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Ensuring the well-being of urban communities hinges on sustainable urban planning strategies informed 

by current data, particularly in China since urbanization has been one of the most significant 

demographic shifts in recent decades. Therefore, our research aimed to evaluate the spatio-temporal 

dynamics of urbanization and sub urbanization across prefecture and provincial levels in China by 

utilizing consistent SNPP-VIIRS-like and NPP-VIIRS nighttime data spanning the years 2000 to 2020. 

The k-means method was applied to derive urban and sub urban features from above datasets. The 

findings uncovered a significant expansion of urban entities at the prefecture level, escalating from 

16,209 km2 to 89,631 km2 over the specified period showing a 5% growth. Among five main urban 

agglomerations, the Yangtze River Delta stands out with the highest urbanization rate, witnessing a 

remarkable expansion of urban entities from 2,684 km2 to 41,465 km2. This growth reflects an average 

growth rate of 72.2% per annum. The analysis revealed that the overall area of suburbs expanded from 

59,151 km2 to 120,339 km2 between 2012 and 2020 indicating a proportional growth rate ranging from 

0.4% to 1.9%. The peak growth rate of suburbs was recorded between 2012 and 2014, reaching 18%. 

Guizhou, Hunan, and Hubei provinces have exhibited growth rates of 334%, 258%, and 246% 

respectively while Beijing, Guangdong, Tianjin, and Shanghai have experienced relatively low growth 

rates of 50%, 56%, 46%, and 17%. The analysis of urban growth with GDP, population, and electricity 

consumption revealed an inverse relationship during the specified period. Therefore, the findings of this 

research can provide immense support to sustainable urban planning initiatives at both the provincial 

and prefecture-level cities in China. The findings can assist city planning authorities in making informed 

decisions regarding optimizing resource distribution, all while prioritizing the preservation of ecological 

footprint within urban environments. Also, the limitations addressed in our study must be taken into 

account in future research works aimed at deriving reliable urban extraction results using nighttime light 

remote sensing data. 
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1. INTRODUCTION 

In recent times, urbanization has experienced substantial growth, becoming a notable spatial phenomenon 

worldwide. According to the UN-Habitat report by 1950, approximately one-fourth of the global population 

resided in cities (Habitat et al., 2006). As of the present day, that figure has doubled, and currently, half of the 

world's total population resides in cities (Thapa & Murayama, 2009). The UN World Population Prospect 

(2019) has reported that by 2030, approximately 57% of the total population of the global south will reside in 

cities. Spatio-temporal changes in urban growth and related aspects have been monitored and evaluated in 

various countries and regions using geo-informatics techniques, especially remote sensing coupled with 
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various machine learning techniques. This approach allows for the derivation of reliable and consistent urban 

information (Schneider et al., 2010; Zhang & Seto, 2011; Zhou Y. et al., 2014). 

Continuous assessment of city growth and geographical patterns is essential for understanding and addressing 

the exacerbation of escalating socio- environmental issues in urban environments, including traffic congestion, 

urban crimes, air pollution, and ecological degradation (Thapa & Murayama, 2009). Additionally, 

understanding the geographical dynamics in urban land use and land cover (LULC) is vital for long-term 

resource management perspectives (Wijesinghe & Withanage, 2021; Withanage et al., 2024). In this context, 

multi-temporal and multi-spectral satellite information serves as an effective source for predicting and 

simulating urban expansion and growth. Therefore, geo-informatics techniques and tools can play a decisive 

role in sustainable urban planning initiatives, facilitating a win-win situation for both urban development and 

environmental conservation efforts (Fan et al., 2014). China has undergone rapid urbanization over the past 

two decades, leading to a diverse array of socio-environmental issues. Consequently, urban and regional 

planning authorities are actively seeking effective and reliable measures to overcome and mitigate the negative 

outcomes associated with the urbanization process. According to statistics from the population census in 2010, 

nearly 50% of the total population in China resided in cities (Lu et al., 2014). As urbanization rapidly 

progresses in China, farmlands and other land use classes in countryside areas surrounding urban areas are 

gradually being encroached upon by built-up areas. These land use classes are often delineated from urban 

areas and commonly referred to as "suburbs" in urban planning and related doctrines (Liu S. et al., 2022). Also, 

urbanization and sub urbanization have accelerated a diverse array of socioeconomic and environmental issues, 

affecting both urban and rural environments. Indeed, the demarcation of urban areas and suburbs, coupled with 

an understanding of their spatial and temporal patterns, plays a pivotal role in achieving sustainable resource 

management, especially in urban areas in China. 

