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ABSTRACT: In this study, the large deflection behavior of a circular cross-section beam is examined 

using the Combining Method (CM). The CM is a numerical solution method that uses block diagrams 

in the Matlab-Simulink program and weighting coefficients in the Differential Quadrature Method 

(DQM). The beam material considered is Functionally Graded Material (FGM). Boundary conditions 

of the beam are taken as clamped-free (C-F) and a singular load is assumed to be applied from the 

free end of the beam. Geometric nonlinear analysis is performed while calculating the large deflection 

equations of the beam and performing numerical analysis. The effects of increasing the force applied 

to the beam, changing the beam cross-section in the longitudinal direction, and changing the material 

index of the FGM on the extreme deflection behavior of the beam were examined. For comparison 

purposes, the results obtained from CM are compared with the results obtained from both 

SolidWorks-Simulation and Ansys-Workbench programs. As a result of the analysis, increasing the 

applied force causes the x and y coordinates of the end point of the beam to decrease. The change in 

geometry and material index greatly affects the large deflection occurring in the beam. 

Keywords: Large Deflection, Functionally Graded Material, Beam, Combining Method, Finite 

Element Method 

1. INTRODUCTION 

Beams are widely used in many fields of engineering applications (mechanical, civil, etc.). 

Therefore, the behavior of beam structures (deflection, vibration, buckling, etc.) has been studied 

intensively by many researchers. When studying the deflection behavior of beams, simplifications 

are made based on certain assumptions due to the non-linearity of the governing equation representing 
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the deflection behavior of the beam. In recent years, especially with the development of numerical 

analysis techniques, the default simplifications have been removed to make more accurate analysis. 

Therefore, the problem of large deflection of beams has attracted the attention of many researchers. 

For example, Belendez et al. (2002) examined the large deflection behavior of a cantilever beam 

under a singular load from its free end. In their study, they expressed the nonlinear governing equation 

that represents the system. They solved the governing equation theoretically and compared it with the 

experimental results. Dado and Al-Sadder (2005) studied the large deflection behavior of prismatic 

and non-prismatic cantilever beams under different loads. The nonlinear governing equation they 

established has been solved theoretically for the problem considered. They also compared their results 

with the results obtained from the Msc/Nastran program. 

Another issue addressed in this study is FGM. The concept of FGM was first proposed in 1984 

in Japan by Japanese scientists during thermal barrier research conducted for a spacecraft (Koizumi, 

1993). The use of FGM materials is advantageous because the material properties of the mentioned 

structure can be modified as desired from one surface to another. Below, some of the articles in the 

open literature examining the large deflection behavior of beams made of FGM are summarized.  

Kang and Li (2010) studied the large deflection of a cantilever beam made of FGM. It is 

assumed that a moment is applied from the free end of the beam under consideration. They derived 

the explicit expression of the beam considered in their study. As a result, they determined the optimum 

gradient distribution for FGM and suggested the appropriate beam design. Davoodinik and Rahimi 

(2011) studied the large deflection of a FG beam. The beam is assumed to be flexible, with a tapered 

cross-section. It is also assumed that the considered beam is subjected to inclined end loading and 

intermediate loading. As a result of using the semi-analytical method, the effects of the taper ratio, 

inclined end loading, and material distribution on the large deflection behavior were examined. 

Brojan et al. (2012) studied the large deflections of thin non-prismatic beams under non-uniform 

distributed load and concentrated load acting from the free end. The material of the beam is assumed 

to be a nonlinear elastic material. They compared the theoretical results obtained with experimental 

results and existing results in the literature. Soleimani (2012) derived the large deflection equation of 

a beam consisted of FGM under arbitrary load. In the study, it is assumed that the elasticity modulus 

of the beam varies with the exponential and power function in the longitudinal direction of the beam. 

Shooting Method was used for analysis. As a result of the analysis, the effect of using different 

elasticity modulus functions and applying different loadings on the large deflection behavior of the 

beam was examined. Kien (2013) examined the large deflection behavior of a cantilever beam made 

of axial FGM with a tapered cross-section. In the study, the effects of inhomogeneity of the beam 

material, shear deformation, and non-uniform section on the large deflection behavior of the beam 

were investigated. Sitar et al. (2014) studied the solution of the differential equation obtained for the 

large deflection behavior of a thin inhomogeneous beam. It is assumed that the beam consists of thin 

layers throughout the thickness. In this way, it was desired to obtain an FG beam whose material 

properties change continuously throughout the thickness. They solved the derived equations 

numerically and compared them with the existing results in the literature. Horibe and Mori (2018) 

solved the equation for the large deflection behavior of a thin tapered beam made of FGM. A 

transverse load is applied to the free end of the beam. They used the Runga-Kutta method in their 

solutions. They compared the deflection and bending stress results obtained as a result of their 

solutions with the existing results. Lin et al. (2019) overcame the large deflection problem of the axial 

