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Abstract: This work investigates the integration of multiplicative calculus into gradient 

descent algorithms, including Adaptive Gradient algorithm (AdaGrad), Root Mean 

Squared Propagation (RMSProp), Nesterov Accelerated Gradient (NAG), and Mo-

mentum, to optimize exponential-quadratic-logarithmic composite functions with the 

positivity constrained. This research, conducted across five scenarios within the Con-

strained and Unconstrained Testing Environment (CUTEst), compares these multipli-

cative methods with their classical counterparts under a variety of constraints envi-

ronments such as bounded, quadratic, and other types, and unconstrained environments. 

The results demonstrate the significant superiority of multiplicative-based algorithms, 

especially in unconstrained and bounded constrained scenarios, and demonstrate their 

potential for complex optimization tasks. Statistical analysis supports the observed 

performance advantages, indicating significant opportunities for optimization strategies 

in positive domains. 

Keywords: Gradient descent; optimization; machine learning; multiplicative calculus; 

composite functions 

  

Pozitif Alanlarda Üstel-İkinci Dereceden Logaritmik Bileşik Fonksiyon 

Op-timizasyonu: Gradyan İniş Algoritmalarında Çarpımsal Kalkülüsten 

Yararlanma 
Özet: Bu çalışma, pozitiflik kısıtlamalı üstel-logaritmik bileşik fonksiyonları optimize 

etmek için, Uyarlanabilir Gradyan algoritması (AdaGrad), Kök Ortalama Kare 

Yayılımı (RMSProp), Nesterov Hızlandırılmış Gradyan (NAG) ve Momentum gibi 

gradyan iniş algoritmalarına Çarpımsal Kalkülüsün entegrasyonunu araştırmaktadır. 

Kısıtlamalı ve Kısıtlamasız Test Ortamı (CUTEst) içinde beş senaryoda yürütülen bu 

araştırma, Çarpımsal Kalkülüs ile revize edilen gradyan iniş algoritmalarıyla, sınırlı, 

karesel ve diğer türler gibi çeşitli kısıtlama ortamlarının yanı sıra kısıtlamasız or-

tamlarda klasik kalkülüsteki gradyan iniş algoritmalarıyla karşılaştırmaktadır. 

Sonuçlar, özellikle kısıtlamasız ve sınırlı kısıtlamalı senaryolarda çarpan tabanlı algo-

ritmaların belirgin üstünlüğünü ve karmaşık optimizasyon görevleri için potansiyell-

erini göstermektedir. İstatistiksel analiz, gözlemlenen performans avantajlarını 

destekleyerek, pozitif alanlarda optimizasyon stratejileri için önemli fırsatlar olduğunu 

göstermektedir. 

Anahtar Kelimeler:  Dereceli alçalma; optimizasyon; makine öğrenme; çarpımsal 

kalkülüs; bileşik fonksiyonlar 
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1. Introduction 

Setting the Context: 

Gradient descent-based algorithms, which are at the core of the optimization field, have found a 

place in many fields such as machine learning and applied sciences due to their ease of use and effec-

tiveness [1]. Variants of these algorithms, which use the principles of Newtonian calculus, have been 

researched and optimized many times over the years. However, as real-world problems constantly 

evolve and create new situations that need to be optimized, these basic methods require updating and 

improvement. 

Identifying the Problem: 

One such avenue for innovation occurs in the optimization of functions restricted to positive 

domains, especially functions containing exponential, quadratic, and logarithmic properties. Classical 

gradient descent methods, although versatile, often face limitations in these contexts, mainly due to their 

inherent linear additive nature and the challenges posed by non-negative constraints [2]. 

Introducing the Novel Approach: 

This study deals with integrating Multiplicative Calculus (MC) principles into gradient descent 

variants and making them more suitable for exponential-quadratic-logarithmic composite functions that 

are limited to positive areas. It brings a new perspective to optimization for positively bounded areas. An 

alternative to Newtonian Calculus, Multiplicative Calculus offers a different perspective by focusing on 

multiplication and ratios rather than addition and subtraction. This inherently makes it suitable for 

positive fields and multiplicative growth processes. 