Impervious surfaces in cities are covered by various concrete structures, including roads and other transport 

networks, a diverse range of buildings such as houses, industrial plants, and other man-made structures that 

overlay the natural landscape (Zhou Y. et al., 2014; Zhang X. et al., 2020). The MODIS, Sentinel, and Landsat 

remote sensing images are commonly utilized to detect the geographical dynamics of impervious surfaces in 

cities. Indeed, evaluating only these structures does not provide an accurate picture of the urbanization process 

and dynamics. Assessing only these physical structures is inadequate for understanding the geographical 

evolution of human activity surfaces in the complex urban environment (Ellison et al., 2010). Because of the 

complex nature of human activities and land utilization in cities, relying solely on changes in impervious 

structures using multi-source remote sensing data is inadequate for urbanization monitoring (Grove et al., 

2015). Indeed, Operational Line-scan System (OLS) nighttime light (NTL) images from the Defense 

Meteorological Satellite Program (DMSP) and the Suomi National Polar Partnership Visible Infrared Imaging 

Radiometer Suite (SNPP-VIIRS) NTL data provide a unique proxy for measuring urban dynamics, as they 

capture both impervious surfaces and human activity surfaces based on NTL brightness value (Imhoff et al., 

1997; Xu et al., 2014). 

In recent years, monitoring of urbanization and related phenomena, including city size dynamics, spatial 

structures, and the effect of urban growth on CO2 emissions, has been a primary focus of research using 

nighttime light data in China. Most researchers have evaluated urban expansion using stable NTL data, while 

some have attempted to introduce correction techniques to improve the reliability of their assessments (Elvidge 

et al., 2009; Zheng et al., 2021). Past scholars have utilized a new generation of NTL data as well as new 

methods and techniques for urban area delineation and extraction (Liu Z. et al., 2012; Ma T. et al., 2012; Fan 

et al., 2014; Xu et al., 2014). Those methods included neighborhood statistics, NDVI, and local-optimized 

thresholds, which were used to extract urban areas based on pixel brightness variations of NTL images (Xiao 

et al., 2014; Ma T et al., 2015; Su et al., 2015; Shi et al., 2016). Another focal technique used by some 

researchers was k-means classification to extract built-up areas (Lin et al., 2019; Shi et al., 2023; Withanage 

et al., 2023). In their analysis, Tian and Qian (2021) endeavored to address the challenge of accurately 

identifying suburbs in China by leveraging multi source data and integrating multi-logistic regression (MLR) 

with geographically weighted regression techniques. Furthermore, Feng et al. (2020) employed a k-means 

algorithm to develop a methodology for delineating the urban-rural fringe in Beijing city, utilizing DMSP/OLS 

NTL data. Sun and Zhao (2018) endeavored to quantify and compare urban expansion across 13 cities within 

the Jing-Jin-Ji Urban Agglomeration. They scrutinized the relationship between urban structure and growth 
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from 1978 to 2015, uncovering considerable variations in expansion patterns attributable to political and other 

socioeconomic influences. Tian (2020) delineated the suburbs of Jiangsu by estimating spatial interactions 

through a regression model and a radiation model, evaluating such interactions at a grid level. Consequently, 

the suburban expansion of Jiangsu over the span of 20 years was found to be noteworthy. Dai et al. (2021) 

assessed the spatial mutation characteristics of the urban fringe area in Jiangyin city, China by integrating 

multi-index fusion and wavelet transform techniques. They corroborated their findings by comparing them 

with results derived from other studies employing the information entropy model and the comprehensive index 

model. Huang et al. (2020) introduced a quantile method to extract the structure of urban-suburban-rural areas 

utilizing consistent NTL data from DMSP/OLS. They applied this approach in the Beijing-Tianjin-Hebei 

region of China using the NTL threshold. Jia et al. (2021) employed an urban-rural gradient approach to 

investigate the impact of urbanization on land surface phenology across 343 cities in China. They utilized 

VIIRS Land Surface Phenology in conjunction with MODIS Land Surface Temperature (LST) products for 

their analysis. 

As the k-means algorithm was not commonly applied for delineating urban areas in complex urban 

environments, we have utilized it as a novel method for extracting both urban and suburban areas in China. 

This effort assessed the reliability and effectiveness of SNPP-VIIRS-like and SNPP-VIIRS NTL data for urban 

area identification, addressing this identical flaw. Using both datasets, we aimed to extract and evaluate the 

geographical dynamics of cities and suburban areas in both provincial and prefecture-level cities using data 

spanning the period from 2000 to 2020. We structured this paper into five sections. Section one is dedicated 

to the introduction, encompassing the rationale, objectives of the study, and literature survey. Section two 

describes the materials and methods, along with the study area description. The third section focuses on the 

results, with two subsections including urbanization and suburbanization in China. Section four delves into the 

discussion, comprising the role of SNPP-VIIRS data for urban mapping, the relationship between urban growth 

and socioeconomic growth, as well as limitations and future research focus. The final section is the conclusion. 

2. MATERIALS AND METHODS 

2.1. Study Area 

China ranks as the world's fourth-largest country by land area, boasting diverse and extensive landscapes, 

climates, and ecosystems. Spanning from approximately 73.5°E to 135°E longitude and 4°N to 53.5°N latitude 

it encompasses a wide territory that showcases a wide range of geographical features and environmental 

conditions. The Country is bordered by the rugged terrain of the Himalayas and the Tibetan Plateau to the 

west. In the central and eastern regions, it features fertile plains, including the Yangtze River basin. The country 

also features diverse climatic zones, ranging from arid and semi-arid regions in the northwest to humid 

subtropical and tropical climates in the south. The country hosts maritime resources and shipping routes along 

its coastline, which stretches over approximately 18,000 km along the Pacific Ocean. 