FG beam with the Homotopy Analysis Method. It is assumed that the beam is cantilever and the load 
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is applied from its free end. Moreover, it is assumed that the elasticity modulus varies along the beam 

length. They compared their results with the results obtained from the finite element method and 

previous studies. Saraçoğlu et. al. (2019) calculated the deflections of orthotropic beams using Euler-

Bernoulli and Timoshenko beam theories. In their study, orientation angle, material properties, and 

length/depth ratio were examined in the static analysis of orthotropic beams. Saraçoğlu et. al. (2022) 

studied equal strength cantilever and simply supported beams made of functionally graded material 

under uniformly distributed load or point load. Dimensionless deflections of the beams considered 

were obtained for different material indices. Nguyen et. al. (2022a) studied the large deflection 

behavior of a two-phase FG sandwich beam with different homogeneity. They used a nonlinear finite 

element method in their study. In their study, they used four types of homogenization methods to 

obtain the effective elastic modulus of the beam. In the study, the Newton-Rapson Method and Arc-

Length technique were used to find the large deflection and stress distribution of the beam. Nguyen 

et al. (2022b) developed a model based on Isogeometric analysis for the large deflection of curved 

FG beams. They also used a 3-dimension beam theory in their study. They considered five benchmark 

test cases to demonstrate the accuracy of their proposed solution technique. Additionally, the effect 

of material variations on curved beam behavior under different loads is also expressed. Li et al. (2022) 

proposed a non-local numerical model for large deformation analysis of variable cross-section FG 

beam. They used the peridynamic differential operator in the solution of their study. They also used 

variational analysis, the Lagrange multiplier method, and the Newton-Rapson method to solve the 

governing equation. They applied their proposed method to the large deflection analysis of a 

homogeneous cantilever beam and a linearly and parabolically varying cantilever FG beam. They 

also compared their results with finite element results.  

With the development of technology in the last twenty years, computer processor speeds have 

increased considerably. Thus, the interest in numerical techniques has constantly increased 

accordingly. Numerical techniques attract the attention of scientists in solving problems that cannot 

be easily solved with theoretical calculations. CM, one of these numerical techniques, was first 

proposed by Girgin (2008) for the solution of nonlinear differential equations. Girgin stated in his 

study that the conditions cannot be applied at any instant in the time domain while making solutions 

in computer-aided numerical programs. He stated that this problem could be overcome by combining 

Matlab/Simulink, one of the computer-aided numerical programs, and the DQM, another numerical 

technique. Thus, the shortcomings of DQM, which cannot be easily used in solving nonlinear 

problems, and the shortcomings of Matlab/Simulink in applying boundary conditions have been 

eliminated. After this study, Girgin (2009) applied the same technique to the Integral Quadrature 

Method (IQM). Thus, derivative and integral operations in nonlinear equations with boundary 

conditions can be easily performed. Moreover, Girgin et al. (2014) applied CM to four different 

nonlinear differential equations. These equations have not only initial conditions but also boundary 

conditions. They compared the results obtained from CM with the results available in the literature. 

In addition, Girgin et al. (2020) carried out a large deflection analysis of the prismatic embedded 

beam for different loading conditions. Unlike this study, the material is isotropic and the beam cross-

section is taken as constant. Additionally, the iterative DQM method was also proposed in this study.  

Furthermore, there are a few studies in which only DQ methods are used when performing large 

deflection analyses of beams. Kurtaran (2015) examined the large deflection of moderately thickness 

FG curved beams for static and transient behavior using the generalized DQM. He expressed the 

spatial derivatives in the equilibrium equation with generalized DQM. He solved the static 
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equilibrium equation using the Newton method and the dynamic equilibrium equation using the 

Newmark method. Hu et al. (2017) formulated the nonlinear large deflection contact problem for 

curved beams. They proposed a new adaptive DQ element method to predict the contact positions in 

the curved beam. Demir (2023) solved the problem of large displacement behavior of a Functionally 

Graded beam under uniform thermal load. He examined the effects of temperature, material, 

geometry, slenderness, force, and boundary conditions on the large displacement of the beam. 