Rationale and Methodology: 

To exploit this potential of MC, we adapted several classical gradient descent algorithms into the 

multiplicative calculus framework, including RMSProp, AdaGrad, Momentum, and NAG [3–5]. To 

apply the methods comparatively, exponential-quadratic-logarithmic composite functions were created 

using the CUTEst test set [6]. We developed Exponential-Quadratic-Logarithmic Composite Functions 

as our objective functions, g(xn), by transforming the quadratic objective functions provided by 

CUTEst's testing suite. The transformation process involves taking a function f(xn) from CUTEst and 

applying the transformation g(xn)=e(f(log(xn))) to it. 

Objective and Scope: 

Through extensive testing in the CUTEst optimization environment, this research aims to sys-

tematically evaluate the performance of these multiplicative-based methods relative to their classical 

counterparts in various scenarios characterized by different iterations and learning rates. 5 scenarios 

were used: 1- 1000 iterations, 0.001 learning rate, 2- 10 iterations, 0.1 learning rate, 3- 10 iterations, 0.01 

learning rate, 4- 10 iterations, 0.001 learning rate, 5- 10 iterations, 0.0001 learning rate. Comparisons 

were made by categorizing the composite function used as an unconstrained, bounded constraint, 

quadratic constrained, and other type of constrained. In the results section, we present comparison 

results between alternative methods and their counterparts. Additionally, we include performance 

comparisons of these methods in both constrained and unconstrained scenarios. We also provide de-

tailed statistical analysis, including t-statistics and p-values, to further validate the benchmark. 

Significance of the Work: 

The results of this research can go beyond theoretical knowledge and offer a new perspective from 

which optimization problems can be viewed and solved. By demonstrating the effectiveness of methods 

based on multiplicative analysis, especially in the context of exponential-quadratic-logarithmic com-

posite functions, this study opens the door to innovative optimization strategies that can significantly 

improve problem-solving in areas where positive domain constraints are common. 

Structure of the Paper: 

The paper's structure is designed for clarity and simplicity, organized as follows: 

• Introduction: Sets the stage, outlining the research question and its significance. 

• Related Works: Reviews existing literature to contextualize the study within the broader field. 

• Definitions of Multiplicative Calculus: Explains key concepts and mathematical foundations of 

multiplicative calculus. 

• Revised Methods: Describes the adaptations of classical algorithms using multiplicative calculus 

principles. 

• Results: Presents findings from testing the revised methods on various functions and scenarios. 
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• Discussion: Analyze the implications of the results, comparing the performance of revised and 

classical methods. 

• Conclusion: Summarizes the study's contributions, and limitations, and suggests directions for 

future research. 

2. Related Works 

2.1. Gradient Descent Methods 

Since the gradient descent algorithm is at the core of optimization, it has been and is being studied 

a lot. Thanks to these extensive studies, various variants such as AdaGrad, RMSProp, Momentum, and 

NAG have emerged [7]. These variants are obtained by integrating innovations such as adaptive 

learning rate or momentum to increase convergence rate and stability. Momentum includes a velocity 

component that incorporates past gradients to accelerate convergence in relevant directions while re-

ducing oscillations and proves particularly effective in navigating valleys and plateaus in the target 

landscape [8]. AdaGrad improves performance on sparse gradient problems by providing adaptive 

learning rates for each parameter, allowing individualized parameter updates, thus facilitating a more 

refined optimization process [9]. NAG improves the concept of momentum by integrating a for-

ward-looking mechanism that predicts future gradients to make more informed update decisions, thus 

improving convergence rates. RMSProp, attributed to Geoffrey Hinton, modifies AdaGrad's aggressive 

diminishing learning rates by maintaining a moving average of recent squared gradients, ensuring 

sustained learning progress across iterations. 

2.2. Multiplicative Calculus 

Multiplicative calculus, developed as an alternative to Newtonian calculus, was introduced by 

Grossman and Katz in the early 1970s. While classical calculus, that is, Newtonian calculus, is based on 

addition and subtraction, in Multiplicative calculus, derivative and integral are defined by multiplication 

and division operations. This framework offers a unique perspective for problems where growth pro-

cesses are multiplicative rather than additive in nature. 

The theoretical foundations of multiplicative calculus were further developed by Bashirov and 

others, who extended the concepts of multiplicative differentiation and integration, demonstrated their 

applicability to a variety of mathematical functions, and established the fundamental theorems of mul-

tiplicative calculus [10, 11]. These works laid the foundation for the field's mathematical rigor and 

consistency. 

