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ABSTRACT

In this note we propose a new sectional curvature on a Riemannian manifold endowed with a semi-
symmetric non-metric connection. A Chen-Ricci inequality is proven. Some possible applications
in other fields are mentioned.
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1. Introduction

The notion of a linear connection is one of the most important in differential geometry. Remarkable
contributions are due to Christoffel, Ricci, Levi-Civita, Cartan, Darboux, Koszul.

The simplest connections are symmetric, or torsion-free. On any differentiable manifold there exists a
symmetric linear connection. On the other hand, Friedmann and Schouten (1924) initiated the study of semi-
symmetric linear connections on a differentiable manifold. After that, Hayden (1932) introduced the notion
of a metric connection with torsion on a Riemannian manifold. Semi-symmetric metric connections play
an important role in the geometry of Riemannian manifolds. The semi-symmetric metric connections on
a Riemannian manifold were investigated by Yano (1970). There are various physical problems involving
semi-symmetric metric connection. More recently semi-symmetric non-metric connections were considered
by Agashe (1992).

The sectional curvature of a Riemannian manifold is the natural generalization of the Gauss curvature of a
surface. It is defined using the Levi-Civita connection, which is a symmetric and metric connection.

A similar construction can be done for a semi-symmetric metric connection on a Riemannian manifold. For
a semi-symmetric non-metric connection the standard definition of the sectional curvature is not applicable.

The purpose of this note is to define a sectional curvature on a Riemannian manifold endowed with a semi-
symmetric non-metric connection.

We compute the scalar curvature and the Ricci curvature for this new sectional curvature.
As application, we establish the Chen-Ricci inequality for submanifolds in a Riemannian space form

endowed with a semi-symmetric non-metric connection.
Moreover, some possible applications in other fields are proposed.

2. Semi-symmetric non-metric connections

Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold and ∇ a linear connection on M .
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The torsion of ∇ is a (1, 2)-tensor field T given by

T (X,Y ) = ∇XY −∇Y X − [X,Y ], ∀X,Y ∈ Γ(TM),

and the curvature of ∇ is a (1, 3)-tensor field R defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, ∀X,Y, Z ∈ Γ(TM).

The covariant derivative of g with respect to ∇ is expressed by

(∇Xg)(Y,Z) = Xg(Y,Z)− g(∇XY,Z)− g(Y,∇XZ).

A distinguish connection on (M, g) is the Levi-Civita connection ∇0, which is torsion-free (i.e., T 0 = 0) and g
is parallel with respect to ∇0 (i.e., ∇0g = 0).

We consider a connection ∇ different from the Levi-Civita connection ∇0.
The notion of a semi-symmetric connection on a Riemannian manifold was introduced by A. Friedmann and

J.A. Schouten [5]. Submanifolds in Riemannian manifolds with semi-symmetric connections were studied by
H.A. Hayden [6].

The connection ∇ is called a semi-symmetric connection if its torsion T is given by

T (X,Y ) = ω(Y )X − ω(X)Y, ∀X,Y ∈ Γ(TM),

where ω is a 1-form on M . Denote by P ∈ Γ(TM) the associated vector field to ω, i.e., ω(X) = g(X,P ).
If g is parallel with respect to ∇, i.e., ∇g = 0, then ∇ is called a semi-symmetric metric connection. If not, i.e.,

∇g ̸= 0, then ∇ is called a semi-symmetric non-metric connection.
K. Yano [13] studied Riemannian manifolds endowed with semi-symmetric metric connections. Some

properties of a Riemannian manifold and a hypersurface of a Riemannian manifold with a semi-symmetric
metric connection were studied by T. Imai [7] and Z. Nakao [9] studied submanifolds of a Riemannian manifold
endowed with a semi-symmetric metric connection. N.S. Agashe and M.R. Chafle [1], [2] introduced the
notion of a semi-symmetric non-metric connection and studied some of its properties and submanifolds of
a Riemannian manifold with a semi-symmetric non-metric connection.

It is shown in [1] that a semi-symmetric non-metric connection ∇ and the Levi-Civita connection ∇0 are
related by

∇XY = ∇0
XY + ω(Y )X.

We denote by R0 the Riemannian curvature tensor. Then, we have (see [1]):

g(R(X,Y )Z,W ) = g(R0(X,Y )Z,W ) + s(X,Z)g(Y,W )− s(Y, Z)g(X,W ), (2.1)

where s(X,Y ) = (∇0
Xω)Y − ω(X)ω(Y ).