 In this study, the large deflection behavior of a cantilever beam with a variable cross-section 

made of FGM is studied. CM method is used to solve the complex nonlinear governing differential 

equation. In addition, the results obtained with CM were compared with the results obtained from 

Ansys-Workbench and SolidWorks-Simulation programs for comparison purposes. Since the 

problem addressed in the literature research has strong non-linearity, the studies generally require the 

application of complex calculation procedures. However, the complex nonlinear differential equation 

mentioned with CM can be easily solved. As a result of comparison with the results obtained from 

finite element-based programs, it is seen that quite compatible values are obtained. 

2. GEOMETRIC AND MATERIAL PROPERTIES OF THE BEAM  

2.1 Geometry 

The geometry of the FG beam is shown in Fig. 1. It can be seen from the figure that the boundary 

condition of the beam is C-F and the cross-section of the beam is a variable that depends on the 

variable r(s) along the longitudinal direction. ro is the radius of the beam at the clamped end.  

 

Figure 1. The FG beam with variable cross-section 

 

The force (F) is applied at the free end of the beam. L is the length of the beam. x, y and z refers 

to the coordinates in the longitudinal, transverse, and normal direction and s is the curvilinear 

coordinate of the beam along the deflection direction. The radius of the beam varies along the s 

coordinate and is given by the formula in Eq. 1. 
 

𝑟(𝑠) = 𝑟𝑜 (1 + (
𝑠

𝐿
))

𝑛1

 (1) 

where n1 is a geometric index. In this study, n1 is taken as -0.3, -0.15, 0, 0.15 and 0.3. ro and L are 

taken as 10 and 1000 mm, respectively. So, the variation of r(s) depending on the geometric index is 

obtained as shown in the Figure 2. As can be seen from the figure, the cross-section of the beam is 

constant when n1=0. 
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Figure 2. Variation of the radius of the beam with s coordinate 

Additionally, it can be seen from the figure that the cross-section increases when the n1 value 

is positive and decreases when it is negative. 

 

2.2 Material 

It is assumed that the material of the beam is functionally graded material. The properties of the 

beam material are varied from the clamped end to the free end. That is, similar to the change in radius, 

the material properties of the beam also vary along the s coordinate. This variation is given for the 

Elasticity Modulus in the Eq. 2. 
 

𝐸(𝑠) = 𝐸𝑜 (1 + (
𝑠

𝐿
))

𝑛2

 (2) 

where n2 is a material index. n2 is taken as -0.7, -0.4, 0, 0.4 and 0.7. Eo is the Elasticity Modulus of 

the beam at the clamped end. In this study, the material at the clamped end is taken as Aluminum and 

its Elasticity modulus is 70000 N/mm2. The variation in the elasticity modulus (E(s)) depending on 

the material index is obtained as shown in the Fig. 3. 

 

 

Figure 3. Variation in the Elasticity modulus of the beam with s coordinate 

 

As can be seen from the figure, the Elasticity modulus of the beam is constant when n2=0 and it 

increases when the n2 value is positive and it decreases when n2 is negative. 
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3. THEORETICAL FORMULATION OF THE BEAM  

The large deflection behavior of a functionally graded beam with variable cross-section is 

considered in this study. The variable cross-section beam with a singular load applied from its free 

end is shown on the left in Fig. 4 (Dado and Al-Sadder, 2005). 

 

Figure 4. Variation in the Elasticity modulus of the beam with s coordinate 

The free-body diagram of the free-end section of the considered beam is shown in the upper 

right of Fig. 4. When the force equilibrium in the vertical direction is written here, the following 

equation is obtained. 

 

𝑄(𝑠) = 𝐹 (3) 

Here Q(s) and F are the internal and external vertical forces, respectively. In the bottom right 

corner of Fig. 4, a free-body diagram is shown by considering the infinitesimal element of the beam 

section under consideration. If the moment equilibrium is written in the infinitesimal element, it 

yields: 

𝑑𝑀(𝑠)

𝑑𝑠
𝑑𝑠 + 𝑄(𝑠) 𝑑𝑥 = 0 (4) 

When both sides of the equation are divided by ds, it gives, 

 
𝑑𝑀(𝑠)

𝑑𝑠
+ 𝑄(𝑠) 

𝑑𝑥

𝑑𝑠
= 0 (5) 

The following equations can be obtained from the figure showing the infinitesimal element. 

𝑑𝑦

𝑑𝑠
= 𝑠𝑖𝑛 (6) 

𝑑𝑥

𝑑𝑠
= 𝑐𝑜𝑠 

(7) 

where  is the slope of the beam. 
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When Eq. 7 is substituted into Eq. 5, the following equation yields. 

