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Abstract. Several generalized Simpson tensorial type inequalities for selfad-

joint operators have been obtained with variation depending on the conditions
imposed on the function f∣∣∣∣∣∣∣∣16 f(λA⊗ 1 + (1 − λ)1 ⊗B) +
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1. Introduction and preliminaries

The concept we now call a “tensor” wasn’t originally named that way. When
Josiah Willard Gibbs first described the idea in the late 19th century, he used
the term “dyadic.” Today, mathematicians define a tensor as the mathematical
embodiment of Gibbs’ initial concept. Tensors and inequalities are natural part-
ners, thanks to the widespread use of inequalities in mathematics. These math-
ematical statements about comparisons have a profound impact on various scien-
tific disciplines. While many types of inequalities exist, some of the most signif-
icant ones include Jensen’s, Ostrowski’s, Hermite-Hadamard’s, and Minkowski’s
inequalities. For those interested in delving deeper, references [21] and [23] provide
more details about inequalities and their fascinating history. Regarding the gen-
eralizations of the aforementioned inequalities, numerous studies have been pub-
lished; for additional information, check the following and the references therein
[8, 24, 25, 22, 17, 16, 15, 28, 29, 30, 1, 2, 3, 4, 5, 7, 9, 10].
Classical inequalities of Simpson type have been given by Hezenci et al. [19] and
Sarikaya et al. [26]. To enhance the presentation of this work, we will demonstrate
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new developments in the theory of inequalities in Hilbert spaces. One such devel-
opment is the Dragomir’s inequality for normal operators given by the following
[11]:

Theorem 1.1. Let (H ; 〈., .〉) be a Hilbert space and T : H →H a normal linear
operator on H . Then

‖Tx‖2 ≥ 1

2

(
‖Tx‖2 + |〈T2x, x〉|

)
≥ |〈Tx, x〉|2,

for any x ∈ H, ‖x‖ = 1. The constant 1
2 is the best possible.

The Hermite-Hadamard inequality in the selfadjoint operator sense, as provided
by Dragomir [12], is another intriguing conclusion.

Theorem 1.2. Let f : I → R be an operator convex function on the interval I.
Then for any selfadjoint operators A and B with spectra in I we have the inequality

f
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.

The first paper related to tensorial inequalities in Hilbert space was written by
Dragomir [14]. In the paper, he proved the tensorial version of the Ostrowski type
inequality given by the following.

Theorem 1.3. Assume that f is continuously differentiable on I with ‖f′‖I,+∞ :=

supt∈I |f′(t)| < +∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I. Then
the following inequality holds:∥∥∥∥f((1− λ)A⊗ 1 + λ1⊗B)−

∫ 1

0

f((1− u)A⊗ 1 + u1⊗B)du

∥∥∥∥ (1.1)

≤ ‖f′‖I,+∞

[
1

4
+

(
λ− 1

2

)2 ]
‖1⊗B− A⊗ 1‖

for λ ∈ [0, 1].

Recently, various inequalities in the same tensorial surrounding have been ob-
tained. The following result of Simpson type was obtained by Stojiljković [31].

Theorem 1.4. Assume that f is continuously differentiable on I and |f′′| is convex
and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I. Then the following
inequality holds: ∣∣∣∣∣∣∣∣16
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+
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)
(1− k)α−1dk

)∣∣∣∣∣∣∣∣
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(‖f′′(A)‖+ ‖f′′(B)‖)
(
3α2 + 8α+ 7

)
(α+ 2)(24α+ 24)

for α > 0.

The following inequality has been recently obtained by the same author [32].

Theorem 1.5. Assume that f is continuously differentiable on I with ‖f′‖I,+∞ :=

supt∈I |f′(t)| < +∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I. Then
the following inequality holds:∥∥∥∥∫ 1

0

f((1− λ)A⊗ 1 + λ1⊗B)dλ− f
(
A⊗ 1 + 1⊗B

2
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24

.

Recently, the following inequality of Ostrowski type was obtained by Stojiljković
et al. [33] which generalized the recently obtained results by Dragomir [14].

Theorem 1.6. The formulation is the same as the one given by Dragomir in his
Ostrowski type Theorem given above (1.1) with an exception that α > 0, then∣∣∣∣∣∣∣∣(λα + (1− λ)α

)
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Stojiljković et al., [34] recently obtained a Trapezoid type tensorial inequality
which is given by the following.

