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Abstract
In this article, we present a novel Archimedean copula constructed from a unique strict gen-
erator function. It can be described as a two-parameter unification of the well-established
Gumbel-Barnett and Joe copulas. The first part is devoted to its formulation, as well as
those of the corresponding density, the conditional copula, and the Kendall distribution
function. Graphs are also included to illustrate their shape behavior under different pa-
rameter configurations. In a second part, we examine some of its notable properties, with
emphasis on the correlation properties. Practical applications are discussed in the final
part. In particular, we use the maximum likelihood estimation method to determine the
unknown parameters involved from the data and perform a simulation study to demon-
strate the effectiveness of this approach. We also analyze a dataset to provide practical
illustrations of copula behavior and potential.
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1. Introduction
Copulas are fundamental tools in multivariate data analysis and modelling, particu-

larly in finance, risk management, hydrology, environmental science, insurance, reliability
engineering, telecommunications, and medicine. Their primary function is to identify
the dependence structure between random variables, providing a versatile approach to
modelling complex interdependencies that go far beyond the scope of linear correlation.
In particular, copulas are instrumental in capturing non-linear relationships and various
forms of association between random variables, allowing a more accurate representation of
real-world scenarios. For more information on this topic, two important copula references
among many valuable resources are [22] written by Roger B. Nelsen and [18] written by
H. Joe. These two books provide comprehensive information, theoretical foundations and
practical applications in the field of copula theory, allowing a deeper understanding and
implementation in various analytical contexts.
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On the other hand, the construction of copulas has been the subject of much research in
the field of statistics. In particular, Plackett[23] made significant contributions by gener-
ating copulas via joint distributions that are combined through a sophisticated ratio form.
Marshall and Olkin[20] introduced the Marshall-Olkin copula, which is derived from a bi-
variate exponential distribution. Genest and MacKay[11] proposed the Archimedean cop-
ulas, a category of copulas centered around the notion of generator function. A generator
function can be described as a function that satisfies certain properties: it is non-negative,
decreasing, and convex. Extending this, Marshall and Olkin[21] used inverse Laplace
transformations to derive copulas within the Archimedean class. In addition, Alhadlaq
and Alzaid[1] furthered the understanding by employing cumulative distribution functions
and probability generating functions that obey the specific conditions of the generator
functions, allowing the creation of Archimedean copulas. These different approaches high-
light the evolution and diversity of copula construction, proposing different mathematical
foundations and techniques to provide these essential statistical tools.

One of the most widely used Archimedean copulas in the field of statistics is the Gumbel-
Barnett copula, originally introduced and described in [13] and [15]. This copula is char-
acterized by a specific strict generating function, which is defined as follows:

ϕ(u) = log [1 − a log(u)] ,

for u ∈ [0, 1]. The parameter a is contained in the unit interval [0, 1]. It controls various
dependence characteristics. Specifically, as a approaches 0, the Gumbel-Barnett copula
tends towards independence of the underlying random variable, while higher values of
a indicate moderate negative correlation dependence between them. In fact, Kendall’s
tau is contained in [−0.361, 0]. Furthermore, the corresponding upper and lower tail
dependence parameters are equal to 0. For more information, we refer to [22] and [9].
Thus, despite its usefulness, a major drawback of the Gumbel-Barnett copula is its inability
to capture highly negative or positive correlations and tail dependence. These limitations
have motivated the development of alternative copulas that provide more accurate tools
for a wide range of applications. These alternative copulas have enriched the field by
providing greater flexibility and a more complete representation of dependence structures
than the Gumbel-Barnett copula.

The Joe copula, another famous Archimedean copula, was first introduced and discussed
by [16] and [17]. Its associated strict generator is expressed as follows:

ϕ(u) = − log
[
1 − (1 − u)b

]
,

for u ∈ [0, 1]. The parameter b is contained in the interval [1, ∞). Unlike the Gumbel-
Barnett copula, the corresponding upper and lower tail dependence parameters are not
equal to 0; they are computed as 2 and 2 − 2

1
b , respectively. Thus, the Joe copula is tail

dependent, with an upper tail modulated by b. In addition, Kendall’s tau is contained
in [0, 1]. Furthermore, the Joe copula exhibits stochastic monotonicity and has a density
that is totally positive of order two. Thus, a major limitation of the Joe copula is its
inability to capture negative correlation. In this sense, it can be seen as antagonistic to
the Gumbel-Barnett copula.