 
𝑑𝑀(𝑠)

𝑑𝑠
= −𝑄(𝑠) 𝑐𝑜𝑠 (8) 

 

When Eq. 3 is substituted into Eq. 8, it gives, 

 
𝑑𝑀(𝑠)

𝑑𝑠
= −𝐹 𝑐𝑜𝑠 (9) 

 

In addition, according to the Euler–Bernoulli law, the following equation can be written. 

 

𝑀(𝑠) = 𝐸(𝑠)𝐼(𝑠)
𝑑

𝑑𝑠
 (10) 

 

E(s) in Eq. 10 was given in Eq. 2. I(s) is the variable area moment of inertia of the beam and, it 

is given in Eq. 11. 

 

𝐼(𝑠) =  
(𝑟(𝑠))

4

4
 (11) 

     

r(s) in Eq. 11 was given in Eq. 1. The derivative of Eq. 10 with respect to ds is given in Eq. 12. 

 

𝑑𝑀(𝑠)

𝑑𝑠
= (

𝑑𝐸(𝑠)

𝑑𝑠
𝐼(𝑠) + 𝐸(𝑠)

𝑑𝐼(𝑠)

𝑑𝑠
)
𝑑

𝑑𝑠
+ 𝐸(𝑠)𝐼(𝑠)

𝑑2

𝑑𝑠2
 (12) 

When this resulting equation is substituted in Eq. 9, the following governing equation can be 

obtained as similar to Reference (Dado and Al-Sadder, 2005). 

 

(
𝑑𝐸(𝑠)

𝑑𝑠
𝐼(𝑠) + 𝐸(𝑠)

𝑑𝐼(𝑠)

𝑑𝑠
)
𝑑

𝑑𝑠
+ 𝐸(𝑠)𝐼(𝑠)

𝑑2

𝑑𝑠2
+ 𝐹 𝑐𝑜𝑠 = 0 (13) 

 

When Eqs. 1 and 2 are substituted in Eq. 13, the following general equation is obtained,  

 

𝑑

𝑑𝑠
=

1

(𝑛2 + 4𝑛1)
(−

𝑑2

𝑑𝑠2
(𝐿 + 𝑠) −

4(𝐿 + 𝑠) 𝐹 𝑐𝑜𝑠

𝐸𝑜  𝑟𝑜
4 (

𝐿 + 𝑠

𝐿
)
−𝑛2

(
𝐿 + 𝑠

𝐿
)
−4𝑛1

) (14) 

 

The nonlinear differential equation obtained is normalized for the solution with CM. For this, 

the expression s is made dimensionless as follows, 

 

𝑠 = 𝑆 𝐿 (15) 

where S is normalized form of s. 

 

Thus, the following normalized equation is obtained. This equation is used to solve the problem. 

 
𝑑

𝑑𝑆
=

1

(𝑛2 + 4𝑛1)
(−

𝑑2

𝑑𝑆2
(1 + 𝑆) −

4𝐿2(𝑆 + 1) 𝐹 𝑐𝑜𝑠

𝐸𝑜  𝑟𝑜
4

(1 + 𝑆)−𝑛2(1 + 𝑆)−4𝑛1) (16) 
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The C-F boundary conditions of the beam are given in Eqs. 17-20. 

 

𝑦(0) = 0 (17) 

  

𝑥(0) = 0 (18) 

  

 (0) = 0 (19) 

  

𝑑 (𝑠)

𝑑𝑠
|
𝑠=𝐿

= 0 (20) 

 

4. THE SOLUTION WITH COMBINING METHOD 

The CM used in this study is implemented in the Simulation module of the Matlab program. 

While CM is applied, the weight coefficients obtained for the derivatives and integrals in DQM are 

used for the derivative and integration operations needed to solve the nonlinear differential equation. 

The procedure for obtaining weight coefficients for derivative and integral are explained in Sections 

4.1 and 4.2. 

 

4.1 Weighting Coefficients for Derivatives 

 

The first-order derivative of a function f(x) is given in DQM as follows (Girgin,2008), 

 

𝑑𝑓(𝑥𝑖)

𝑑𝑥
=∑𝐴𝑖𝑗

(1)
𝑓(𝑥𝑖)          (𝑖 = 1,2, … ,𝑁)

𝑁

𝑗=1

 (21) 

where 𝐴𝑖𝑗
(1)

 is the weighting coefficients of the first-order derivative of the function f(x). The test 

functions are obtained from the following Lagrange interpolation shape functions. 

 

𝑙𝑖(𝑥) =
(𝑥)

(𝑥 − 𝑥𝑖)
(1)(𝑥𝑖)

          (𝑖 = 1,2, … ,𝑁) (22) 

   

where 

 

 (𝑥) =∏(𝑥 − 𝑥𝑖)

𝑁

𝑖=1

 (23) 

  

 (1) (𝑥𝑖) =
𝑑(𝑥𝑖)

𝑑𝑥
= ∏ (𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1,𝑗𝑖 

 (24) 
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By substituting Eq. 22 into Eq. 21, weighting coefficients for first-order derivatives are 

obtained as follows. 