Multiplicative calculus has found use in areas where the examined phenomenon grows or decays 

exponentially or geometrically and has been shown to provide advantages over Newtonian calculus [12–

15]. For example, in the field of biomedical sciences, multiplicative analysis has been applied to model 

the growth of biological tissues and populations [16]. It offers a new approach to modeling compound 

interest and exponential growth processes by providing more accurate and intuitive explanations than 

traditional analyses in economics [17]. 

Although the application of multiplicative calculus in optimization is relatively new, its potential 

is significant. The inherently multiplicative nature of many optimization problems, especially those 

involving exponential growth or decay, suggests that multiplicative calculus could offer more natural 

and efficient optimization algorithms. Investigating the principles of multiplicative calculus within 

gradient descent algorithms represents a new research direction that may provide insights into more 

effective optimization strategies. 

Recent studies have begun to explore the integration of multiplicative calculus with computational 

algorithms, including its potential in numerical analysis and algorithmic design [13]. A study highlights 

the utility of multiplicative calculus in biomedical imaging, particularly its ability to preserve positivity 

in images and matrix fields, a crucial feature for applications such as diffusion tensor imaging [18]. 

Another research study presents a multiplicative calculus adaptation of the Runge-Kutta method, 

demonstrating its effectiveness and broader applicability in solving problems involving positive-valued 

functions, complemented by extensive error and stability analyses [19, 20]. In addition, a review of 
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wave propagation models reveals a significant advance in simulation methodologies by revealing how 

multiplicative calculus, with its different approach to exponentials, can increase solution efficiency and 

overcome traditional sampling limitations [21]. 

The adoption of MC in the broader mathematical and scientific communities faces challenges. 

First of all, it differs from traditional mathematical principles and needs further theoretical development 

and practical verification. Future research will focus on introducing algorithms, empirical testing in 

optimization, and exploring uses in machine learning and data analysis. 

Multiplicative Calculus is a field that is open to exploration and has the potential to provide ad-

vantages in different fields. As scientists' attention is drawn to this field, it may provide new insights, 

methodologies, and applications that push and expand the boundaries of multiplicative calculus. 

2.3. Optimization in Positive Domains 

Optimizing functions constrained to positive domains presents unique challenges, often requiring 

transformations or adaptations of standard methods to maintain feasibility and convergence [22]. Ex-

ponential-quadratic-logarithmic composite functions, characterized by their strictly positive output and 

exponential growth behavior, are typical examples of such difficulties. In the literature, positive 

bounded problems have been discussed, but this situation inherent in Multiplicative calculus has not 

been investigated in the literature. 

2.4. Our Contribution 

Building on the foundational work in both gradient descent methodologies and multiplicative 

calculus, our research introduces a novel integration of these domains. By adapting classical gradient 

descent algorithms to the multiplicative calculus framework and applying them to exponen-

tial-quadratic-logarithmic composite functions, we present a unique approach to optimization in positive 

domains. Our work extends the current understanding of gradient descent's applicability, providing 

empirical evidence of the advantages offered by a multiplicative-based approach, particularly in han-

dling functions with inherent exponential growth characteristics within bounded constraints. 

3. Definitions of Multiplicative Calculus 

This section introduces the definitions of MC used in this paper [11]. 

Let ℝ∗  =  (0, ∞) 

Definition 3.1 Multiplicative addition operation is defined in the following manner. 

 𝑎+∗𝑏 = 𝑎 ∙ 𝑏. (3.1) 

Definition 3.2 Multiplicative multiplication is shown as ∙∗ and the operation is performed in the 

following manner. 

 𝑎 ∙∗ 𝑏 = 𝑒log(𝑎)∙log (𝑏). (3.2) 

Definition 3.3 Multiplicative zero and multiplicative one are changed to 1 and e respectively. 