With the idea of increasing the flexibility of dependence modelling, extensions to two-
parameter copulas have been explored in the literature. In particular, Nelsen[22] presented
several methods for constructing two-parameter copulas. One method is to create a com-
posite of two (Archimedean) generator functions, while another approach is to introduce
a shape parameter into the copulas themselves. Joe[18] developed various methods of
adding parameters to existing copulas, including the use of mixtures of copulas. These
extensions have continued to evolve. For example, Amblard and Girard[3] introduced a
second parameter into the FGM copula, which greatly extended its dependence range.
Chesneau[5] proposed a weighted version of the Gumbel-Barnett copula, adding an extra
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level of flexibility. In addition, in more recent work, Chesneau[6] and Chesneau[7] gener-
alized two well-known one-parameter copulas by incorporating a second parameter, thus
enriching the toolbox of available copula models for various applications. Another advan-
tage of considering two-parameter copulas is that we can reduce them to one-parameter
copulas by choosing one parameter as a function of the other in an original way. Thus,
we can innovate by creating one-parameter copulas based on two-parameter copulas. This
point of view is taken into account in this study.

The motivation for this research can be summarized in two fundamental points. Pri-
marily, it should be noted that strict two-parameter Archimedean copulas are relatively
rare, given that the majority of existing copulas have only one parameter. Moreover, well-
known copula extensions, such as the Gumbel-Barnett and Joe copulas are exceptionally
rare in the current literature. Therefore, in this article, we propose a new two-parameter
Archimedean copula. This copula can be seen as an extension of the Gumbel-Barnett or
Joe copulas, thus addressing the rarity of such two-parameter constructions in existing
copula theory.

The coming sections are structured as follows: Section 2 introduces the extended
Gumbel-Barnett (or Joe) copula, examining its basic functions and properties. Section 3
examines its dependence structure from different perspectives. This includes the evalua-
tion of Spearman’s rho, Kendall’s tau, and Blomqvist’s correlation coefficient. In addition,
an investigation of the upper and lower tail dependence parameters is presented. A small-
scale simulation study is carried out in Section 4. A practical application is discussed in
Section 5. Finally, Section 6 contains our conclusions drawn from the results and discus-
sions presented throughout the article.

2. The two-parameter Gumbel(-Barnett)-Joe copula
2.1. Known facts about Archimedean copula

The classical definition of a strict generator function is recalled below (see [22]).

Definition 2.1. A function ϕ(u) for u ∈ [0, 1] is said to be a strict generator function if
and only if it satisfies the following conditions:
C1: ϕ(1) = 0,
C2: limu→0 ϕ(u) = +∞,
C3: for any u ∈ [0, 1), ϕ′(u) < 0 and ϕ′(1) ≤ 0,
C4: for any u ∈ [0, 1], ϕ′′(u) ≥ 0.

Based on a specific strict generator function, a copula is associated, as described in the
next definition.

Definition 2.2. The strict Archimedean copula associated to a strict generator function
ϕ(u) is defined by

C(x, y) = ϕ−1 [ϕ(x) + ϕ(y)] ,

for (x, y) ∈ [0, 1]2.

This copula definition will be the core of the newly proposed copula. For more infor-
mation on the above definitions, all the necessary details on Archimedean copulas can be
found in [22] and [18].

2.2. New strict generator function
The next result presents our generalized version of the strict generator function of the

Gumbel-Barnett copula, also known as Nelsen’s strict Archimedean copula number 9. We
will discuss its connection with that of the Joe copula later.
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Proposition 2.3. The following function defines a new strict generator function:

ϕ(u) = log
{

1 − a log
[
1 − (1 − u)b

]}
, (2.1)

for u ∈ [0, 1], b ≥ 1 and a ∈ (0, 1/b].

Proof. Let us prove each item in Definition 2.1 in turn.
For C1: We clearly have

ϕ(1) = log
{

1 − a log
[
1 − (1 − 1)b

]}
= log(1) = 0.

For C2: Since a > 0 and b > 0, we have 1−(1−u)b ∼u∼0 bu and limu→0[−a log(u)] = +∞.
It follows from these limit results that

lim
u→0

ϕ(u) = lim
u→0

log
{

1 − a log
[
1 − (1 − u)b

]}
= log

{
1 − a log(b) + lim

u→0
[−a log(u)]

}
= lim

v→+∞
log(v) = +∞.

For C3: For any u ∈ [0, 1), we have

ϕ′(u) = − ab(1 − u)b−1

[1 − (1 − u)b]{1 − a log[1 − (1 − u)b]} .

Since b ≥ 1, a > 0 and − log[1 − (1 − u)b] ≥ 0, we have ϕ′(u) < 0. It is clear that
ϕ′(1) = 0 ≤ 0.

For C4: For any u ∈ [0, 1], we have

ϕ′′(u) = ab(1 − u)b−2 (1 − ab)(1 − u)b − a[(1 − u)b + b − 1] log[1 − (1 − u)b] + b − 1
[1 − (1 − u)b]2{1 − a log[1 − (1 − u)b]}2 .

The denominator term is clearly non-negative. For the numerator term, since
b ≥ 1 and a ∈ (0, 1/b], we have ab ≥ 0, 1 − ab ≥ 0, (1 − u)b−2 ≥ 0, (1 − u)b ≥ 0,
− log[1 − (1 − u)b] ≥ 0 and b − 1 ≥ 0; all the sub-terms are non-negative. We thus
have ϕ′′(u) ≥ 0.