 

𝐴𝑖𝑗
(1) =

𝑑𝑙𝑗(𝑥𝑖)

𝑑𝑥
=

 (𝑖)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)
(1)(𝑥𝑗)

          (𝑖, 𝑗 = 1,2, … ,𝑁), 𝑖  𝑗 (25) 

  

𝐴𝑖𝑖
(1) =

𝑑𝑙𝑖(𝑥𝑖)

𝑑𝑥
= − ∑ 𝐴𝑖𝑗

(1)

𝑁

𝑗=1,𝑖𝑗

          (𝑖 = 1,2, … , 𝑁) (26) 

 

These obtained coefficients are the elements of the weighting coefficients matrix of the first-

degree derivative [𝐴(1)]. The coefficients of higher-order derivatives are calculated with the following 

formula, 

 

[𝐴(𝑟)] =
𝑑𝑟

𝑑𝑥𝑟
=
𝑑

𝑑𝑥

𝑑𝑟−1

𝑑𝑥𝑟−1
= [𝐴(1)][𝐴(𝑟−1)] (27) 

 

In this study, widely used equally spaced sampling points are selected in normalized 

coordinates as given in Eq. 28, 

 

𝑥𝑖 =
𝑖 − 1

𝑁 − 1
          (𝑖 = 1,2, … , 𝑁) (28) 

4.2 Weighting Coefficients for Integrals 

Integral coefficients and integral constant coefficients are used to obtain the function itself from 

its first-order derivative (Girgin, 2009). 

 

∫
𝑑𝑓(𝑥𝑖)

𝑑𝑥
𝑑𝑥 =∑𝐵𝑖𝑗

(1) 𝑑𝑓(𝑥𝑖)

𝑑𝑥
+∑𝐶𝑖𝑗

(0)𝑓(𝑥𝑖)          (𝑖 = 1,2, … ,𝑁)

𝑁

𝑗=1

𝑁

𝑗=1

 (29) 

 

where 𝐵𝑖𝑗
(1)

 and 𝐶𝑖𝑗
(0)

 are weighting coefficients of the single integral and coefficients of the integral 

constant, respectively. The following process is applied to find 𝐵𝑖𝑗
(1)

 weight coefficients 

 

𝐷𝑖𝑗 =
𝑥𝑖 − 𝑔

𝑥𝑗 − 𝑔
𝐴𝑖𝑗
(1)     𝑖𝑗     (𝑖, 𝑗 = 1,2, … ,𝑁) (30) 

  

𝐷𝑖𝑖 = 𝐴𝑖𝑖
(1) +

1

𝑥𝑖 − 𝑔
     𝑖 = 𝑗     (𝑖, 𝑗 = 1,2, … ,𝑁) (31) 

 

where 𝐴𝑖𝑗
(1)

 is the weighting coefficients of the first-order derivative and g is constant and is not equal 

to 𝑥𝑖. If the inverse of matrix [𝐷] is taken as matrix [𝐻], the elements of matrix [𝐵] are obtained from 

the elements of matrix [𝐻] as follows: 

 

𝐵𝑖𝑗
(1) = 𝐻𝑖𝑗 − 𝐻1𝑗           (𝑖, 𝑗 = 1,2, … ,𝑁) (32) 
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As for the coefficients of the integral constant 𝐶𝑖𝑗
(0)

, they are given in Eq. 33. 
 

𝐶𝑖𝑗
(0) = {

1     𝑓𝑜𝑟     𝑗 = 1 
0     𝑓𝑜𝑟     𝑗  1  

          (𝑖, 𝑗 = 1,2, … ,𝑁) (33) 

4.3 Solution 

The normalized governing differential equation (Eq. 16) is integrated to find the  rotation 

function in the solution of the problem under consideration. To make the solution more 

understandable with CM, complex expressions are embedded into subsystems as shown in Eq. 34. 

 

 = ∫

(

 
 1

(𝑛2 + 4𝑛1)⏟      
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐴

(−
𝑑2

𝑑𝑆2
(1 + 𝑆)⏟    

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐵

−
4𝐿2(𝑆 + 1) 𝐹 

𝐸𝑜  𝑟𝑜
4⏟        

𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐶

𝑐𝑜𝑠 (1 + 𝑆)−𝑛2⏟      
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐷

(1 + 𝑆)−4𝑛1⏟      
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐸

)

)

 
 
 𝑑𝑆 (34) 

 

Eq. 34 can be written briefly as Eq. 35, 

 

 = ∫(𝐴(−
𝑑2

𝑑𝑆2
 𝐵 −  𝐶 𝑐𝑜𝑠  𝐷  𝐸))𝑑𝑆 (35) 

 

After finding the  value in Eq. 35, x and y values at each point of the beam are obtained from 

Eqs. 6 and 7 as Eqs. 36 and 37, respectively. 
 