Some of the properties of multiplicative summation and calculation is given below: 

• Commutativity of MC Addition: Let 𝑥, 𝑦 ∈  ℝ∗ then 

 𝑥+∗𝑦 = 𝑦+∗𝑥. (3.3) 

• Associativity of MC addition: Let 𝑥, 𝑦, 𝑧 ∈  ℝ∗ then 



International Journal of Pure and Applied Sciences 10(1); 209-227 (2024) 

  

 

213 

 

 𝑥 +∗ (𝑦+∗𝑧) = (𝑥 +∗ 𝑦)+∗𝑧. (3.4) 

• Identity element of MC addition: Let 𝑥 ∈  ℝ∗ then 

 𝑥 +∗ 1 = 𝑥. (3.5) 

• Inverse elements of MC addition: Let 𝑥 ∈  ℝ∗ then 

 −∗𝑥 =
1

𝑥
 . (3.6) 

• Identity elements of MC multiplication: Let 𝑥 ∈  ℝ∗ then 

 𝑥 ∙∗ 𝑒 = 𝑒log(𝑒)∙log (𝑏) = 𝑥. (3.7) 

• Inverse elements of MC multiplication: Let 𝑥 ∈  ℝ∗ then 

 𝑥−1∗ = 𝑒. (3.8) 

• Distributivity.: Let 𝑥, 𝑦, 𝑧 ∈  ℝ∗ then 

 (𝑥 +∗ 𝑦) ∙∗ 𝑧 = (𝑥 ∙∗ 𝑧)+(𝑦 ∙∗ 𝑧). (3.9) 

Definition 3.4 Let 𝑥, 𝑦 ∈  ℝ∗ , MC subtraction is shown as −∗ , operation is defined in the 

following manner; 

 𝑥 −∗ 𝑦 = 𝑥 +∗ (−∗𝑦) = 𝑥 +∗ (
1

𝑦
) =

𝑥

𝑦
 . (3.10) 

Definition 3.5 Let 𝑥, 𝑦 ∈  ℝ∗ , MC division is shown as /∗ and operation is defined in the 

following manner; 

 
𝑥/∗𝑦 = 𝑥 ∙∗ (𝑦−1∗) = 𝑥 ∙∗ (𝑒

1

log (𝑦)) = 𝑒log (𝑥)∙log (𝑒
1

log (𝑦)) , 
(3.11a) 

 
= 𝑒

log (𝑥)
log (𝑦). 

 
(3.11b) 

Definition 3.6 Let 𝑛 ∈ 𝑁, MC factorial process is shown as  !∗ and operation is defined in 

following manner; 

 𝑛!∗ = 𝑒𝑛!. (3.12) 

Definition 3.7 Let 𝑘 ∈ 𝑁 and 𝑥 ∈  ℝ∗  , MC power operation is shown below. 

 𝑥𝑘∗ = 𝑒(𝑙𝑜𝑔(𝑥))𝑘
. (3.13) 

Definition 3.8 Let 𝐴 ⊆  ℝ∗ and first MC derivative is defined of f at 𝑥 ∈ 𝐴, shown as 𝑓∗(𝑥), 

derivative operation is following manner; 

𝑓∗(𝑥) = 𝑙𝑖𝑚
ℎ→0∗

(𝑓(𝑥+∗ℎ)−∗𝑓(𝑥))/∗ℎ, 
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= 𝑙𝑖𝑚
ℎ→0∗

(𝑓(𝑥 ∙ ℎ)−∗𝑓(𝑥))/∗ℎ, 

= 𝑙𝑖𝑚
ℎ→1

(𝑓(𝑥 ∙ ℎ)−∗𝑓(𝑥))/∗ℎ, 

= 𝑙𝑖𝑚
ℎ→1

(
𝑓(𝑥∙ℎ)

𝑓(𝑥)
)/∗ℎ, 

= 𝑙𝑖𝑚
ℎ→1

(𝑒

𝑙𝑜𝑔(
𝑓(𝑥∙ℎ)

𝑓(𝑥)
)

𝑙𝑜𝑔(ℎ) ), 

= 𝑙𝑖𝑚
ℎ→1

(𝑒
𝑥∙ℎ∙𝑓(𝑥)∙𝑓′(𝑥∙ℎ)

𝑓(𝑥∙ℎ)∙𝑓(𝑥) ), 

 
𝑓∗(𝑥) =  𝑒

𝑥∙𝑓′(𝑥)

𝑓(𝑥)      ,      𝑥 ∈  𝐴. 
(3.14) 

 

Multiplicative calculus operates exclusively on positive numbers, ensuring that its derivative al-

ways falls within the range of 0 to positive infinity [11]. In the context of multiplicative calculus, it is 

imperative to consider three distinct cases of the derivative. The first case, when f(x)* > 1, leads to a 

decrease in f(x). The second case, where f(x)* = 1, signifies the identification of optimal points, mir-

roring the scenario in classical calculus where the derivative equals 0. Lastly, when f(x)* > 1, it results 

in an increase in f(x). 