This completes the proof; the considered function ϕ(u) is validated as a strict generator
function. �

To our knowledge, this is the first result that validates the function of Equation (2.1)
as a strict generating function. We can also see that the conditions on a and b are
interdependent. If this is a problem in an applied scenario, one solution is to merge the
parameters such as a = 1/b with b ≥ 1.

2.3. Corresponding copula
By Definition 2.2, the copula corresponding to the strict generator function described

in Equation (2.1) has a closed-form expression. It will be determined in the next result.

Proposition 2.4. The following function defines a valid strict Archimedean copula:

C(x, y) =

1 −
{

1 −
[
1 − (1 − x)b

] [
1 − (1 − y)b

]
exp

{
−a log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}}1/b
,

(2.2)

for (x, y) ∈ [0, 1]2, b ≥ 1 and a ∈ (0, 1/b].
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Proof. Let us consider the strict generator function described in Equation (2.1). Then
its inverse function is obtained by solving the following equation: ϕ−1[ϕ(u)] = u for any
u ∈ [0, 1], which yields

ϕ−1(v) = 1 −
{

1 − exp
[1

a
(1 − ev)

]}1/b

,

for v ≥ 0. Therefore, based on Definition 2.2, the corresponding Archimedean copula is
obtained as
C(x, y) = ϕ−1 [ϕ(x) + ϕ(y)]

= 1 −
{

1 − exp
[1

a

(
1 − elog

{
1−a log

[
1−(1−x)b

]}
+log

{
1−a log

[
1−(1−y)b

]})]}1/b

= 1 −
{

1 − exp
[1

a

(
1 −

{
1 − a log

[
1 − (1 − x)b

]} {
1 − a log

[
1 − (1 − y)b

]})]}1/b

= 1 −
{

1 −
[
1 − (1 − x)b

] [
1 − (1 − y)b

]
exp

{
−a log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}}1/b
.

This ends the proof. �

We can note that the main term involving the exponential function in Equation (2.2)
can be also rewritten as a variable-power function under the following forms:[

1 − (1 − x)b
] [

1 − (1 − y)b
]

exp
{

−a log
[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}
=

[
1 − (1 − x)b

] [
1 − (1 − y)b

]1−a log
[
1−(1−x)b

]
or [

1 − (1 − x)b
] [

1 − (1 − y)b
]

exp
{

−a log
[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}
=

[
1 − (1 − y)b

] [
1 − (1 − x)b

]1−a log
[
1−(1−y)b

]
.

So we see that a can be viewed as a parameter that modulates (or activates) a functional
power of 1 − (1 − x)b or 1 − (1 − y)b, depending on the expression being considered.

On the basis of the copula described in Equation (2.2), the following connections with
existing copulas are valid:

• By taking b = 1, we get the Gumbel-Barnett copula with the exact admissible
range of values: a ∈ [0, 1], that is

C(x, y) = xy exp [−a log(x) log(y)] .

It is worth noting that the independence copula is a special case of the Gumbel-
Barnett copula, which is obtained by taking a = 0.

• By taking a = 0 and b ≥ 1, we obtain the Joe copula indicated as

C(x, y) = 1 −
[
(1 − x)b + (1 − y)b − (1 − x)b(1 − y)b

]1/b
.

Two special cases of the Joe copula are the independence copula obtained by taking
b = 1, and the Fréchet-Hoeffding upper bound (or comonotonicity) copula obtained
by applying b → ∞.

In this sense, the copula in Equation (2.2) is a generalization of the copula above, with
an additional parameter that provides more flexibility. To the best of our knowledge, it is
new in the literature and not experienced from an applied point of view.

Based on these remarks, it is logical to call the proposed copulas the Gumbel-(Barnett)-
Joe (GJ) copula. Figure 1 exhibits some contour plots of the GJ copula for different values
of the parameters with respect to the conditions , b ≥ 1 and a ∈ (0, 1/b]. From this figure,
we can see that the GJ copula tends to increase with smaller values of the parameter a
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Figure 1. Contour plots for the GJ copula at different values of the parameters.

while b remains fixed, or with larger values of b while a remains fixed. In other words, the
GJ copula changes rapidly for smaller values of the parameters a and b.
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The conditional version of the GJ copula is obtained by differentiation as follows:

C(x|y) = ∂

∂y
C(x, y)

= (1 − y)b−1
[
(1 − x)b − 1

] {
a log

[
1 − (1 − x)b

]
− 1

}
{

1 −
[
1 − (1 − x)b

] [
1 − (1 − y)b

]
exp

{
−a log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}}1/b

{
(1 − x)b + (1 − y)b − (1 − x)b(1 − y)b

+ exp
{

a log
[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}
− 1

}−1
,

for (x, y) ∈ [0, 1]2, b ≥ 1 and a ∈ (0, 1/b].