𝑦 = ∫𝑠𝑖𝑛 𝑑𝑆
⏟      
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐹

 
(36) 

  

𝑥 = ∫𝑐𝑜𝑠  𝑑𝑆
⏟      
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐺

 
(37) 

  

While solving a differential equation with Matlab/Simulink, the blocks in the library are 

brought to the work area by drag and drop method and combined to define the equation. Although it 

is very easy to define the initial conditions in solving the differential equation with Matlab/Simulink, 

the boundary conditions needed in the differential equation expressing the beam problem cannot be 

entered. Therefore, this problem was overcome by combining this method with the DQM. Fig. 5 

shows the design of Eqs. 34, 36, and 37 using CM in the Matlab/Simulink environment.  

 
Figure 5. Block diagram of Eqs. 34, 36 and 37 



Demir, E., Çallıoğlu H., Girgin Z., JournalMM (2024), 5(1) 87-105 

 

 

 

97 

 

First of all, the four operations in Eq. 34 are performed by combining the necessary blocks 

(sum, subtract, etc.), and the integral and derivative operations are performed using the weight 

coefficients in DQM. The operations in Eqs. 36 and 37 are shown on the right side of the main block 

diagram. The constants and weighting coefficients shown in Fig. 5 are also defined as shown in Fig. 

6. 

 

 

Figure 6. Constants and weighting coefficients in the previous figure 

The weighting coefficients expressed in Sections 4.1 and 4.2 are defined in the DQ block 

shown in Fig. 6. As seen in the figure, the S value is normalized and taken within the range [0,1]. It 

is assumed that there are 13 sampling points in the beam. In addition, the subsystems shown in Fig. 

5 are given in Figs. 7-13, respectively. 

 

 
Figure 7. Block diagram of Subsystem A 

 

 

Figure 8. Block diagram of Subsystem B 

 

Subsystems A and B given in Eq. 34 are shown in Figs. 7 and 8. Subsystem A is the 

denominator of the fractional expression. The other subsystems C, D, E, F, and G are shown in Figs. 

9-13, respectively. 
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Figure 9. Block diagram of Subsystem C 

 

 
Figure 10. Block diagram of Subsystem D 

 

 
Figure 11. Block diagram of Subsystem E 

 

 
Figure 12. Block diagram of Subsystem F 

 

 
Figure 13. Block diagram of Subsystem G 
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Additionally, the subsystems where boundary conditions are entered, as seen in the main block 

diagram, are provided in Fig. 14. 

 

  

(a) 
𝑑 (1)

𝑑𝑠
= 0 (b)  (0) = 0 

Figure 14. Block diagrams of boundary conditions. 

 

As mentioned above, assuming that there are 13 sampling points in the beam, the incoming 

signal has been divided into 13 branches and later merged. The boundary condition is entered from 

the relevant sampling point. 

 

5. FINITE ELEMENT-BASED SOLUTION 

In order to verify the results obtained with CM, the problem is also solved with SolidWorks 

and Ansys-Workbench programs. SolidWorks program can make three-dimensional designs of 

structures. In addition, the Simulation module in the SolidWorks program allows different analyses 

of structural elements. Furthermore, the Ansys-Workbench program has also the capability to perform 

various analyses on structural elements. In this study, static analysis including large displacements is 

performed in both programs. In both programs, the uniform model is obtained before analysis. In the 

study, a three-dimensional solid beam model is used in the SolidWorks program and a one-

dimensional line beam model is used in the Ansys-Workbench program for ease of definition. These 

models are shown in Fig. 15. 

 

  
(a) Solid beam model in SolidWorks. (b) Line beam model in Ansys-Workbench. 

Figure 15. Beam models. 

 

After the uniform models are obtained in both programs, the material definition process is 

carried out. For this purpose, special material definition is made in both programs. Eq. 2 is taken as a 

basis when defining the special material. After the material is defined, the meshing process should be 
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done. In finite element-based programs, the meshing process needs to be carried out. The meshing 

process performed in both programs is shown in Fig. 16. As a result of the meshing process, the 

meshed model has 11707 nodes and 6555 element numbers in the SolidWorks program, and 201 

nodes and 100 element numbers in the Ansys-Workbench program. 