4. Revised Methods 

4.1. Gradient Descent 

In classical calculus, gradient descent algorithms adjust weights through a combination of learn-

ing rate and derivative. The derivative in classical calculus can take values from negative infinity to 

positive infinity. The Classical Gradient Descent (GD) formula for classical calculus is illustrated in 

Equation 4.1. Where 𝜃 is parameters that should be updated, 𝛼 is the learning rate, 𝐽′(𝜃) is deriva-

tive of the cost function. 

 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑  − 𝛼 ∙  𝐽′(𝜃). (4.1) 

 

When Equation 4.1 is examined, it is seen that the old and new parameters are equal to each oth-

er when the derivative is equal to zero. However, in the context of generating a Multiplicative Gradi-

ent Descent algorithm, it is imperative to acknowledge that the multiplicative derivative is bounded 

within the interval (0, ∞). This means that the multiplicative derivative cannot be directly integrated 

into Equation 4.1. For the use of the MC derivative, Equation 4.1 needs to be revised with MC princi-

ples. When the GD algorithm is adapted to include multiplicative calculus, it results in the formulation 

of Equation 4.2. 

 

 𝜃𝑛𝑒𝑤 =
𝜃𝑜𝑙𝑑

𝛼log𝑒(𝐽∗(𝜃))  . (4.2) 

When Equation 4.2 is examined, it is seen that when the multiplicative derivative is equal to 1, 

the new and old parameters are equal to each other. The second crucial observation arises when the 
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multiplicative derivative exceeds 1 or falls below 1. In cases where the learning rate is less than 1, the 

update process does not yield accurate results. Hence, it becomes imperative to set the update magni-

tude greater than 1 for proper convergence. For the comparative analysis between classical calculus 

gradient descent and multiplicative gradient descent, the learning rate for classical gradient descent is 

denoted as '𝛼', while the learning rate for multiplicative gradient descent is set as ′ ∝= 𝑒𝛼′. After im-

plementing the requisite corrections, the Multiplicative Gradient Descent algorithm is presented in 

Equation 4.3b. 

 𝜃𝑛𝑒𝑤 =
𝜃𝑜𝑙𝑑

∝𝑙𝑜𝑔𝑒 𝑒
(
𝜃∙ 𝐽′(𝜃)

𝐽(𝜃)
)
  , (4.3a) 

 𝜃𝑛𝑒𝑤 =
𝜃𝑜𝑙𝑑

∝
(
𝜃∙ 𝐽′(𝜃)

𝐽(𝜃)
)
  .     (4.3b) 

4.2. Momentum 

The formula for the Momentum update rule in gradient descent is as follows: 

 𝜗𝑡+1 = 𝛽 ∙ 𝜗𝑡  + 𝛼 ∙ 𝐽′(𝜃𝑡), (4.4) 

 𝜃𝑡+1 = 𝜃𝑡 − 𝜗𝑡+1. (4.5) 

Where: 

• vt is the momentum term at time step t. 

• β is a hyperparameter that controls the strength of the momentum. 

• J’(θ) is the gradient of the loss function at time step t. 

• θt is the parameter vector at time step t. 

• α is the learning rate. 

This update rule introduces a momentum term, which is a fraction of the previous update, to 

smooth out oscillations in the updates and accelerate convergence in relevant directions. 

The momentum update is aligned with the principles of MC, as illustrated in Equations 4.6b and 

4.7 below. 