Theorem 1.7. Assume that f is continuously differentiable on I with ‖f′‖I,+∞ :=

supt∈I |f′(t)| < +∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I. Then
the following inequality holds for α > 0:∣∣∣∣∣∣∣∣ (f(A)⊗ 1 + 1⊗ f(B)) (1.2)

−α
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In order to derive similar inequalities of the tensorial type, we need the following
introduction and preliminaries.
Let I1, ..., Ik be intervals from R and let f : I1 × ... × Ik → R be an essentially
bounded real function defined on the product of the intervals. Let A = (A1, ...,Ak)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1, ...,Hk such that
the spectrum of Ai is contained in Ii for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

Ai =

∫
Ii

λidEi(λi)

is the spectral resolution of Ai for i = 1, ..., k by following , we define

f(A1, ...,Ak) :=

∫
I1

...

∫
Ik

f(λ1, ..., λk)dE1(λ1)⊗ ...⊗ dEk(λk)

as bounded selfadjoint operator on the tensorial product H1 ⊗ ...⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite
sums, and we may consider the functional calculus for arbitrary real functions. This
construction [6] extends the definition of Koranyi [20] for functions of two variables
and have the property that

f(A1, ...Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f(t1, ..., tk) = f1(t1)...fk(tk) of k functions
each depending on only one variable.

Recall the following property of the tensorial product

(AC)⊗ (B⊗D) = (A⊗B)(C⊗D)

that holds for any A,B,C,D ∈ B(H ).
From the property we can deduce easily the following consequences

An ⊗Bn = (A⊗B)n, n > 0,

(A⊗ 1)(1⊗B) = (1⊗B)(A⊗ 1) = A⊗B,

which can be extended, for two natural numbers m,n we have

(A⊗ 1)n(1⊗B)m = (1⊗B)m(A⊗ 1)n = An ⊗Bm.

For more information, consult the following book related to tensors [18]. The
following Lemma which we require can be found in a paper of Dragomir [13].

Lemma 1.8. Assume A and B are selfadjoint operators with Sp(A) ⊂ I, Sp(B) ⊂ J
and having the spectral resolutions . Let f; h be continuous on I, g, k continuous on
J and φ and ψ continuous on an interval K that contains the sum of the intervals
f(I) + g(J); h(I) + k(J),then

φ(f(A)⊗ 1 + 1⊗ g(B))ψ(h(A)⊗ 1 + 1⊗ k(B))

=

∫
I

∫
J

φ(f(t) + g(s))ψ(h(t) + k(s))dEt ⊗ dFs. (1.3)

In the paper written by Sarikaya and Bardak [27], the following Lemma is given,
which is used to obtain inequalities generalized Simpson type inequalities.
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Lemma 1.9. Let f : I ⊂ R → R be a differentiable function on I◦, a,b ∈ I◦ with
a < b. If f′ ∈ L1[a, b], then the following equality holds:
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2
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2
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2

f(x)dx,

where ω = µa+ (1− µ)b,∀µ ∈ [0, 1].

This paper delves into a novel area of mathematics: tensorial inequalities of the
Simpson type for differentiable functions within a tensorial Hilbert space. This field
is young and ripe for exploration, and obtaining new bounds for various combina-
tions of convex functions is crucial for its advancement. The paper is structured
logically. The ”Main Results” section unveils the key findings that contribute to
the novelty of this work. Subsequently, the ”Examples and Consequences” sec-
tion showcases practical applications of the obtained results. By choosing specific
convex functions, we generate numerous tensorial Simpson-type inequalities and
bounds. Finally, the ”Conclusion” section summarizes the paper’s contributions
and highlights its significance for the development of tensorial inequalities. In the
following theorem, you’ll find a fundamental result that serves as the foundation
for deriving further inequalities throughout the paper.

2. Main results

The following Lemma will be crucial in obtaining the inequalities which follow.

Lemma 2.1. Assume that f is continuously differentiable on I,A and B are self-
adjoint operators with Sp(A), Sp(B) ⊂ I, then
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Proof. We will start the proof with Lemma 1.9 (eq. (1.4)). Introducing the substi-
tutions on the right hand side and simplifying the integral, then assuming that A
and B have the spectral resolutions

A =

∫
tdE(t) and B =

∫
sdF (s).