 

  

(a) Meshed model in SolidWorks. (b) Meshed model in Ansys-Workbench. 

Figure 16. Meshed models. 

 

Clamped boundary condition is applied at one end and a singular load is applied at the other 

end of the meshed models. The static analysis is then started. The models obtained as a result of the 

analysis are given in Fig. 17. 

 

  
(a) The model after analysis in SolidWorks. (b) The model after analysis in Ansys-Workbench. 

Figure 17. The models after analysis. 

 

6. RESULT AND DISCUSSION  

 

In this study, a large deflection analysis of a functionally graded beam using the CM is carried 

out. Moreover, especially, the effects of increasing the force applied to the endpoint of the beam, 

changing the material index, and changing the beam cross-section on the large deflection of the beam 

are investigated. Also, the results obtained with CM are compared with the results obtained from 

SolidWorks and Ansys-Workbench programs for comparison. 

 

6.1 Effect of Force 

The force applied to the end of the beam is increased to see the effect of the force magnitude 

on the large deflection of the beam. The force is taken as 100 N, 200 N, 400 N, 800 N, and 1600 N, 

respectively. Additionally, when examining the force effect, it is assumed that the indexes n1 and n2 

are taken to be equal to zero. Hence, from Eqs. 1 and 2, r(s) and E(s) are equal to ro and Eo 

respectively. In this study, the radius ro is constant and equal to 10 mm. As for Eo elasticity modulus, 
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the material of the beam is assumed to be homogenous, isotropic Aluminum, and its properties are 

given in Table 1. 

 
Table 1. The material properties of Aluminum 

Material Elasticity Modulus [MPa] Density [kg/m3] Poisson’s Ratio 

Aluminum 70000 2700 0.3 

 

Fig. 18 shows the behavior of large deflection of the beam under various loads. As can be seen 

in Fig. 18(a), the beam contains 13 sampling points. The x and y coordinates of these points are 

obtained from the CM for the loads mentioned above. Fig. 18(b) shows the large deflection in the x 

and y directions of the free end of the beam for given loads. 

 

  
(a) Large deflection profiles. (b) Coordinates of the free end. 

Figure 18. The large deflection behavior under various loads.  

 

As shown in the figures, the applied forces are chosen twice the previous one each time. The 

deflection in the y coordinate of the free end of the beam is -60.4025 mm when the force is equal to 

100 N, and -595.5787 mm when the force is equal to 1600 N. Therefore, when the force increases by 

16 times, the deflection value increases by approximately 9.86 times. As for the variation in the x 

coordinate of the free end of the beam, it is 997.8082 mm when the force is equal to 100 N, and 

753.1908 mm when the force is equal to 1600 N. The displacement in the x coordinate of the free end 

of the beam decreases by approximately 1.33 times. In other words, as seen in Fig. 18(b), the position 

in the y coordinate increases towards to negative direction gradually as the applied force increases. 

On the other hand, the position in the x coordinate decreases slightly until the force reaches 400N and 

then decreases rapidly. 

6.2. Effect of Radius 

In order to examine the effect of variation in the cross-sectional area of the beam in the 

longitudinal direction on large deflection, the radius of the beam is given depending on s as seen in 

Eq. 1. n1 in this equation is the geometric index, and the variation in beam radius for various values 

of n1 is given in Fig. 2. n1 values are taken as -0.3, -0.15, 0, 0.15, 0.3 in this study. As seen in Fig. 2, 

when the value of n1 is equal to zero, the radius of the beam is 10 mm, and the cross-sectional area 

of the beam is constant. At negative values of the geometric index n1, the radius decreases from the 

clamped end to the free end, and when it is positive, it increases. As for the material index n2, it is 

taken as 0.5. Therefore, the material considered is FGM. 
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(a) Large deflection profiles. (b) Coordinates of the free end. 

Figure 19. Variation in large deflection with geometric index.  

 

The effect of variation in the geometric index on the large deflection is shown in the two figures 

above. While examining this effect, it is assumed that the magnitude of the force applied from the 

free end of the beam is 100 N. When Fig. 19(a) is examined, as expected, the large deflection value 

increases more as the n1 value decreases. Because, as the n1 value decreases, the cross-sectional area 

of the beam decreases gradually in the longitudinal direction. Fig. 19(b) shows the change of the x 

and y coordinates of the free end of the beam with the geometric index n1. As can be seen from the 

figure, the change in both the x and y coordinates of the free end of the beam increased as the n1 value 

decreased. 