 𝜗𝑡+1 = 𝛽𝑙𝑜𝑔𝑒 𝜗𝑡  ∙  𝛼𝑙𝑜𝑔𝑒 𝐽∗(𝜃𝑡) , (4.6a) 

 𝜗𝑡+1 = 𝛽𝑙𝑜𝑔𝑒 𝜗𝑡  ∙  𝛼𝑙𝑜𝑔𝑒 𝑒
𝜃 ∙𝐽′(𝜃)

𝐽(𝜃)
 , (4.6b) 

 𝜃𝑡+1 = 𝜃𝑡/𝜗𝑡+1. (4.7) 

In transitioning from VGD to the MC domain, it becomes apparent that the learning rate requires 

an adjustment to ∝= 𝑒𝛼. In classical calculus, the momentum parameter typically falls within the 

range of 0 to 1. Consequently, to effectively apply momentum in the MC context, it is imperative to 

utilize 𝜓 = 𝑒𝛽. 

 ∝= 𝑒𝛼,    𝜓 = 𝑒𝛽, (4.8a,4.8b) 

 𝜗𝑡+1 = 𝜓𝑙𝑜𝑔𝑒 𝜗𝑡  ∙ ∝
𝜃∙ 𝐽′(𝜃)

𝐽(𝜃) ,     (4.9) 

 𝜃𝑡+1 = 𝜃𝑡/𝜗𝑡+1.    (4.10) 

In the experiments, the initialization of 𝜗 differs based on the calculus approach. In classical 

calculus, 𝜗 is set to 0, whereas in the context of MC, 𝜗 is initialized to 1. 
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4.3 NAG 

One notable distinction between NAG and standard Momentum lies in its computation of the 

gradient, projected ahead in the direction of momentum. This feature substantially mitigates oscilla-

tions and bolsters convergence, particularly in situations characterized by high curvature. The NAG 

update protocol is delineated by Equations 4.11, 4.12 and 4.13. 

 𝜏 = 𝜃𝑡 − 𝛽 ∙  𝜗𝑡, (4.11) 

 𝜗𝑡+1 = 𝛽 ∙ 𝜗𝑡  + 𝛼 ∙ 𝐽′(𝜏), (4.12) 

 𝜃𝑡+1 = 𝜃𝑡 − 𝜗𝑡+1. (4.13) 

Where: 

• vt is the momentum term at time step t. 

• β is a hyperparameter that controls the strength of the momentum. 

• J’(θ) is the gradient of the loss function at the parameter vector θ. 

• θt is the parameter vector at time step t. 

• α is the learning rate. 

Applying the formulations outlined in Equations 4.8a and 4.8b, along with the definitions delin-

eated in Section 2, we derive the expressions for MC-NAG, which are subsequently presented in 

Equations 4.15c and 4.16. 

 𝜏 =
𝜃𝑡

𝜓log𝑒 𝜗𝑡
 , (4.14) 

 𝜗𝑡+1 = 𝜓log𝑒 𝜗𝑡  ∙ ∝log𝑒 𝐽∗(𝜏) , (4.15a) 

 
= 𝜓log𝑒 𝜗𝑡  ∙ ∝log𝑒 𝑒

𝜏∙ 𝐽′(𝜏)
𝐽(𝜏)

, 
(4.15b) 

 = 𝜓log𝑒 𝜗𝑡  ∙ ∝
𝜏∙ 𝐽′(𝜏)

𝐽(𝜏) , (4.15c) 

 𝜃𝑡+1 =
𝜃𝑡

𝜗𝑡+1
 . (4.16) 

In classical calculus, 𝜗 is set to 0, whereas in the context of MC, 𝜗 is initialized to 1. 

4.4. AdaGrad 

AdaGrad's fundamental concept lies in adjusting learning rates according to the historical gradi-

ents associated with each parameter. This adaptive approach proves beneficial in scenarios where cer-

tain parameters necessitate more conservative updates while others warrant more substantial adjust-

ments. The update process for Classical AdaGrad is detailed below. The accumulated squared gradient 

Gt for a parameter 𝜃 at time step t is updated based on the gradient of the loss function with respect to 

that parameter 𝐽(𝜃𝑡). The accumulated squared gradient Gt is shown in Equation 4.17. 

 𝐺𝑡 = 𝐺𝑡−1 + (𝐽′(𝜃𝑡))2. (4.17) 

This means that at each time step, the squared gradient is added to the previous accumulated 

squared gradient. For the learning rate, at each time step t, the learning rate αt is determined by divid-

ing the initial learning rate α0 by the square root of the accumulated squared gradients Gt plus 𝜖. 