If we take the integral
∫
I

∫
I

over dEt ⊗ dFs , then we get∫
I

∫
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By utilizing the Fubini’s Theorem and Lemma 1.8 (eq. (1.3)) for appropriate
choices of the functions involved, we have successively∫

I

∫
I

f(λt+ (1− λ)s)dEt ⊗ dFs = f (λA⊗ 1 + (1− λ)1⊗B) ,

∫
I

∫
I

∫ 1

0

f

((
1 + λ− φ

2

)
t+ s

(
φ+ (1− λ)

2

))
dφ

)
dEt ⊗ dFs

=

∫ 1

0

∫
I

∫
I

f

((
1 + λ− φ

2

)
t+ s

(
φ+ (1− λ)

2

)
dEt ⊗ dFsdφ

=

∫ 1

0

f

((
1 + λ− φ

2

)
A⊗ 1 +

(
φ+ (1− λ)

2
1⊗B

)
dφ,

∫
I

∫
I

(s− t)
∫ 1

0

(
k

2
− 1

3

)
f′
((

1 + k

2
λ+

1− k
2

)
t+

1 + k

2
(1− λ)s

)
dkdEt ⊗ dFs

=

∫ 1

0

(
k

2
− 1

3

)∫
I

∫
I

(s− t)f′
((

1 + k

2
λ+

1− k
2

)
t+

1 + k

2
(1− λ)s

)
dEt ⊗ dFsdk

= (1⊗B− A⊗ 1)

∫ 1

0

(
k

2
−1

3

)
f′
((

1 + k

2
λ+

1− k
2

)
A⊗ 1 +

1 + k

2
(1− λ)1⊗B

)
dk.

Following the same principle for other terms, the equality follows.
�

Theorem 2.2. Assume that f is continuously differentiable on I with
‖f′‖I,+∞ := supt∈I |f′(t)| < +∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂
I, λ ∈ [0, 1] , then∣∣∣∣∣∣∣∣16 f(λA⊗ 1 + (1− λ)1⊗B) +

1− λ
3
f

(
(1 + λ)A⊗ 1 + (1− λ)1⊗B

2

)
(2.2)

+
λ

3
f

(
λA⊗ 1 + (2− λ)1⊗B

2

)
−1

2

∫ 1

0

f

((
1 + λ− φ

2

)
A⊗1+1⊗B

(
φ+ (1− λ)

2

))
dφ

∣∣∣∣∣∣∣∣
≤ 5 ‖1⊗B− A⊗ 1‖ (2λ− 1)2 + 1)

144
‖f′‖I,+∞ .

Proof. If we take the operator norm of the previously obtained Lemma (2.1) and
use the triangle inequality, we get∣∣∣∣∣∣∣∣16 f(λA⊗ 1 + (1− λ)1⊗B) +
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≤ (1− λ)2

2
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If we take the integral
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From which we get the following,∫ 1

0

∥∥∥∥1

3
− k
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36
.

Evaluation of the second part is analogous, summing everything up we obtain the
desired equality. �

Theorem 2.3. Assume that f is continuously differentiable on I and |f′| is convex
and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I, λ ∈ [0, 1], then∣∣∣∣∣∣∣∣16 f(λA⊗ 1 + (1− λ)1⊗B) +

1− λ
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1296
.

Proof. Since |f′| is convex on I, then we get∣∣∣∣f′((1 + k
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for all k ∈ [0, 1] and t, s ∈ I.
If we take the integral
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2
λ+

1− k
2

)
A⊗ 1 +

1 + k

2
(1− λ)1⊗B

)∥∥∥∥
6

∥∥∥∥(1 + k

2
λ+

1− k
2

)
|f′(A)| ⊗ 1 +

1 + k

2
(1− λ)1⊗ |f′(B)|

∥∥∥∥
6

(
1 + k

2
λ+

1− k
2

)
‖|f′(A)| ⊗ 1‖+

1 + k

2
(1− λ) ‖1⊗ |f′(B)|‖

=

(
1 + k

2
λ+

1− k
2

)
‖f′(A)‖+

1 + k

2
(1− λ) ‖f′(B)‖ .