The corresponding Kendall distribution function is given as

K(t) = t − ϕ(t)
ϕ′(t)

= t +

[
1 − (1 − t)b

] {
1 − a log[1 − (1 − t)b]

}
log

{
1 − a log

[
1 − (1 − t)b

]}
ab(1 − t)b−1 ,

for t ∈ [0, 1], b ≥ 1 and a ∈ (0, 1/b].

The corresponding (copula) density has a rather complicated form, so we omit it. In
order to understand its shape behavior, we present its plot in Figure 2. From this figure,
it is clear that the contour curves become steeper for larger values of b, i.e., the density
increases faster for larger values of b. For b > 1, the density reaches its maximum at (1, 1),
and its minimum at (0, 1) and (1, 0). For b = 1, the peaks are at (0, 1) and (1, 0), and the
minimum is at (0, 0).

3. Dependence
This section is devoted to the overall dependence properties of the GJ copula as de-

scribed in Equation (2.2), always assuming that b ≥ 1 and a ∈ (0, 1/b] as established in
Proposition 2.4.

3.1. Quadrant dependence
The subsequent proposition is about the quadrant dependence of the GJ copula.

Proposition 3.1. The GJ copula is not quadrant dependent (negative or positive) in a
uniform way, i.e., for all the possible values of the parameters.

Proof. We recall that C(x, y) is said to be positive quadrant dependent if, for any (x, y) ∈
[0, 1]2, C(x, y) ≥ xy. On the other hand, C(x, y) is said to be negative quadrant dependent
if, for any (x, y) ∈ [0, 1]2, C(x, y) ≤ xy. See [22] and [18] for more information. With
this in mind, let us consider the following parameter values: a = 0.5 and b = 2. Then
numerical calculations with respect to x and y give

C

(1
2 ,

1
2

)
= 0.3 > 0.25 = 1

2 × 1
2

and
C

( 1
10 ,

1
10

)
= 0.005 < 0.01 = 1

10 × 1
10 .
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Figure 2. Contour plots for the density at different values of the parameters.

Thus, for some fixed parameter values, the GJ copula is not necessarily quadrant depen-
dent. This concludes the proof. �
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However, to complete Proposition 3.1, we should mention that for some restricted values
of the parameters, the GJ copula can be positive quadrant dependent (like the Joe copula)
or negative quadrant dependent (like the Gumbel-Barnett copula). In addition, the GJ
copula and its density are generally not totally positive of order two (TP2). (see [18]).

3.2. Stochastic order
Some stochastic order properties of the GJ copula are described in the proposition

below.

Proposition 3.2. The GJ copula is
• negatively ordered in a for fixed b, i.e., for any 0 ≤ a1 ≤ a2 ≤ 1/b and (x, y) ∈

[0, 1]2, we have C(x, y; a1, b) ≥ C(x, y; a2, b), where C(x, y; a, b) denotes the GJ
copula with parameters a and b.

• positively ordered in b for fixed a, i.e., for any 0 ≤ a ≤ 1/b2, 1 ≤ b1 ≤ b2, and
(x, y) ∈ [0, 1]2, we have C(x, y; a, b1) ≤ C(x, y; a, b2).

Proof. We employ a step-by-step proof.
• For 0 ≤ a1 ≤ a2 ≤ 1/b and b ≥ 1, since − log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]
≤ 0,

we have

−a1 log
[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]
≥ −a2 log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]
,

which implies that[
1 − (1 − x)b

] [
1 − (1 − y)b

]
exp

{
−a1 log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}
≥[

1 − (1 − x)b
] [

1 − (1 − y)b
]

exp
{

−a2 log
[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}
.

Therefore, we have

1 −
{

1 −
[
1 − (1 − x)b

] [
1 − (1 − y)b

]
exp

{
−a1 log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}}1/b
≥

1 −
{

1 −
[
1 − (1 − x)b

] [
1 − (1 − y)b

]
exp

{
−a2 log

[
1 − (1 − x)b

]
log

[
1 − (1 − y)b

]}}1/b
,

i.e., C(x, y; a1, b) ≥ C(x, y; a2, b).
• For 0 ≤ a ≤ 1/b2 and 1 ≤ b1 ≤ b2, we have 1 − (1 − x)b1 ≤ 1 − (1 − x)b2 , so

log
[
1 − (1 − x)b1

]
≤ log

[
1 − (1 − x)b2

]
,

thus

−a log
[
1 − (1 − x)b1

]
log

[
1 − (1 − y)b1

]
≤ −a log

[
1 − (1 − x)b2

]
log

[
1 − (1 − y)b2

]
,

which implies that

exp
{

−a log
[
1 − (1 − x)b1

]
log

[
1 − (1 − y)b1

]}
≤

exp
{

−a log
[
1 − (1 − x)b2

]
log

[
1 − (1 − y)b2

]}
.