 𝛼𝑡 = 𝛼0/√𝐺𝑡 + 𝜖. (4.18) 
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This means that the learning rate is reduced for parameters that have received large updates in 

the past and increased for parameters that have received smaller updates. The update for the parameter 

𝜃 at time step t is then performed using the calculated learning rate: 

 𝜃𝑡 = 𝜃𝑡−1  + 𝛼𝑡(𝐽′(𝜃𝑡)) . (4.19) 

In the initial step, the Accumulated Gradient undergoes an update. In the classical calculus 

framework, the summation operation for the Accumulated Squared Gradient is transformed into a 

multiplication operation, thereby optimizing the Accumulated Gradient. 

 𝐺𝑡 = 𝐺𝑡−1 𝑒(ln 𝐽∗(𝜃𝑡))2
. (4.20) 

In the classical AdaGrad approach, the gradient is initialized with a value of 0 for accumulation. 

In MC-AdaGrad, a distinctive initialization of 1 is employed, reflecting the multiplicative nature of the 

method. Subsequently, the employment of multiplicative derivatives is imperative in the formulation. 

Upon the incorporation of the MC derivative and subsequent necessary simplifications, we arrive at 

Equation 4.21. 

 𝐺𝑡 = 𝐺𝑡−1 ∙ 𝑒
𝑙𝑛(

𝜃∙𝐽′(𝜃)

𝐽(𝜃)
)

2

. (4.21) 

The subsequent crucial step involves the refinement of the adaptive learning rate equation. In 

MC gradient descent, conventional learning rates within the range of 0 to 1 are not suitable, given the 

unique nature of MC, which corresponds to negative values in classical calculus. Consequently, the 

exponential function ea is employed to define the learning rate within the MC calculus framework. 

Following this adjustment, the equation is aligned with the definition provided in Section 2, resulting 

in the derivation of Equation 4.23. 

 ∝= 𝑒𝛼, (4.22) 

 ∝𝑡=∝0
log𝑒(1/𝑒(log𝑒 𝐺𝑡∙𝜖)0.5

). (4.23) 

The final step in the MC-AdaGrad methodology involves the parameter update, succinctly rep-

resented by Equation 4.24 below.  

 𝜃𝑡 = 𝜃𝑡−1 ∙∝
𝑙𝑛(

𝜃∙𝐽′(𝜃)

𝐽(𝜃)
)
  . (4.24) 

4.5. RMSProp 

RMSProp is an optimization algorithm designed to dynamically adjust learning rates for indi-

vidual parameters. It tackles the diminishing learning rates challenge observed in AdaGrad by incor-

porating a moving average of squared gradients. The moving average employed in Newtonian calculus 

needs to be adapted to the geometric mean for its effective integration into MC. The update formula 

for parameter 𝜃 at time step t in RMSProp is expressed as: 

 𝐺𝑡 = 𝛽𝐺𝑡−1 + (1 − 𝛽) ∙ (𝐽′(𝜃𝑡))2, (4.25) 

 𝜃𝑡 = 𝜃𝑡−1 −  (𝛼 ∙ (𝐽′(𝜃𝑡))/√𝐺𝑡 + 𝜖. (4.26) 

• 𝛼 is the learning rate. 

• 𝐽′(𝜃𝑡)is the gradient of the loss function with respect to 𝜃 at time step t. 

• 𝐺𝑡is the moving average of squared gradients for parameter 𝜃 at time step t. 

• 𝛽 is a hyperparameter that controls the exponential decay of the moving average. 
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• 𝜖 is a small constant. 

Adapting RMSProp to the principles of MC is essential. Initially, parameters such as learning 

rate and decay should be initialized as the exponent of 'e'. Subsequently, operations should be updated 

in accordance with the definitions outlined in Section 2 and by using Equations 4.8a and 4.8b. 