Therefore, we obtain∫ 1

0

∥∥∥∥k2 − 1

3

∥∥∥∥∥∥∥∥f′((1 + k

2
λ+

1− k
2

)
A⊗ 1 +

1 + k

2
(1− λ)1⊗B

)∥∥∥∥ dk
6
∫ 1

0

∥∥∥∥k2 − 1

3

∥∥∥∥((1 + k

2
λ+

1− k
2

)
‖f′(A)‖+

1 + k

2
(1− λ) ‖f′(B)‖

)
dk

=
‖f′(A)‖ (61λ+ 29) + 61 ‖f′(B)‖ (1− λ))

648
.

Simplifying the other term and adding them, we obtain the desired inequality.
�

We recall that the function f : I → R is quasi-convex, if

f((1− λ)t+ λs) 6 max(f(t), f(s)) =
1

2
(f(t) + f(s) + |f(s)− f(t)|)

holds for all t, s ∈ I and λ ∈ [0, 1].

Theorem 2.4. Assume that f is continuously differentiable on I with |f′| is quasi-
convex on I, A and B are selfadjoint operators with Sp(A), Sp(B) ⊂ I, α, then∣∣∣∣∣∣∣∣16 f(λA⊗ 1 + (1− λ)1⊗B) +

1− λ
3
f

(
(1 + λ)A⊗ 1 + (1− λ)1⊗B

2

)
+
λ

3
f

(
λA⊗ 1 + (2− λ)1⊗B

2

)
− 1

2

∫ 1

0

f

((
1 + λ− φ

2

)
A⊗ 1 + 1⊗B

(
φ+ (1− λ)

2

))
dφ

∣∣∣∣∣∣∣∣
≤ 5 ‖1⊗B− A⊗ 1‖ (2λ− 1)2 + 1)

288
‖f′‖I,+∞ . (2.4)
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Proof. Since |f′| is quasi-convex on I, then we get∣∣∣∣f′((1 + k

2
λ+

1− k
2

)
t+

1 + k

2
(1− λ)s

) ∣∣∣∣ 6 1

2
(|f′(t)|+ |f′(s)|+ ||f′(t)| − |f′(s)||)

for all k ∈ [0, 1] and t, s ∈ I. If we take the integral
∫
I

∫
I

over dEt ⊗ dFs, then we
get ∣∣∣∣f′((1 + k

2
λ+

1− k
2

)
A⊗ 1 +

1 + k

2
(1− λ)1⊗B

) ∣∣∣∣
=

∫
I

∫
I

∣∣∣∣f′((1 + k

2
λ+

1− k
2

)
t+

1 + k

2
(1− λ)s

) ∣∣∣∣dEt ⊗ dFs
6

1

2

∫
I

∫
I

(|f′(t)|+ |f′(s)|+ ||f′(t)| − |f′(s)||)dEt ⊗ dFs

=
1

2
(|f′(A)| ⊗ 1 + 1⊗ |f′(B)|+ ||f′(A)| ⊗ 1− 1⊗ |f′(B)||)

for all k ∈ [0, 1].
If we take the norm, then we get∥∥∥∥f′((1 + k

2
λ+

1− k
2

)
A⊗ 1 +

1 + k

2
(1− λ)1⊗B

)∥∥∥∥
6

∥∥∥∥1

2
(|f′(A)| ⊗ 1 + 1⊗ |f′(B)|+ ||f′(A)| ⊗ 1− 1⊗ |f′(B)||)

∥∥∥∥
6

1

2
(‖|f′(A)| ⊗ 1 + 1⊗ |f′(B)|‖+ ‖|f′(A)| ⊗ 1− 1⊗ |f′(B)|‖)

Which when applied in our case, we get∫ 1

0

∥∥∥∥k2 − 1

3

∥∥∥∥∥∥∥∥f′((1 + k

2
λ+

1− k
2

)
A⊗ 1 +

1 + k

2
(1− λ)1⊗B

)∥∥∥∥ dk
6
∫ 1

0

∥∥∥∥k2 − 1

3

∥∥∥∥(1

2
(‖|f′(A)| ⊗ 1 + 1⊗ |f′(B)|‖+ ‖|f′(A)| ⊗ 1− 1⊗ |f′(B)|‖)

)
dk.