Urbanization in China has been a significant phenomenon, featuring accelerated growth and transformation. 

Over the last few decades, millions of people have migrated from the countryside to urban centers in search of 

better economic opportunities and lifestyles. This great migration has led to the growth of cities and the 

development of new cities across the country. Several causes have contributed to the rapid urban growth, 

including industrialization, economic reforms, and government policies aimed at promoting urban 

development. As a result, China now has some of the largest and most populous cities in the world, such as 

Shanghai, Beijing, and Guangzhou. As of 2021, the urbanization rate in China stood at 63.8%. In 2016, urban 

and suburban areas occupied approximately 2.15 million square kilometers, which is equivalent to a 

considerable portion of the country's total land area (He et al., 2017; Liu S. et al., 2022). 

China has been divided into 23 provinces, 5 autonomous regions, 4 direct-controlled municipalities, and 2 

Special Administrative Regions (SARs) for ease of administration. Guangxi, Inner Mongolia, Ningxia, Tibet, 

and Xinjiang are autonomous regions. Beijing, Chongqing, Shanghai, and Tianjin are designated as direct-

controlled municipalities. Hong Kong, Taiwan, and Macau are designated as SARs (National Bureau of 

Statistics, 2021; Withanage et al., 2023). In China, prefectures are administrative divisions that are below the 

provincial level but above the county level. Prefectures typically encompass several counties. The number of 

prefectures in China can change over time due to administrative reforms and adjustments. As of January 2022, 
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there were over 330 prefecture-level divisions. However, our study area is limited to provinces and prefecture-

level divisions within mainland China due to data availability constraints. For the study, the selected provinces 

and prefecture-level cities were categorized into eight groups based on their geographical coverage: east, west, 

central, south, north, northeast, northwest, and southwest (Figure 1). 

 

Figure 1. a) provinces in PR China, b) prefecture divisions in PR China 

2.2 Materials 

Two main spatial data sources were utilized to extract urban and suburban areas: Newly generated SNPP-

VIIRS-like data, which covers the period from 2000 to 2023 (Chen et al., 2020). The dataset provides a 

comprehensive view of NTL emissions and urbanization trends over two decades, facilitating the identification 

of urban growth trends and changes in human activity and provides valuable insights into NTL emissions and 

urbanization trends over two decades; SNPP-VIIRS data spanning from 2012 to 2020 (Chen et al., 2021). This 

dataset offers more recent and detailed information on NTL emissions, enabling researchers to assess urban 

development and changes in built-up areas over the past nine years. Both datasets are freely available for 

research purposes from (https://dataverse.harvard.edu/dataset.xhtml). SNPP-VIIRS-like data was generated by 

merging SNPP-VIIRS and DMSP-OLS datasets, providing consistent and prolonged temporal coverage with 

1000 m spatial resolution (30 arc second) and SNPP-VIIRS data have a 500 m (15 arc-second) spatial 

resolution (Liu S. et al., 2022). The shapefile data of national, provincial, and prefecture boundaries was 

obtained from the National Geomatics Center of China (http://ngcc.sbsm.gov.cn/). Collecting data on GDP, 

population, and electricity consumption (EPC) values at the provincial level from the China Statistical 

Yearbook is a standard practice in research related to socio-economic analysis and urbanization studies. The 

City Statistical Yearbook is a comprehensive and authoritative source of statistical data published annually by 

National Bureau of Statistics (https://data.cnki.net/). 

https://doi.org/10.54287/gujsa.1466745


350 
Neel Chaminda WITHANAGE, Jingwei SHEN  

GU J Sci, Part A 11(2) 346-371 (2024) 10.54287/gujsa.1466745  
 

 

2.3 Methodology 

2.3.1 Deriving Urban and Suburban Areas 

Performing the k-means algorithm in the image classification stage allowed for the segmentation of the datasets 

into distinct clusters based on nighttime light emissions. This step was essential for delineating urban and 

suburban areas from the satellite imagery. Various spatial data clustering algorithms, such as threshold, 

mutation detection, and ordering points to identify the clustering structure (OPTICS), as well as k-means, are 

at one's disposal. Because OPTICS is sensitive to parameters, it may fail to provide more accurate results when 

density declines between clusters are not present. Moreover, the mutation detection method exhibits several 

limitations when it comes to extracting urban areas and boundaries within heterogeneous urban environments. 

The Threshold method accurately extracts urban areas by considering the differences in brightness values 

within an image. But, k-means is a prominent algorithm since it can support large datasets, simple processes, 

and fast-running procedures in the computer system compared to other algorithms (Delmelle, 2015; Li et al., 

2015; Yang et al., 2017; Hu et al., 2020; Shi et al., 2023; Withanage et al., 2023). The extraction of urban 

entities (2000-2020) and suburbs (2012-2020) entailed the utilization of k-means unsupervised classification 

following the acquisition of two datasets. In the case of urban entity extraction, the algorithm divided the 

dataset into two classes (urban and non-urban) upon the brightness values. In the context of suburbs, the 

number of extraction clusters was defined as three, comprising urban, suburban, and rural categories. 