Furthermore, we have 1− (1−x)b1 ≤ 1− (1−x)b2 and 1− (1−y)b1 ≤ 1− (1−y)b2 ,
and, as a result,[

1 − (1 − x)b1
] [

1 − (1 − y)b1
]

exp
{

−a log
[
1 − (1 − x)b1

]
log

[
1 − (1 − y)b1

]}
≤[

1 − (1 − x)b2
] [

1 − (1 − y)b2
]

exp
{

−a log
[
1 − (1 − x)b2

]
log

[
1 − (1 − y)b2

]}
.
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This implies that

1 −
[
1 − (1 − x)b1

] [
1 − (1 − y)b1

]
exp

{
−a log

[
1 − (1 − x)b1

]
log

[
1 − (1 − y)b1

]}
≥

1 −
[
1 − (1 − x)b2

] [
1 − (1 − y)b2

]
exp

{
−a log

[
1 − (1 − x)b2

]
log

[
1 − (1 − y)b2

]}
,

and, equivalently,

1 −
{

1 −
[
1 − (1 − x)b1

] [
1 − (1 − y)b1

]
exp

{
−a log

[
1 − (1 − x)b1

]
log

[
1 − (1 − y)b1

]}}1/b1 ≤

1 −
{

1 −
[
1 − (1 − x)b2

] [
1 − (1 − y)b2

]
exp

{
−a log

[
1 − (1 − x)b2

]
log

[
1 − (1 − y)b2

]}}1/b2
,

i.e., C(x, y; a, b1) ≤ C(x, y; a, b2).
This ends the proof �

This result allows us to understand how the sub-models derived from the GJ copula
compare with each other in terms of a and b. We can refer to [22] for the details on this
aspect.

3.3. Spearman’s rho and Kendall’s tau correlation coefficients
Based on the classical integral definitions (see [22] and [18]), Spearman’s rho and

Kendall’s tau correlation coefficients associated with the GJ copula are given by

ρC = 12
∫∫

[0,1]2
C(x, y)dxdy − 3

and

τC = 4
∫∫

[0,1]2
C(x, y)dC(x, y) − 1,

respectively. Unfortunately, due to the complexity of the GJ copula, both integrals lack
closed-form expressions. However, they can be evaluated numerically for various parameter
choices a and b, as will be shown later in Table 1.

Despite the inability to obtain exact forms of Spearman’s rho and Kendall’s tau coef-
ficients, we were fortunate enough to derive Blomqvist’s β correlation coefficient, which
depends on the copula only through C(1/2,1/2). However, this coefficient often gives
results close to those of Spearman’s rho and Kendall’s tau (see [22]).

3.4. Blomqvists correlation coefficient
Based on the definition in [22], the medial correlation coefficient or Blomqvists β of the

GJ copula is given by

βC = 4C

(1
2 ,

1
2

)
− 1

= 3 − 4

1 −
[
1 −

(1
2

)b
]2

exp

−a

{
log

[
1 −

(1
2

)b
]}2


1/b

.

Table 1 lists the values of Spearman’s rho, Kendall’s tau and Blomqvists β for different
choices of the parameters a and b. Figure 3 illustrates Table 1 by presenting plots of these
correlation coefficients.
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Table 1. Spearman’s rho, Kendall’s tau and Blomqvists β of the GJ copula at
some choices of the parameters.

b a ρC τC βC b a ρC τC βC

1 1 −0.5239 −0.3613 −0.3815 2 0.5 0.3938 0.2689 0.2862
0.9 −0.4848 −0.3330 −0.3511 0.4 0.4137 0.2843 0.2994
0.8 −0.4437 −0.3035 −0.3191 0.3 0.4345 0.3004 0.3129
0.7 −0.4002 −0.2727 −0.2856 0.2 0.4565 0.3175 0.3265
0.6 −0.3542 −0.2404 −0.2504 0.1 0.4796 0.3356 0.3403
0.5 −0.3053 −0.2064 −0.2136 3 0.33 0.6642 0.4846 0.5180
0.4 −0.2531 −0.1704 −0.1748 0.23 0.6744 0.4940 0.5227
0.3 −0.1972 −0.1323 −0.1342 0.13 0.6850 0.5038 0.5274
0.2 −0.1369 −0.0916 −0.0916 4 0.25 0.7832 0.5974 0.6359
0.1 −0.0715 −0.0477 −0.0469 0.15 0.7890 0.6036 0.6377

Based on this computational and graphical work, we observe that the copula allows
correlations approximately between -0.52 at (a, b) = (1, 1) and 1 at b → ∞. Thus, unlike
the Gumbel-Barnett and Joe copulas, this extension can accommodate datasets with either
positive or negative correlations. In some sense, the GJ copula combines the correlation
powers of the Gumbel-Barnett and Joe copulas.

3.5. Tail dependence
The tail dependence parameters are examined in the next result. We refer to [22] for

the relevant definitions and interpretations.

Proposition 3.3. The upper and lower tail dependence parameters of the GJ copula are
determined as

λU = 2 − 21/b, λL = 0,

respectively.