In particular, for orthonormal vectors e1, e2 ∈ TpM, p ∈ M , we get

g(R(e1, e2)e2, e1) = g(R0(e1, e2)e2, e1)− s(e2, e2).

Obviously g(R0(e1, e2)e2, e1) is the Riemannian sectional curvature of the plane section π spanned by e1 and
e2. It follows that g(R(e1, e2)e2, e1) is not independent of the orthonormal basis of π, therefore we cannot define
the sectional curvature with respect to ∇ by K(π) = g(R(e1, e2)e2, e1).

We establish the form of the Bianchi identity for the connection ∇.

g(R(X,Y )Z,W ) + g(R(Y,Z)X,W ) + g(R(Z,X)Y,W )

= g(R0(X,Y )Z,W ) + s(X,Z)g(Y,W )− s(Y, Z)g(X,W )

+g(R0(Y,Z)X,W ) + s(Y,X)g(Z,W )− s(Z,X)g(Y,W )

+g(R0(Z,X)Y,W ) + s(Z, Y )g(X,W )− s(X,Y )g(Z,W ).

By using the Bianchi identity for the Riemannian curvature tensor, we have

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y

=[s(Z, Y )− s(Y, Z)]X + [s(X,Z)− s(Z,X)]Y + [s(Y,X)− s(X,Y )]Z.
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If we substitute the expression of s in the above equation, we get

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y

=[(∇0
Zω)Y − (∇0

Y ω)Z]X + [(∇0
Xω)Z − (∇0

Zω)X]Y + [(∇0
Y ω)X − (∇0

Xω)Y ]Z.

Because
(∇0

Zω)Y = Zω(Y )− ω(∇0
ZY ) = Zg(Y, P )− g(∇0

ZY, P ) = g(Y,∇0
ZP ),

we obtain

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y

=[g(Y,∇0
ZP )− g(Z,∇0

Y P )]X + [g(Z,∇0
XP )− g(X,∇0

ZP )]Y + [g(X,∇0
Y P )− g(Y,∇0

XP )]Z.

3. A well-defined sectional curvature

Let (M, g) be a Riemannian manifold endowed with a semi-symmetric non-metric connection ∇. Recall that

∇XY = ∇0
XY + ω(Y )X,

where ∇0 is the Levi-Civita connection on (M, g).
We remarked in the previous section that one cannot define the sectional curvature of a plane section

π = span {e1, e2} ⊂ TpM , p ∈ M , by g(R(e1, e2)e2, e1).

This is the reason for which a well-defined sectional curvature is necessary; the steps to get there are below.

First we consider the linear connection

∇′
XY = ∇0

XY − g(X,Y )P.

Then we prove the first result.

Proposition 3.1. Let (M, g) be a Riemannian manifold, ∇ a semi-symmetric non-metric connection given by ∇XY =
∇0

XY + ω(Y )X and ∇′ a linear connection defined by ∇′
XY = ∇0

XY − g(X,Y )P . Then ∇ and ∇′ are conjugate
connections, i.e.,

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇′
ZY ), ∀X,Y, Z ∈ Γ(TM).

Proof. Let X,Y, Z ∈ Γ(TM). Then

g(∇ZX,Y ) + g(X,∇′
ZY )

= g(∇0
ZX + ω(X)Z, Y )+g(X,∇0

ZY − g(Z, Y )P ) = Zg(X,Y ) + ω(X)g(Z, Y )− g(Z, Y )g(X,P ) = Zg(X,Y ).

The basic properties of the connection ∇′ are given in the following.

Proposition 3.2. Let (M, g) be a Riemannian manifold and ∇′ the connection defined by ∇′
XY = ∇0

XY − g(X,Y )P ,
where ∇0 is the Levi-Civita connection. Then:
i) ∇′ is symmetric, i.e., its torsion T ′ = 0.
ii) ∇′ is non-metric.

Proof. Let X,Y, Z ∈ Γ(TM). We have:
i)

T ′(X,Y ) = ∇′
XY −∇′

Y X − [X,Y ]

= ∇0
XY − g(X,Y )P −∇0

Y X + g(X,Y )P − [X,Y ] = 0.

ii)
(∇′

Xg)(Y,Z) = Xg(Y, Z)− g(∇0
XY − g(X,Y )P,Z)− g(Y,∇0

XZ − g(X,Z)P )

= −g(X,Y )ω(Z) + g(X,Z)ω(Y ) ̸= 0.
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Next, we prove an important relation between the curvatures of the conjugate connections ∇ and ∇′.