Additionally, three initial prime centers were randomly selected for the clustering process. Below is the 

calculation formula (Shi et al., 2023; Withanage et al., 2023); 

 μ
i

j+1
=

1

|Ci|
∑ x

x∈Ci

 (1) 

 Ei= ∑ ∑|xit-μi

j+1
|
2

x∈Ci

k

i=1

 (2) 

E denotes the minimum square error of a cluster. For the sample x as C= {Cl, C2, C3... Ck} of the dataset. The 

similarity among all samples inside the cluster increases when smaller its value. -μ
i

j+1
 denotes the center of 

cluster Ci in the j+1 iteration. As the clustering criterion, we used the sum of the square error criterion function, 

as outlined by Shi et al. (2023) and Withanage et al. (2023). 

 JC= ∑ ∑ ‖P-Mi‖
2

P ∈Ci

k

i=1

 (3) 

In cluster Ci p denotes all pixels in the cluster, arithmetic mean of all pixels in Ci denotes by Mi. Mapping 

between cluster centers and data objects represented by JC. The urban and non-urban feature types of each 

pixel within an image are identified through cluster analysis. After running the algorithm iteration, urban, 

suburban, and rural areas were discerned from the two datasets on the variations of color. 

2.3.2 Image Post Processing 

Following the image classification stage, image post-processing techniques were applied to enhance the 

reliability and accuracy of the derived urban and suburban outputs. These techniques included noise reduction, 

and spatial filtering to refine the classification results and remove any inconsistencies. We performed image 

post-processing techniques to ensure the logical consistency of the extracted urban areas and suburban features. 

Here we followed three main steps: iterative temporal filtering, logical reasoning, and the elimination of 

unreasonable urban features (Shi et al., 2023; Withanage et al., 2023). This approach aimed to derive more 

precise and reliable results both in spatial and temporal dimensions.  

2.3.3 Accuracy Assessment 

Accuracy assessment involves comparing the classified urban and suburban areas to evaluate the reliability of 

the classification method and outputs. To assess the reliability of urbanization and sub urbanization pixels 

produced by the k-means algorithm, We computed accuracy of classification for each class over the pertinent 
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years. Four commonly utilized accuracy metrics were calculated: Overall Accuracy (OA), Producer’s 

Accuracy (PA), User’s Accuracy (UA), and Kappa Coefficients. OA stands for the overall percentage of 

correctly classified pixel classes, which is computed by dividing the number of accurately classified urban and 

non-urban pixels by the total number of pixels in the datasets (Zhou Q. et al., 2008; Yuh et al., 2023) and can 

be represented is as; 

 𝑂𝐴 =  
1

𝑁
∑ 𝑃𝑖𝑖

𝑛

𝑖𝑖=1

 (4) 

OA stands for overall accuracy while N is total samples number and n denotes the total categories number, 

and Pii is correct classifications number of ith sample. PA measures the percentage accuracy of individual 

classes within a map. It's calculated by dividing the number of correctly classified pixels in a specific class by 

the total number of pixels belonging to that class in the reference data.The calculation formula is as; 

 𝑃𝐴 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙) 
 (5) 

UA, assesses the reliability of a given pixel class by evaluating its agreement with ground observations.It's 

also calculated by dividing the number of correctly classified pixels in a specific class by the total number of 

pixels classified within that class as below; 

 𝑈𝐴 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦(𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙) 
 (6) 

The Kappa Coefficient indicates the level of agreement between test and validation data in generated maps. 

It's based on the probability of the test data closely matching the validation data during the urban area extraction 

process and is highly correlated with overall accuracy. Overall mean accuracy and Kappa values for the urban 

features were within acceptable ranges as from 0.80 to 0.92% for OA and from 0.75 to 0.88 for Kappa (Table 

1). For suburbs, the identification accuracy, measured by OA, ranged from 0.77 to 0.84, while Kappa 

coefficients ranged from 0.77 to 0.86 for selected years (Table 2). 

Table 1. Overall mean accuracy for urban entity identification 

Year 2000 2005 2010 2015 2020 

 OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa 

  0.84 0.80 0.80 0.75 0.92 0.81 0.80 0.82 0.88 0.88 

 PA UA PA UA PA UA PA UA PA UA 

Urban 0.82 0.79 0.79 0.74 1.00 0.93 0.79 0.86 0.92 0.91 

Non-urban 0.87 0.82 0.81 0.76 0.84 0.88 0.82 0.78 0.84 0.85 

 

Table 2. Overall mean accuracy for suburban area identification 

Year 2012 2014 2016 2018 2020 

 OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa 

  0.84 0.77 0.78 0.79 0.78 0.86 0.80 0.83 0.77 0.80 

 PA UA PA UA PA UA PA UA PA UA 

Sub-urban 0.79 0.81 0.78 0.79 0.82 0.84 0.77 0.75 0.74 0.73 

Urban  0.82 0.77 0.76 0.74 0.76 0.81 0.80 0.81 0.79 0.82 

Rural 0.93 0.74 0.81 0.85 0.78 0.94 0.83 0.94 0.80 0.86 
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3. RESULTS  

3.1 Urbanization in China 

Statistically significant positive trends in digital number values of NTL images in the prefecture-level cities 

indicated that China has experienced rapid urban growth from 2000 to 2020 (Figure 2). The highest rate of 

urban growth could be identified in the five national-level agglomerations: Pearl River Delta (PRD); Beijing-

Tianjin-Hebei; Yangtze River Delta (YRD); Middle Yangtze; and Chengdu-Chongqing. Variations in DN 

values in SPNS VIIRS-like imagery reveal greater changes in urbanization, particularly in the eastern region 

of the country, from 2000 to 2020. 