 

6.3 Effect of Material 

As seen in Fig. 3, as the material index (n2) changes, the content of the beam material also 

changes. For positive values of n2, the material of the clamped end of the beam becomes Al, while 

the free end is a material with a higher modulus of elasticity than Al. When n2 is equal to zero, the 

beam material becomes pure Al. When n2 takes a negative value, the clamped end of the beam is 

again Al, but unlike the first case, the free end is a material with a lower modulus of elasticity than 

Al. When examining this effect, n1 and F values are taken as -0.5 and 100 N, respectively. As for n2 

values, they are taken as -0.7, -0.4, 0, 0.4, 0.7. 

 

  
(a) Large deflection profiles. (b) Coordinates of the free end. 

Figure 20. Variations in large deflection with material index.  

 

Fig. 20 shows the effect of the material index on the large deflection behavior of the beam. 

When Fig. 20 (a) is examined, beams with positive n2 values deflect less as expected, since the 

modulus of elasticity directly affects the large deflection of the beam. Fig. 20(b) shows the x and y 

coordinates of the deflection of the free end of the beam for different n2 values. As seen in the figure, 

the change in both coordinates increases as the n2 value decreases. 
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6.4 Comparison  

In this study, the large deflection behavior of a functionally graded variable cross-section beam 

is investigated using CM. In order to prove the accuracy of the results obtained with CM, the problem 

is solved by modeling with SolidWorks-Simulation and Ansys-Workbench programs. Both programs 

mentioned here are based on the finite element method in their calculations. For comparison purposes, 

solutions are made in all three methods for different force values by considering a beam of n1=0 and 

n2=1. Table 2 shows the comparison of results obtained from CM and Finite Element based programs 

(FEBP). 

 
Table 2. Comparison of results obtained from CM and Finite Element based programs 

Method Axis 
Force [N] 

50 100 400 800 1600 

Combining 

Method (CM) 

x 999.64220 998.57300 978.40620 925.78940 801.32990 

y -24.77620 -49.46500 -191.32000 -349.32700 -550.59300 

SolidWorks 

Simulation 

x 999.29280 997.87800 975.81000 921.50000 794.90000 

y -24.74000 -49.41000 -191.30000 -349.40000 -552.80000 

Ansys 

Workbench 

x 999.64580 998.58720 978.61100 926.40000 802.46000 

y -24.65300 -49.22100 -190.43000 -347.97000 -549.2700 

% CM-Solid 

Difference 

x 0.03496 0.06962 0.26571 0.46440 0.80563 

y -0.14603 -0.11129 -0.01043 -0.02086 -0.40011 

% CM-Ansys 

Difference 

x 0.00036 0.00142 0.02093 0.06593 0.14093 

y -0.49831 -0.49454 -0.46625 -0.38926 -0.24051 

 

The following formula was used when calculating the differences between the results obtained 

from CM and Finite Element based programs. 
 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 𝑥 
|FEBP − CM|

(
FEBP + CM

2 )
 (38) 

 

When the percentage differences in the table are examined, it is seen that the results obtained 

with CM are very close to the results obtained with FEBP. When the results are examined, it is seen 

that the differences in the x coordinate are lower in the one-dimensional finite element analysis, and 

the differences in the y coordinate are lower in the three-dimensional finite element analysis. 

 

7. CONCLUSION  

 

The numerical large deflection solution of a FG beam with variable cross-section is overcome 

by using CM in this study. Additionally, the problem under consideration is also solved using two 

finite element-based programs, and a comparison is made. As a result of the numerical analysis, the 

following results are obtained. 

 

 By increasing the force applied from the free end of a beam with C-F boundary conditions, 

the y coordinate of the position of the free end of the beam gradually decreases, while the x 

coordinate decreases slightly until a certain value and decreases rapidly after this value. 
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 As the cross-section of a beam with C-F boundary conditions decreases from the clamped end 

to the free end, the large deflection value increases proportionally compared to the constant 

cross-sectional beam. 

 When an FG beam is designed in such a way that the elasticity modulus decreases from the 

clamped end to the free end, the large deflection amount obtained is greater than the 

homogenous isotropic beam whose elasticity modulus is not reduced. 

 In comparison with the results obtained from finite element-based programs, CM is 

recommended because it can be easily used in solving geometric nonlinear problems. 

 It is seen from the results that the differences in the x coordinate are lower in the one-

dimensional finite element analysis, but the differences in the y coordinate are lower in the 

three-dimensional finite element analysis. 

 When the extreme values of the differences between the results obtained from the CM and 

finite element methods are examined, it is obtained as 0.80563 percent for 1600 N in the x 

coordinate, while it is -0.49831 percent for 50 N in the y coordinate. 
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