Theorem 3.1. Let (M, g) be a Riemannian manifold, ∇ a semi-symmetric non-metric connection and ∇′ its conjugate
connection defined by ∇XY = ∇0

XY + ω(Y )X , ∇′
XY = ∇0

XY − g(X,Y )P . Then

g(R′(X,Y )Z,W ) = −g(R(X,Y )W,Z).

Proof. Let X,Y, Z,W ∈ Γ(TM). Then:

g(R(X,Y )Z,W ) = g(∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W )

= Xg(∇Y Z,W )− g(∇Y Z,∇′
XW )− Y g(∇XZ,W ) + g(∇XZ,∇′

Y W )

− [X,Y ]g(Z,W ) + g(Z,∇′
[X,Y ]W )

= XY g(Z,W )−Xg(Z,∇′
Y W )− Y g(Z,∇′

XW ) + g(Z,∇′
Y ∇′

XW )

− Y Xg(Z,W ) + Y g(Z,∇′
XW ) +Xg(Z,∇′

Y W )− g(Z,∇′
X∇′

Y W )

− [X,Y ]g(Z,W ) + g(Z,∇′
[X,Y ]W )

= −g(Z,R′(X,Y )W ).

Inspired by an idea of B. Opozda [10], we then define a (0,4)-tensor field S by

S(X,Y, Z,W ) =
1

2
[g(R(X,Y )W,Z) + g(R′(X,Y )W,Z)].

Theorem 3.1 implies
S(X,Y, Z,W ) = −S(X,Y,W,Z)

and
S(X,Y, Z,W ) =

1

2
[g(R(X,Y )W,Z)− g(R(X,Y )Z,W )].

Let p ∈ M and π ⊂ TpM a plane section. For an orthonormal basis {e1, e2} of π, we derive

S(e1, e2, e1, e2) =
1

2
[g(R(e1, e2)e2, e1)− g(R(e1, e2)e1, e2)].

By the formula (2.1) of the curvature tensor of a semi-symmetric non-metric connection, it follows that

S(e1, e2, e1, e2) = R0(e1, e2, e1, e2)−
1

2
[s(e2, e2) + s(e1, e1)],

which does not depend on the orthonormal basis {e1, e2} of π. Therefore, we are now able to introduce the
following definition of a sectional curvature of the semi-symmetric non-metric connection ∇.

Definition 3.1. The sectional curvature of the plane section π ⊂ TpM spanned by the orthonormal basis {e1, e2}
is defined by

K(π) =
1

2
[g(R(e1, e2)e2, e1) + g(R(e2, e1)e1, e2)].

Using the above definition, we can compute the scalar curvature and the Ricci curvature of a Riemannian
space form admitting a semi-symmetric non-metric connection.

Let M(c) be an n-dimensional Riemannian space form (the sectional curvature associated to the Levi-Civita
connection is a constant c) admitting a semi-symmetric non-metric connection ∇. Let p ∈ M(c) and {e1, ..., en}
an orthonormal basis of TpM .

The scalar curvature with respect to ∇ is

τ =
∑

1≤i<j≤n

K(ei ∧ ej),

where ei ∧ ej is the plane section spanned by ei and ej .
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By using the definition of the sectional curvature K, we have

τ =
1

2

∑
1≤i<j≤n

[g(R(ei, ej)ej , ei) + g(R(ej , ei)ei, ej)] =
1

2

∑
1≤i,j≤n

g(R(ei, ej)ej , ei).

By the formula of the curvature tensor of a semi-symmetric non-metric connection, it follows that

τ =
1

2
n(n− 1)c+

1

2
(n− 1)trace s.

Let p ∈ M(c), X ∈ TpM unit and {e1 = X, e2, ..., en} an orthonormal basis of TpM . It is known that

Ric (X) =

n∑
j=2

K(X ∧ ej)

=
1

2

n∑
j=2

[g(R(X, ej)ej , X) + g(R(ej , X)X, ej)] = (n− 1)c+
1

2
[(n− 2)s(X,X) + trace s].

4. An application in the submanifolds theory: Chen-Ricci inequality

B.-Y. Chen [3] established an estimate of the mean curvature in terms of the Ricci curvature for any
Riemannian submanifold of dimension n in a Riemannian space form M̃(c) of constant sectional curvature
c:

Ric (X) ≤ (n− 1)c+
n2

4
∥H∥2.