 

Figure 2. Urban Growth in China, 2000-2020 
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Based on the variations in DN values in SPNS VIIRS imagery, significant changes in urbanization are notably 

evident, particularly in the eastern region of the country, from 2000 to 2020. The DN values of inter-calibrated 

SNPP VIIRS NTL signals in the prefecture cities indicate a substantial inverse pattern into enhanced light 

areas in cities. Varied spatial and temporal trends in urban entities may suggest that light signals from NTL 

images could be a marker of urban expansion during significant urbanization in China at the prefecture level. 

Based on Figure 2, the brightly illuminated areas (highlighted in red with DN values >56 in this case) likely 

represent the developed sections of cities with dense human activities and a high percentage of impermeable 

surfaces. The yellow areas, which are moderately to highly illuminated, seem to be associated with the outskirts 

of the central area and suburban regions with significant human activity. The green areas, characterized by low 

nighttime lighting, mainly cover rural areas with farmland and small communities with low human activity. 

Most prefecture cities with well-developed urban areas and human activities have shown a significant positive 

trend in highly illuminated areas at the city level, indicating significant growth outward from the core region 

and an increase in the spatial extent of urban entities. However, during the period in concern, notable spatial 

variations in the expansion of urban entities can be observed across distinct regions (Figure 3). 

 

Figure 3. Expansion of urban areas in China during 2000-2020 
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Figure 3. (continued) 

3.2. Spatial Variations in Regional Scale  

At the individual urban scale, especially most large and extra-large cities in the southern and eastern regions 

have experienced a distinct reduction of the areas with low NTL over the concerned period, while expanding 

high NTL areas. The eastern region has demonstrated a notable expansion compared to others, driven by 

socioeconomic factors and other forces of urban growth. This region includes the Yangtze River Delta (YRD) 

agglomeration. 

The Beijing–Tianjin agglomeration (Figure 4a) has experienced a notable expansion during the last two 

decades in its geographical scope, accompanied by a heightened level of economic activity. From 2000 to 

2020, the total urban entity of the agglomeration increased from 2438 km2 to 12,970 km2, indicating an average 

annual growth rate of 21.6%. During the specified period, the Beijing-Tianjin agglomeration exhibited a 

contrasting trend to the growth observed in the YRD, showing a decline in urban sprawl. 

The Chengdu–Chongqing agglomeration (Figure 4b) sits in the Southwest sector of China, situated upstream 

along the Yangtze River. The collective urban entity within the region saw an increase from 204 km2 to 5036 

km2, reflecting an average annual growth rate of 118.4%. This agglomeration spans approximately 185,000 

km2 and includes 15 prefecture-level cities in Sichuan Province and 29 district/county-level administrative 

units in Chongqing Province. With an urbanization rate of 63.01% among its permanent population, this 

agglomeration stands as a pivotal demonstration area for the nation's advancement of new urbanization (Luo 

et al., 2023). 
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As a key agglomerations for development, the YRD (Figure 4c) encompasses Shanghai, Jiangsu, Zhejiang, 

and Anhui provinces, comprising fifty-one cities, including 26 prefecture cities, including Shanghai (Anhui 8, 

Zhejiang 8, Jiangsu 9), covering about 225,000 km2 (Zhang H. et al., 2022). The urban entities in all prefecture 

cities in the eastern provinces have significantly expanded, including provincial capitals like Shanghai, 

Hangzhou, Fuzhou, Jinan, Nanchang, Nanjing, and Hefei. The urban entities within the YRD region expanded 

significantly from 2684 km2 to 41465 km2 between 2000 and 2020, indicating an annual average growth rate 

of 72.2%. As a key urban centre in the Eastern region Shanghai has risen greatly from 660 km2 to 2852 km2 

demonstrating a 45% growth rate. Land urbanization is more pronounced in the southeast prefectures of the 

YRD agglomeration compared to those in the northwest. Higher levels of land urbanization have occurred over 

the specified period, particularly in the core areas of Shanghai, Nanjing, and Hangzhou, as depicted in the 

Figure 4c. Nevertheless, land urbanization in certain mountainous prefectures in southern Anhui and Zhejiang 

has shown a low level of development. 