Proof.
• According to [22], by using the generator function, the upper tail dependence

parameter λU is given by

λU = 2 − lim
t→0

1 − ϕ−1(2t)
1 − ϕ−1(t) = 2 − lim

t→0

{
1 − exp

[
1
a(1 − e2t)

]}1/b

{
1 − exp

[
1
a(1 − et)

]}1/b

= 2 −

lim
t→0

1 − exp
[

1
a(1 − e2t)

]
1 − exp

[
1
a(1 − et)

]


1/b

= 2 −
{

lim
t→0

1
a(1 − e2t)
1
a(1 − et)

}1/b

= 2 −
{

lim
t→0

2t

t

}1/b

= 2 − 21/b.

• From [22], by using the generator function, the lower tail dependence parameter
λL is given by

λL = lim
t→+∞

ϕ−1(2t)
ϕ−1(t) = lim

t→∞

1 −
{

1 − exp
[

1
a(1 − e2t)

]}1/b

1 −
{

1 − exp
[

1
a(1 − et)

]}1/b

= lim
t→+∞

1
b exp

[
1
a(1 − e2t)

]
1
b exp

[
1
a(1 − et)

] = lim
t→+∞

exp
[1

a
et(1 − et)

]
= 0.

The desired results are obtained. �
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Figure 3. Spearman’s rho, Kendall’s tau and Blomqvists β for the GJ copula
at different values of the parameters.

From this result, we see that the tail dependence parameters are independent of a, or
indirectly dependent since we must have b ∈ [1, 1/a). In particular, the GJ copula has no
lower tail dependence, while its upper tail dependence depends only on the value of b.
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4. Simulation study
In this section, we carry out a brief simulation study based on the GJ copula for various

choices of the parameters. For a fixed sample size of 30, 100, or 200, ten thousand samples
of data are generated from the GJ copula with uniform margins. The maximum likelihood
estimates (MLEs) are then obtained for the two parameters a and b. The unbiasedness
and efficiency of these estimates are examined by calculating the bias and the mean square
error (MSE). We recall that the bias is the average of the difference between the actual and
the estimated values of the parameter for all the runs, and the MSE is the average squared
difference between the estimated and the actual values for all runs. The estimation results
are presented in Table 2. The results for the one-parameter copula case, where a = 1/b,
are shown in the last section of the table.

Table 2. Simulation results of the GJ copula.

Actual values (a, b) Sample size Bias(a) MSE(a) Bias(b) MSE(b)
(0.2, 1) 30 0.144 0.097 0.078 0.023

100 0.052 0.026 0.032 0.004
200 0.029 0.012 0.019 0.002

(0.13, 1.3) 30 0.120 0.077 0.065 0.069
100 0.048 0.029 0.022 0.020
200 0.024 0.014 0.011 0.010

(0.1, 2) 30 0.112 0.054 0.088 0.160
100 0.063 0.029 0.034 0.045
200 0.040 0.019 0.025 0.024

Actual value a = 1/b Sample size Bias(b) MSE(b)
0.13 30 0.019 0.025

100 0.006 0.007
200 0.009 0.003

0.2 30 0.049 0.102
100 0.013 0.027
200 0.007 0.013

0.25 30 0.062 0.184
100 0.012 0.026
200 0.009 0.023

This table shows that the two estimates are consistent, as the bias and the MSE decrease
with increasing sample size in all cases. In general, both estimates tend to overestimate
the parameter value (i.e., positive bias). For the case a = 1/b, we observe that smaller
values of the bias and the MSE are associated with smaller values of b.

5. Application to data
In this section, we examine the behavior of the GJ copula as a comprehensive model

for handling real datasets. It is worth noting that two-parameter copulas are used not
only as models, but also as model selection tools. When analyzing the data, the two-
parameter copula is usually reduced to one of its one-parameter sub-families if it gives the
best fit, i.e., analyzing the data with a two-parameter copula is equivalent to making a
comparison between all of its one-parameter sub-families, saving us the trouble of fitting
each sub-family individually. In the following application, we fit a real dataset with the
two-parameter GJ copula and its special case where a = 1/b. We will also use some
well-known copulas for comparison, namely the Plackett, Clayton and Gumbel-Hougaard
copulas, as shown in Table 3.
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Table 3. Some well-known copulas

Copula Formula of C(x, y) for (x, y) ∈ [0, 1]2 Parameter(s)

Plackett

{
1+(α−1)(x+y)−

√
{1+(α−1)(x+y)}2−4α(α−1)xy

2(α−1) ; α 6= 1
xy ; α = 1

a ≥ 0

Clayton
(
x−a + y−a − 1

)− 1
a a ≥ 0

Gumbel-Hougaard e−([− log x]a+[− log y]a)
1
a a ≥ 1

5.1. Diabetic Retinopathy Data
This dataset, originally discussed by [14], consists of 197 patients with diabetic retinopa-

thy. Each patient was randomly assigned to receive laser treatment in one eye. For each
eye, the time to blindness was recorded in months. The aim of the study was to determine
the effect of laser treatment on delaying blindness in patients with diabetic retinopathy.
The data were censored for various reasons, such as death or dropout, leaving only 38
complete records. They are available in the R package "SurvCorr".