It is known as the Chen-Ricci inequality.

In this section we establish the Chen-Ricci inequality for submanifolds in a Riemannian space form admitting
a semi-symmetric non-metric connection by using the sectional curvature defined in the previous section.

Let M̃(c) be an m-dimensional Riemannian space form, ∇̃ a semi-symmetric non-metric connection on M̃(c)

and M an n-dimensional (n ≥ 2) submanifold of M̃(c).
The Gauss formulae for the semi-symmetric connection ∇̃ and the Levi-Civita connection ∇̃0, respectively,

are written as

∇̃XY = ∇XY + h(X,Y ), ∇̃0
XY = ∇0

XY + h0(X,Y ),

for all vector fields X,Y on the submanifold M . In the above formulae, h0 is the second fundamental form of
M and h is a (0, 2)-tensor on M . In [2], it is proven that h0 = h.

We decompose the vector field P on M uniquely into its tangent and normal components P⊤ and P⊥,
respectively; we have P = P⊤ + P⊥.

The Gauss equation with respect to the semi-symmetric non-metric connection is given by (see [2])

g(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y,Z))

+ g(P⊥, h(Y,Z))g(X,W )− g(P⊥, h(X,Z))g(Y,W ), (4.1)

for any vector fields X , Y , Z and W on M .

Theorem 4.1. Let M̃(c) be an m-dimensional Riemannian space form, ∇̃ a semi-symmetric non-metric connection on it
and M an n-dimensional (n ≥ 2) submanifold of M̃(c). Then we have the following:

(1) For each unit vector X ∈ TpM ,

Ric(X) ≤ n2

4
∥H∥2 + (n− 1)c− 1

2
[trace s+ (n− 2)s(X,X)]

− 1

2
[nω(H) + (n− 2)g(P⊥, h(X,X))]. (4.2)
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(2) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (4.2) if and only if X ∈ Np, where
Np = {X ∈ TpM |h(X,Y ) = 0,∀Y ∈ TpM}.

(3) The equality case of (4.2) holds identically for all unit tangent vectors at p if and only if either:

(i) p is a totally geodesic point, or
(ii) n = 2 and p is a totally umbilical point.

Proof.

(1) Let p ∈ M and X ∈ TpM a unit tangent vector. Consider an orthonormal basis {e1, ..., en, en+1, ..., em} in
TpM̃(c), with e1 = X, e2, ..., en tangent to M at p.

As usual, one denotes by hr
ij = g(h(ei, ej), er), i, j ∈ {1, ..., n}, r ∈ {n+ 1, ...,m}. We have

Ric (X) =

n∑
j=2

K(e1 ∧ ej). (4.3)

If we take X = W = e1 and Y = Z = ej in the Gauss equation, we have

g(R(e1, ej)ej , e1) = c− s(ej , ej) +

m∑
r=n+1

[hr
11h

r
jj − (hr

1j)
2]− g(P⊥, h(ej , ej)), (4.4)

respectively, from the Gauss equation if we put X = Z = e1, Y = W = ej , we obtain

g(R(ej , e1)e1, ej) = c− s(e1, e1) +

m∑
r=n+1

[hr
11h

r
jj − (hr

1j)
2]− g(P⊥, h(e1, e1)). (4.5)

Because

K(e1 ∧ ej) =
1

2
[g(R(e1, ej)ej , e1) + g(R(ej , e1)e1, ej)], (4.6)

from the equations (4.4) and (4.5), we have

K(e1 ∧ ej) = c− 1

2
[s(ej , ej) + s(e1, e1)] +

m∑
r=n+1

[hr
11h

r
jj − (hr

1j)
2]

− 1

2
[g(P⊥, h(ej , ej)) + g(P⊥, h(e1, e1))]. (4.7)

By substituting the equation (4.7) in (4.3), we find

Ric (X) = (n− 1)c− 1

2
[trace s+ (n− 2)s(X,X)]

− 1

2
[nω(H) + (n− 2)g(P⊥, h(X,X))]

+

n∑
j=2

m∑
r=n+1

[hr
11h

r
jj − (hr

1j)
2].