During the specified period, prefecture cities in southern provinces experienced significant growth, with a 

notable expansion observed in those within the Pearl River Delta (PRD) urban agglomeration (Figure 4d). The 

urban entity in the Pearl River Delta (PRD) increased from 4147 km2 to 12,962 km2, illustrating a growth rate 

of 213%. Despite comprising only 0.58% (56,000 km2) of the total land area, the PRD urban agglomeration 

significantly contributes to 9.2% of the GDP (Zhang H. et al., 2022). Among the seventeen cities in the PRD, 

nine prefectures serve as crucial urban hubs in the region. These include Guangzhou, Shenzhen, Zhuhai, 

Foshan, Jiangmen, Zhaoqing, Huizhou, Dongguan, and Zhongshan. Based on the NTL imagery retrieval data, 

Shenzhen, situated in the southern part of the PRD, has exhibited significant growth in urban development 

from 2000 to 2020. Following closely behind is Guangzhou, which is the second most rapidly expanding urban 

entity in the region. Nevertheless, several adjacent cities, such as Zhaoqing, Huizhou, and Jiangmen, have 

shown relatively modest urban growth over the specified period. 

3.3 Spatial Variations in Prefecture Scale 

During the specified period, the total urban entity in mainland China expanded from 16,209 km2 to 89,631 km2 

indicating a growth rate of 5% during the last 20 years. However, the rates and patterns of growth in urban 

entities (UEs) exhibited significant variations across eight regions undergoing diverse economic and urban 

development stages. The eastern and southern prefectures contributed the highest growth in urban expansion, 

with 27,640 km2 and 9,340 km2, respectively, while the northeast and northwest prefectures showed lower 

spatial extents of 2,897 km2 and 5,207 km2, respectively. 

Shanghai, located in the eastern prefectures (Figure 5), has experienced dramatic growth over the last 20 years, 

expanding from 660 km2 to 2,852 km2 (Figure 5y). As fast growing prefecture in the southern provinces, 

Guangzhou expanded its urban area from 375 km2 to 1,635 km2 (Figure 5v). In Beijing, urban areas expanded 

from 783 km2 to 2,150 km2, making it the fastest-growing prefecture in the northern regions (Figure 5q). From 

a temporal perspective, certain provincial capitals like Chongqing and Chengdu exhibited rapid expansion 

after 2015 (Figure 5m, n). However, some provincial capitals like Xining, Lhasa, Haikou, and Hohhot have 

demonstrated comparatively slower spatial expansion during the target period (Figure 5h, l, x, u). The temporal 

patterns and trends of the 31 provincial capitals growth has illustrated in Figure 6. 

3.4 Growth of Suburbs  

Over the past two decades, significant spatial and temporal changes in land use have occurred in suburban 

areas, acting as bridges amid urban and rural areas. The k-means method was utilized to discern and assess the 

spatial-temporal patterns of sub-urbanization in China mainland using SNPP VIIRS data from 2012 to 2020. 

The suburbs underwent a proportional expansion attributed to factors such as population density, urban GDP 

growth, and the development of the road network. The analysis revealed that the overall area of suburbs 

expanded from 59,151 km2 to 120,339 km2 between 2012 and 2020 (Figure 7), indicating a proportional growth 

rate ranging from 0.6% to 1.2%. The peak growth rate of suburbs was recorded between 2012 and 2014, 

reaching 18%. Urban areas and suburbs experienced integrated growth during the specified period, with both 

entities mutually benefiting from each other for their area growth. Consequently, the spatial and temporal 

urban-suburb development sequences are accurate. Figure 8 illustrates the proportions of suburbs and urban 
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entities in the years 2012, 2014, 2016, 2018, and 2020. Figure 8 demonstrates a notable increase in the 

proportional contribution of suburbs compared to urban entities. 

 

Figure 4. Growth of urban entities, 2000-2020 a) Beijin-Tianjin agglomeration, b) Chengdu-Chongqing 

agglomeration, c) Yangtze River Delta agglomeration, d) Pearl River Delta agglomeration 
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Figure 5. Growth of provincial capitals, 2000-2020 
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Figure 5. (continued) 
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Figure 6. Growth patterns of urban entities in provincial capitals, 2000-2020 
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Figure 7. Growth patterns of suburbs in China, 2012-2020 

 

 

Figure 8. Proportion of rural, urban, and suburbs in China and growth rates of urban entities and suburbs, 

2012-2020 
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When examining the provincial landscape of suburban development, each province exhibits distinct growth 

trends and patterns. Guizhou, Hunan, and Hubei have exhibited growth rates of 334%, 258%, and 246% 

respectively throughout the specified period, indicating their status as suburban areas in the intermediate phase 

of the urbanization process. However, the provinces of Beijing, Guangdong, Tianjin, and Shanghai, which are 

in the advanced stage of urbanization, have experienced relatively low growth rates of 50%, 56%, 46%, and 

17% respectively. This is because these provinces have already established and stabilized as urban areas. 

Additionally, in Heilongjiang, Liaoning, and Inner Mongolia, slow economic growth has negatively affected 

urbanization. Thus, the growth rate of suburbs in those provinces is low, with growth rates of 45% and 89% 

respectively. The spatial and temporal patterns of suburban growth in China can be best illustrated using 

provincial capitals such as Beijing, Tianjin, Shanghai, Wuhan, Chengdu, Chongqing, Nanjing, Guangzhou, 

and Xi'an (Figure 9 and Table 3). 