Many researchers looked at diabetic retinopathy data, some of which was based on
copulas. For example, Ghosh[12] fitted these data using the Plackett copula with and
without a covariate indicating the type of diabetes (juvenile or adult). The author pro-
posed a goodness-of-fit test and used it to show that the Plackett copula was an appropriate
choice. Jones et al.[19] considered the power generalized Weibull distribution as a marginal
distribution with the two-parameter BB9 copula, which has the Gumbel-Hougaard copula
as a sub-family. As in [12], these authors discussed two models, one with and one without
the covariate. Coelho-Barros et al.[8] analyzed these data with the FGM and Gumbel-
Barnett copulas, using the Weibull distribution for the marginal distributions. According
to their results, the Gumbel-Barnett copula fits better. Franco et al.[10] introduced a
model based on the Marshall-Olkin copula, called the GBD family, and used it to fit the
diabetic retinopathy data. The EM algorithm was used to estimate its parameters. After
analyzing the data, Alqallaf and Kundu[2] considered a bivariate inverse generalized expo-
nential (BIGE) distribution and compared it with two alternative models. They showed
that the BIGE distribution gave a better fit.

For the 197 records, the mean time to blindness in the treated eye is 38.9 compared
to 32.3 in the untreated eye. The sample Spearman’s rho correlation coefficient is 0.464,
while Kendall’s tau correlation coefficient is 0.385. For the uncensored data, the mean
time to blindness in the treated eye for the 38 patients is 38.7 compared to 32.6 in the
untreated eye. The sample Spearman’s rho and Kendall’s tau correlation coefficients are
0.255 and 0.209 respectively. Scatter plots for the full dataset and the 38 uncensored
observations are shown in Figure 4.
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Figure 4. Scatter plots for the diabetic retinopathy data.
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5.2. Method and results
In this study, we consider the 38 uncensored records with the GJ copula and its special

case a = 1/b using the Weibull distributions for both marginal distributions, where their
cumulative distribution functions are given by Fi(x) = 1−e−(x/λi)αi , x > 0, and αi, λi > 0,
with i = 1, 2. The p-value for the Anderson Darling goodness-of-fit test for the time to
blindness of the treated eye is 0.903 and that of the untreated eye is 0.678. Thus, for
both marginals, there is no evidence against the hypotheses that the data arise from a
Weibull distribution. For the sake of comparison, we also analyzed the data using the
Plackett, Clayton, and Gumbel-Hougaard copulas, as described in Table 3. In Table 4, we
obtain the MLEs for the parameters along with the Akaike information criterion (AIC)
and Bayesian information criterion (BIC).

Table 4. Estimation results for the uncensored diabetic retinopathy data using
the Weibull distribution as the marginal distributions.

Copula AIC BIC α̂1 λ̂1 α̂2 λ̂2 â b̂

GJ 590 600 1.326 20.061 1.036 16.730 0.078 1.390
GJ with a = 1/b 590 599 1.256 20.262 0.971 16.765 1.689
Plackett 589 598 1.365 20.471 1.054 16.910 2.301
Clayton 591 599 1.333 19.996 1.048 17.026 0.213
Gumbel-Hougaard 589 597 1.339 20.012 1.046 16.700 1.214

Although the best fits to the censored data are the Plackett and Gumbel-Hougaard
copulas, the other three copulas, i.e., the GJ, GJ with a = 1/b and Clayton copulas, give
similar fits as the differences between their AICs and the minimum AIC are less than 5.
For more details, see [4].

When we consider the censoring in the data, the Weibull distribution is no longer
appropriate to fit the marginals, as the p-values of the Anderson Darling test for both
marginal values are close to zero. We therefore fit all the data using the GJ copula with
empirical marginal distributions. The Plackett, Clayton, and Gumbel-Hougaard copulas
are once again used to compare the results. Table 5 shows these results. The best models
are the Gumbel-Hougaard and GJ copulas (the GJ copula, which, in this case, is almost
reduced to the Joe copula a → 0).

Table 5. Estimation results for the entire diabetic retinopathy data using
empirical margins.

Copula AIC BIC â b̂

GJ 595 601 5 × 10−8 1.356
GJ with a = 1/b 616 619 1.630
Plackett 616 619 3.401
Clayton 636 640 0.422
Gumbel-Hougaard 594 597 1.255

6. Conclusion
In this research, we have introduced a new two-parameter Archimedean copula that in-

cludes two famous one-parameter Archimedean copulas, the Gumbel-Barnett and the Joe
copulas. Each of these copulas has its own special dependence structure. This suggests
that the GJ copula is able to capture different types of dependence in the datasets. With
this in mind, this new copula was thoroughly investigated. Among the results, we found
that it covers a correlation range approximately of (−0.5, 1) and has an upper tail de-
pendence. A brief simulation was performed to examine the estimates of the parameters
involved, which were found to be unbiased and consistent. Finally, the GJ copula was
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used to fit a real dataset. The results showed that the GJ copula provided a reasonable
fit to the data. However, the main advantage of modelling with two-parameter copulas is
that they often return the most appropriate model from their one-parameter sub-family,
which in our case is the Joe copula and the Gumbel-Barnett copula. This was evident in
the discussion of the diabetic retinopathy data, as the GJ copula reduced to the Joe copula.