Which when simplified, we obtain the desired inequality. �

3. Some examples and consequences

In the following sequel we provide examples to the obtained Theorems in Main
section. Examples consist of taking f to be an exponential operator and applying
various conditions as given by the Theorems.

Corollary 3.1. If A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ [m,M ] and
1⊗B− A⊗ 1 is invertible, then by (2.2), we get∣∣∣∣∣∣∣∣16 exp(λA⊗ 1 + (1− λ)1⊗B) +

1− λ
3

exp

(
(1 + λ)A⊗ 1 + (1− λ)1⊗B

2

)
+
λ

3
exp

(
λA⊗ 1 + (2− λ)1⊗B

2

)
− 1

2

∫ 1

0

exp

((
1 + λ− φ

2

)
A⊗ 1 + 1⊗B

(
φ+ (1− λ)

2

))
dφ

∣∣∣∣∣∣∣∣
≤ 5 ‖1⊗B− A⊗ 1‖ (2λ− 1)2 + 1)

144
exp(M). (3.1)



GENERALIZED TENSORIAL SIMPSON TYPE INEQUALITIES 87

Corollary 3.2. Since for f(t) = exp(t), t ∈ R, |f′| is convex, then by (2.3)∣∣∣∣∣∣∣∣16 exp(λA⊗ 1 + (1− λ)1⊗B) +
1− λ

3
exp

(
(1 + λ)A⊗ 1 + (1− λ)1⊗B

2

)
+
λ

3
exp

(
λA⊗ 1 + (2− λ)1⊗B

2

)
− 1

2

∫ 1

0

exp

((
1 + λ− φ

2

)
A⊗ 1 + 1⊗B

(
φ+ (1− λ)

2

))
dφ

∣∣∣∣∣∣∣∣
≤ ‖1⊗B− A⊗ 1‖ ‖exp(A)‖ (λ(λ(122λ− 93) + 3) + 29) + ‖exp(B)‖ (λ((273− 122λ)λ− 183) + 61)

1296
.

(3.2)

Setting λ = 1
2 , we obtain∣∣∣∣∣∣∣∣16 exp

(
A⊗+1⊗B

2

)
+

1

6
exp

(
3A⊗ 1 + 1⊗B

4

)
+

1

6
exp

(
A⊗ 1 + 3 · 1⊗B

2

)
− 1

2

∫ 1

0

exp

(( 3
2 − φ

2

)
A⊗ 1 + 1⊗B

(
φ+ 1

2 )

2

))
dφ

∣∣∣∣∣∣∣∣
≤ ‖1⊗B− A⊗ 1‖ 5(‖exp(A)‖+ ‖exp(B)‖

288
. (3.3)

4. Conclusion

Tensors have become important in various fields, for example in physics because
they provide a concise mathematical framework for formulating and solving physical
problems in fields such as mechanics, electromagnetism, quantum mechanics, and
many others. As such inequalities are crucial in numerical aspects. Reflected in
this work is the tensorial Sarikaya and Bardak’s Lemma, which as a consequence
enabled us to obtain Simpson type inequalities in Hilbert space. New Simpson type
inequalities are given, examples of specific convex functions and their inequalities
using our results are given in the section some examples and consequences. Plans for
future research can be reflected in the fact that the obtained inequalities in this work
can be sharpened or generalized by using other methods. An interesting perspective
can be seen in incorporating other techniques for Hilbert space inequalities with the
techniques shown in this paper. One direction is the technique of the Mond-Pecaric
inequality, on which we will work on.

References
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[26] M.Z. Sarikaya, E. Set, M.E. Özdemir, On new inequalities of Simpson’s type for convex

functions, RGMIA Res. Rep. Coll. 13 (2) (2010) Article2.
[27] M. Z. Sarıkaya and S. Bardak, “Generalized Simpson Type Integral Inequalities”, Konuralp

J. Math., vol. 7, no. 1, pp. 186–191, 2019.

[28] V. Stojiljkovic, Simpson Type Tensorial Norm Inequalities for Continuous Functions of
´ Selfadjoint Operators in Hilbert Spaces, Creat. Math. Inform., 33 (2024), 105–117.

https://doi.org/10.37193/CMI.2024.01.10
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