 

Figure 9. Suburban growth during 2012-2020 a) Beijing, b) Shanghai, c) Tianjin, d) Guangzhou, e) Wuhan, 

f) Chengdu, g) Chongqing, h), Nanjing, i) Xi’an 
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Table 3. Top 10 suburbs in the years 2012, 2016, and 2020 

City 
2012 

City 
2016 

City 
2020 

Area (km2) Area (km2) Area (km2) 

Qingyuan 2103 Suzhou 4119 Suzhou 4363 

Shanghai 2074 Shanghai 2390 Guangzhou 2671 

Foshan 1869 Guangzhou 2085 Shanghai 2404 

Guangzhou 1858 Qingyuan 1988 Foshan 2175 

Suzhou 1619 Foshan 1915 Qingyuan 1945 

Beijing 1535 Beijing 1697 Tianjin 1718 

Tianjin 1171 Tianjin 1639 Hangzhou 1593 

Shenzhen 1100 Hangzhou 1390 Wuhan 1528 

Hangzhou 975 Wuxi 1310 Chengdu 1457 

Chengdu 941 Chengdu 1291 Quanzhou 1394 

3.5 Growth Patterns and Driving Factors in Suburb Development 

Suburban expansion in cities such as Beijing and Wuhan, it becomes evident that there has been growth in all 

directions. However, the expansion of Tianjin's suburbs occurred predominantly in a southeasterly direction. 

Upon analyzing the situation of Shanghai city, it becomes apparent that the suburbs initially expanded on the 

eastern side. However, thereafter, they expanded in a southern direction. Similarly, the suburbs in Chongqing 

have been consistently expanding towards the southwest. The suburbs of Guangzhou have experienced a 

significant trend of northward development from 2012 to 2020. These spatial variations are a result of the 

effect of several political, economic, and geographical factors. This pattern is better evident from the expansion 

of suburbs in the Pearl River Delta (PRD).  

Therefore, these variables significantly contribute to the process of sub urbanization in China throughout the 

concerned period. Urban growth in major cities has led to a rise in environmental difficulties such as noise, 

air, and water pollution in metropolitan regions. As a result, people are increasingly moving from urban areas 

to suburban areas due to lower land prices and more favorable living conditions. Urban-suburb commuter 

communities have emerged as a result of the recent growth of road networks and other advantages in suburbs, 

leading to daily changes. Urban policy making has also significantly contributed to the growth of suburbs in 

China. 

The development of suburbs is closely correlated with the expansion of road networks, population growth, and 

other socioeconomic development indicators. Provincial-level socioeconomic variables such as Gross 

Domestic Product (GDP) and Electricity Consumption (EPC) exhibit a higher spatial consistency with sub 

urbanization according to the regression analysis performed (Figure 10). Observing the R2 values between 

population, GDP, EPC, and the suburban area, they were not less than 0.3594, 0.6214, and 0.6252 respectively. 

According to the regression results among the three socioeconomic variables, higher consistency is exhibited 

in suburban growth with GDP, as it derived an R2 value of 0.8758 (Figure 10r). The second-highest R2 value 

was reported for EPC as 0.7982 (Figure 10y), while population and suburban area show a comparatively low 

inverse relationship, reporting an R2 of 0.6115 as higher (Figure 10i). 
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Figure 10. Correlation between the growth of suburban areas and a-i) provincial level population, 

j-r) GDP, s-x1) EPC 
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Figure 10. (continued) 
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Figure 10. (continued) 
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4. DISCUSSION 

4.1 Role of SNPP-VIIRS Data for Urban Mapping 

Demarcating clear urban boundaries solely based on results derived from other remote sensing data such as 

Landsat and MODIS can be challenging, particularly when considering impervious surfaces. Therefore, it is 

essential to utilize reliable data that also captures human activity surfaces. Ma M. et al. (2020) demonstrated a 

positive correlation between nighttime lights and human activity surfaces. We employed the k-means 

algorithm to extract urban and suburban areas, aiming to evaluate their spatiotemporal evolution using SNPP-

VIIRS data. Yu et al. (2018) also confirmed that NTL data is a reliable data source for extracting built-up 

areas. They revealed that various methods can be employed for reliable urban area extraction, including 

threshold, watershed segmentation, Sobel-based edge detection, and neighborhood statistics. Shi et al. (2023) 

and Withanage et al. (2023) similarly employed the k-means method to extract cities utilizing SNPP-VIIRS 

NTL data. However, Shi et al. (2023) emphasized the importance of integrating NTL data with other sensing 

data for urban area extraction to attain higher accuracy. Liu S. et al. (2022) have also demonstrated that the 

results of suburban area extraction derived from SNPP-VIIRS data are more accurate compared to DMSP-

OLS. They also revealed that suburban areas have experienced a growth rate from 0.6% to 1.3% from 2012 to 

2020, which aligns closely with our findings. 