Acknowledgements
This research was funded by Researchers Supporting Project number (RSPD2024R1011),
King Saud University, Riyadh, Saudi Arabia.

Author contributions. C.C.: conceived the idea, developed the theory, performed the
calculations, revised and edited, supervised the results of this work. A.W.: performed the
numerical simulations, designed the figures, performed the application calculations. All
authors have read and approved the published version of the manuscript.

Conflict of interest statement. The authors declare that they have no known compet-
ing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Funding. This research was funded by Researchers Supporting Project number (RSPD-
2024R1011), King Saud University, Riyadh, Saudi Arabia.

Data availability. The data used in this article is available in the R package "SurvCorr".

References
[1] W. Alhadlaq and A. Alzaid, Distribution function, probability generating function and

archimedean generator, Symmetry 12 (12), 2108, 2020.
[2] F. A. Alqallaf and D. Kundu, A bivariate inverse generalized exponential distribu-

tion and its applications in dependent competing risks model, Communications in
Statistics-Simulation and Computation 51 (12), 7019–7036, 2022.

[3] C. Amblard and S. Girard, A new extension of bivariate FGM copulas, Metrika 70
(1), 1–17, 2009.

[4] K. P. Burnham and D. R. Anderson, Multimodel inference: understanding AIC and
BIC in model selection, Sociol. Methods Res. 33 (2), 261–304, 2004.

[5] C. Chesneau, On a weighted version of the Gumbel-Barnett copula, Innovative Journal
of Mathematics (IJM) 1 (2), 1–13, 2022.

[6] C. Chesneau, Extensions of Two Bivariate Strict Archimedean Copulas, Computa-
tional Journal of Mathematical and Statistical Sciences 2 (2), 159–180, 2023.

[7] C. Chesneau, Parametric extensions of some referenced two-dimensional strict
Archimedean copulas, Research and Communications in Mathematics and Mathe-
matical Sciences 15 (1), 49–87, 2023.

[8] E. A. Coelho-Barros, J. A. Achcar, J. Mazucheli, et al., Bivariate Weibull distributions
derived from copula functions in the presence of cure fraction and censored data, J.
Data Sci. 14 (2), 2016.

[9] W. Diaz and C. M. Cuadras, An extension of the GumbelBarnett family of copulas,
Metrika 85, 913–926, 2022.

[10] M. Franco, J.-M. Vivo, and D. Kundu, A generator of bivariate distributions: Prop-
erties, estimation, and applications, Mathematics 8 (10), 1776, 2020.

[11] C. Genest and R. J. MacKay, Copules Archimédiennes et families de lois bidimen-
sionnelles dont les marges sont données, Can. J. Stat. 14 (2), 145–159, 1986.



1758 C. Chesneau, W. Alhadlaq

[12] D. Ghosh, On the Plackett Distribution with Bivariate Censored Data, Int. J. Biostat.
4 (1), 2008.

[13] E. J. Gumbel, Distributions des valeurs extremes en plusiers dimensions, Publ. Inst.
Statist. Univ. Paris 9, 171–173, 1960.

[14] W. J. Huster, R. Brookmeyer, and S. G. Self, Modelling paired survival data with
covariates, Biometrics pages 145–156, 1989.

[15] T. P. Hutchinson and C. D. Lai. Continuous bivariate distributions emphasising
applications. Technical report, 1990.

[16] H. Joe, Parametric families of multivariate distributions with given margins, J. Mul-
tivar. Anal. 46 (2), 262–282, 1993.

[17] H. Joe, Multivariate models and multivariate dependence concepts, CRC press, 1997.
[18] H. Joe, Dependence modeling with copulas, CRC press, 2014.
[19] M. Jones, A. Noufaily, and K. Burke, A bivariate power generalized Weibull distribu-

tion: a flexible parametric model for survival analysis, Stat. Methods Med. Res. 29
(8), 2295–2306, 2020.

[20] A. W. Marshall and I. Olkin, A generalized bivariate exponential distribution, J. Appl.
Probab. 4 (2), 291–302, 1967.

[21] A. W. Marshall and I. Olkin, Families of multivariate distributions, J. Am. Stat.
Assoc. 83 (403), 834–841, 1988.

[22] R. B. Nelsen, An introduction to copulas, Springer Science & Business Media, 2007.
[23] R. L. Plackett, A class of bivariate distributions, J. Am. Stat. Assoc. 60 (310),

516–522, 1965.


