a =

1

50
< 1, α ∈ (0, 1),

d1 = 0.2 ≤ d(t) = 0.2 +
3

10 + t2
≤ 0.5 = d2,

0 ≤ τ(t) = 0.15sin2t ≤ 0.15 = τk, τ
′(t) = 0.15sin2t ≤ 0.15 = τK ,

f(x) = 0.8x+
4x

10 + |x|
, g(x) = 0.6x+

4x

10 + |x|
.

It is clear that f(0) = g(0) = 0. Additionally, ∀x ∈ R, 0 ≤ 4
10+|x| ≤ 1, we can deduce

∀x ∈ R− {0}, f(x)

x
≥ 0.8 = f1,

g(x)

x
≥ 0.6 = g1.

Furthermore, we can get

|f ′(x)| = |0.8 +
40

(10 + |x|)2
| ≤ 1.2 = f2,

|g′(x)| = |0.6 +
40

(10 + |x|)2
| ≤ 1 = g2,

With the help of a simple mathematical calculation, the following conclusion is reached.

−2c1f1 + d2 + a(c2f
2
2 + c2 + d2) +

d2g
2
2(1 + a)

1− τK
= −0.42.

From the solutions explained above, it can be seen that all criteria of Theorem 3.3 are met. Thus, the zero solution of
fractional neutral differential equation (4.3) is asymptotically stable. Also, the graph showing the orbital behavior
of the fractional neutral differential equation (4.3) is as follows.
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Figure 3. Orbital behavior of the fractional neutral differential equation (4.3).

Remark 4.1. When the solutions of the examples (examples 4.1, 4.2 and 4.3) given in this section are examined, the
conditions that ensure stability of the zero solution of the equations discussed in a certain time interval and under
different initial conditions can be easily seen. Graphs (figures 1, 2, 3) expressing these stability states are shown for
different initial conditions.

In addition, it can be easily seen that the results of this study are more general when compared to the results of
similar studies in the literature, especially the study we based on [11]. In this study, the time delay was taken as
constant and examples showing the practical applicability of theoretical results were not supported by graphics.
However, some delay terms of the equations in our study were taken as variable dependent and our examples
showing the practical applicability of theoretical results were supported with graphs.

5. Conclusion
In this note, we have investigated the asymptotic stability of some fractional delay neutral differential equations

of a certain type by applying three different Lyapunov functions. Also, we have obtained a new lemma of Riemann-
Liouville derivative order of quadratic function. Based on the Lyapunov functions, some sufficient asymptotic
stability conditions for these fractional delay neutral differential equations have been proved. Compared to the
stability criteria in the relevant literature, our criteria are simple and applicable. To demonstrate the effectiveness of
these criteria, we have given some examples with simulations (Figure1, Figure 2 and Figure 3). Theoretical findings,
complemented by examples and graphical representations, provide meaningful insights into the orbital behavior
of these equations. As a result, the obtained conditions extend and improve some criteria found in the relevant
literature.
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