4.2 Urbanization and Socioeconomic Development 

Through our correlation analysis, it was discovered that there exists an almost inverse relationship between 

urban growth and urban socioeconomic indicators. Our findings revealed a higher R2 value, exceeding 0.621, 

for GDP and electricity consumption, although it resulted in a lower R2 value for population growth. Similar 

findings by Shi et al. (2023) confirmed the inverse relationship between urban entity growth and population 

density. The R2 value for their correlation results between urban entity and population density was higher than 

0.564. Liu S. et al. (2022) discovered that suburban development is closely associated with factors such as 

GDP, road network expansion, and population growth. Especially, Liu S. et al. (2022) found a higher 

consistency in suburban development with population density and road network expansion within the Pearl 

River Delta (PRD) agglomeration during the period from 2012 to 2020. The R2 value of their correlation 

analysis was also higher than 0.500 for three variables: GDP, population density, and road network. 

4.3 Limitations and Future Research Directions 

At a larger spatial scale, errors in NPP-VIIRS data may arise due to atmospheric turbidity, distortion, and 

variations in satellite views (Ma Q. et al., 2014; Li & Li, 2015). Indeed, these factors can also have adverse 

effects on the accuracy of urban extraction results of our study. Also, in future research, it is essential to address 

the challenges associated with light emissions across different wavelengths. Moreover, the time bias in NPP-

VIIRS data acquisition can have a detrimental impact on urban extraction results, particularly considering that 

a significant portion of artificial lights in Chinese cities are turned off after late nights (Ma Q. et al., 2014). 

Therefore, conducting a comparative study that utilizes LuoJia1-01 data for future research may offer 

advantages, as it has the potential to compensate for the limitations present in NPP-VIIRS data.  

Although NTL data is valuable for evaluating urbanization, it's essential to recognize that the brightness of 

lights varies among cities based on their respective levels of urbanization, industrial structure, and development 

status (Ma Q. et al., 2014; Pan & Li, 2016). Hence, our study's findings may be adversely influenced to some 

extent by these factors. Certain cities in China utilize artificial lighting to attract tourists and improve the 

aesthetic appeal of their nighttime skyline. This can impact or elevate the brightness levels recorded for these 

cities (Cao, 2008; Ma Q. et al., 2014). Therefore, further research is needed to differentiate the unit values of 

NTL based on varying socioeconomic status. Additionally, previous research has demonstrated that NTL in 

industrial areas can influence and supplant peak pixel values within cities (Li & Li, 2015). Hence, adopting 

advanced image processing techniques to mitigate the influence of concentrated industrial plants within cities 

and the edges of cities on light brightness differentiation could potentially yield more reliable results, as also 

suggested by Ma Q. et al. (2014). Furthermore, while nighttime light data provides insight into human activity 

at the city scale, it may not fully account for peak pixel variations at the agglomeration scale. Therefore, in 

future research, it is essential to give due consideration to minimizing the impact of this limitation. 
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5. CONCLUSION 

Using SNPP-VIIRS-like data (2000-2020) and NPP-VIIRS (2012-2020), we applied a novel k-means 

technique to extract urban and suburban entities in China. The research findings indicate a substantial 

expansion of urban entities at the prefecture level, increasing from 16,209 km2 to 89,631 km2 during the 

specified period. However, the total areas of urban entity features in our study differ from the findings of Shi 

et al. (2023), who reported urban areas ranging from 9,435 km2 to 78,546 km2.This discrepancy may be 

attributed to variations in the minimum distance decision rule employed in the k-means classification. The 

highest growth in urban entities was reported in the east and south prefectures, totaling 27,640 km2 and 9,340 

km2, respectively. Conversely, the lowest growth was reported in the northeast (2,897 km2) and northwest 

(5,207 km2) prefectures. Yangtze River Delta exhibited the highest urbanization rate, experiencing a significant 

expansion of built-up areas from 2,684 km2 to 41,465 km2. The urban entities in all prefecture cities in the 

eastern provinces have significantly expanded, including provincial capitals like Shanghai, Hangzhou, Fuzhou, 

Jinan, Nanchang, Nanjing, and Hefei. As a key urban center in the Eastern region, Shanghai has experienced 

significant growth, expanding from 660 km2 to 2852 km2, demonstrating a growth rate of 45%. Further analysis 

revealed that the overall area of suburbs expanded from 59,151 km2 to 120,339 km2 between 2012 and 2020, 

indicating a proportional growth rate ranging from 0.4% to 1.9%. These results closely resemble the findings 

of Liu S. et al. (2022), who also used k-means classification algorithm for suburbs extraction and observed 

fluctuating trends in China, reporting growth rates ranging from 0.6% to 1.6% over nine years. Guizhou, 

Hunan, and Hubei provinces have exhibited suburban growth rates of 334%, 258%, and 246% respectively 

while Beijing, Guangdong, Tianjin, and Shanghai have experienced relatively low growth rates of 50%, 56%, 

46%, and 17%. These findings are considered reliable, given that the OA and Kappa values of the outputs were 

within acceptable ranges, ranging from 77.2% to 92.3% for OA and from 0.77 to 0.88 for Kappa. Additionally, 

our study revealed a strong correlation between urban growth, urban GDP, and electricity consumption on a 

provincial scale. However, the limitations identified in our study must be carefully considered in future 

research focused on obtaining accurate urban extraction results. Indeed, incorporating alternative methods that 

are superior to the k-means algorithm or conducting comparative studies with other techniques would be highly 

beneficial in addressing these challenges and advancing the reliability of urban extraction from NTL remote 

sensing data in the future. 
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