The last equation implies

Ric (X) ≤(n− 1)c− 1

2
[trace s+ (n− 2)s(X,X)]

− 1

2
[nω(H) + (n− 2)g(P⊥, h(X,X))]

+

n∑
j=2

m∑
r=n+1

hr
11h

r
jj . (4.8)
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Obviously one has

hr
11

(
n∑

j=2

hr
jj

)
≤ 1

4

(
n∑

i=1

hr
ii

)2

,

with equality if and only if
hr
11 = hr

22 + · · ·+ hr
nn.

From the equation (4.8), it follows that

Ric (X) ≤ n2

4
∥H∥2 + (n− 1)c− 1

2
[trace s+ (n− 2)s(X,X)]

− 1

2
[nω(H) + (n− 2)g(P⊥, h(X,X))]. (4.9)

(2) If a unit vector X at p satisfies the equality case of (4.2), we get{
hr
1i = 0, 2 ≤ i ≤ n, ∀r ∈ {n+ 1, ...,m},

hr
11 = hr

22 + ...+ hr
nn, ∀r ∈ {n+ 1, ...,m}.

Therefore, because H(p) = 0, we have hr
1j = 0, for all j ∈ {1, ..., n}, r ∈ {n+ 1, ...,m}, that is X ∈ Np.

(3) The equality case of inequality (4.2) holds for all unit tangent vectors at p if and only if{
hr
ij = 0, 1 ≤ i ̸= j ≤ n, r ∈ {n+ 1, ...,m},

hr
11 + ...+ hr

nn − 2hr
ii = 0, i ∈ {1, ..., n}, r ∈ {n+ 1, ...,m},

which imply {
h(ei, ej) = 0, 1 ≤ i ̸= j ≤ n,

(n− 2)H(p) = 0.

We distinguish two cases:

• (i) n ̸= 2; h(ei, ej) = 0,∀i, j ∈ {1, ..., n}, i.e., hp vanishes on TpM .
• (ii) n = 2; then h(ei, ej) = g(ei, ej)H(p), for any i, j ∈ {1, 2}, i.e., p is a totally umbilical point.

5. Applications in other fields

In [11] two nice models of semi-symmetric connections are given (see also [8]):
1-st. If a man is moving on the surface of the earth always facing one definite point, say Jerusalem or Mekka or the

North Pole, then this displacement is semi-symmetric and metric.
2-nd. During the mathematical congress in Moscow in 1934 one evening mathematicians invented the Moscow

displacement. The streets of Moscow are approximately straight lines through the Kremlin and concentric circles around
it. If a person walks in the street always facing the Kremlin, then this displacement is semi-symmetric and metric.

To our knowledge, similar models of semi-symmetric non-metric connections are not given.
Then, we expect to develop models and applications of semi-symmetric non-metric connections in some

other fields, e.g., in quantum and theoretical chemistry, directions in which the first author of this paper and
her co-workers took preliminary steps, using the tools of differential geometry (see [4], [12]).

For instance, one may devise applications in the topology of multidimensional surfaces representing the
energy dependence of chemical edifices as function of symmetry-classified changes in molecular geometries,
with relevance in modeling physical properties and chemical transformations of molecules and materials. In
this sense, a special situation, which deserves further attention, with the help of analytic tools outlined here,
would be the case of spontaneous breaking of molecular symmetry in systems with energy surfaces containing
the so-called conical intersections (see [4]). We foresee that the use conformal changes and semi-symmetric
connections could open a new geometric perspective on such problems, pertaining to molecular symmetry
and chemical dynamics.
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Another particular application may occur in a class of problems recently approached in [12], in preliminary
manner. Namely, we envisage analyzing through the eyes of analytic geometry descriptors the effective
Hamiltonian models describing special properties, such as luminescence due to inter-shell quantum transitions
in lanthanide-based materials. The involved quantum operators admit the formulation as 3D or multi-
dimensional surfaces, the related wave functions behaving as irreducible representations in the group of sphere
(spherical harmonic functions). The effective Hamiltonians can be thought as (topological) invariants, the semi-
symmetric connection approach representing a new analytic perspective.

Such a formalization, aiming to reach very concrete promises in the property engineering of new materials
(e.g. lanthanide luminescence, used in energy-saving lighting devices) represents a challenge for the potential
extension of devised methodologies into multi-disciplinary problems, in a line of rationales involving
mathematics, quantum calculations and materials sciences.

Of course, for all models briefly presented above the curvatures associated to the semi-symmetric metric
or non-metric connection play a very important role. Then, to fix the background, to define well types of
curvatures becomes essential not only as a theoretical aspects, but also to be used in applications.
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