 𝐽∗(𝜃𝑡)  = 𝑒
𝜃∙𝐽′(𝜃)

𝐽(𝜃) , (4.27) 

 𝐺𝑡 = 𝜓𝑙𝑛 𝐺𝑡−1 ∙ (1/𝜓)𝑙𝑛 𝑒(𝑙𝑛((𝐽∗(𝜃𝑡)))2

, (4.28) 

 𝜃𝑡 = 𝜃𝑡−1 /(∝𝑙𝑛(𝐽∗(𝜃𝑡))𝑙𝑛(1/(𝑒(𝑙𝑛(𝐺𝑡∙𝜖))0.5
))

). (4.29) 

5. Results 

Classical gradient descent algorithm, NAG, Momentum, AdaGrad, and RMSProp algorithms, 

along with their multiplicative analysis-based counterparts, were evaluated in five different scenarios 

on exponential-quadratic-logarithmic composite functions subject to various constraints: bounded, 

quadratic, others, and unbounded. The scenarios have been deliberately chosen to cover a wide range 

of optimization conditions: 

Scenario 1: Iteration Count: 1000, Learning Rate: 0.001 

• Reason for Iteration Count: The high number of iterations allows the algorithm to com-

prehensively explore the optimization environment and find a global or near-global op-

timum. This is especially useful for complex functions with many local minima. 

• Reason for Learning Rate: The reason why the learning coefficient is chosen small is to 

test the algorithms in high iterations in a controlled manner without exceeding the opti-

mum value. 

Scenario 2: Iteration Count: 10, Learning Rate: 0.1 

• Reason for Iteration Count: A low number of iterations tests the ability of the algorithm to 

converge quickly. This scenario is designed to evaluate the algorithm's performance in 

situations where computational resources or time are limited. 

• Reason for Learning Rate: A high learning rate forces larger parameter updates, testing 

the algorithm's ability to make significant progress with each iteration. 

Scenario 3: Iteration Count: 10, Learning Rate: 0.01 

• Reason for Iteration Count: Similar to Scenario 2, the low number of iterations tests the 

performance of the algorithm with minimal computational effort. 

• Reason for Learning Rate: A moderate level of learning was chosen to test the behavior of 

the algorithms when they need both significant updates and stability at the same time. 

Scenario 4: Iteration Count: 10, Learning Rate: 0.001 

• Reason for Iteration Count: Again low number of iterations to test fast convergence ca-

pabilities. 

• Reason for Learning Rate: A small learning rate similar to Scenario 1, but with fewer it-

erations to see how well the algorithm performs with minimal updates over a short period. 

Scenario 5: Iteration Count: 10, Learning Rate: 0.0001 

• Reason for Iteration Count: Low iteration count for rapid convergence testing. 
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• Reason for Learning Rate: An extremely small learning rate tests the performance of the 

algorithm with very careful updates. 

Collectively, these scenarios were selected to conduct a comprehensive investigation to under-

stand how algorithms behave at high iteration counts, aggressive-rapid changes, sensitive updates, and 

the need for stability. This comprehensive approach ensures that the study's findings are applicable to 

a wide range of practical optimization problems and highlights the versatility and potential advantages 

of MC-based algorithms. Table 1 displays the conducted scenarios. 

Table 1. Scenarios of Experiments. 

Scenarios Iteration count Learning rate 

1 1000 0.001 

2 10 0.1 

3 10 0.01 

4 10 0.001 

5 10 0.0001 

 

In the experimental setup, the parameters of the classical and alternative methods were set as 

follows:  

• β = 0.9 for Classical Momentum. • β = e0.9 for MC-Momentum. 

• β = 0.9 for Classical NAG. • β = e0.9 for MC-NAG. 

• 𝜖 =  10−8  for Classical AdaGrad. •  𝜖 =  𝑒10−8
for MC-AdaGrad. 

• 𝜖 =  10−8  for Classical RMSProp. •  𝜖 =  𝑒10−8
for MC- RMSProp. 

• β = 0.9 for Classical RMSProp. • β = e0.9 for MC-RMSProp. 

In the experimental design, starting points were established using the exponential of CUTEst's 

default starting values, aligning with the inherently positive domain of the composite functions under 

study.  This adjustment ensured that both algorithms commenced from equivalent starting points, 

providing a consistent and stable foundation for comparison within the experimental framework. 

Classical Gradient Descent: 

In this analysis, classical gradient descent was evaluated across 405 instances. Of these, the mul-

tiplicative gradient descent approach remained convergent in 278 cases, while its classical counterpart 

did so in 258 instances. Among the scenarios where both methods achieved convergence, the alterna-

tive multiplicative method yielded superior results in 124 cases. Conversely, the classical approach 

outperformed the alternative in 17 instances, and both methods arrived at identical solutions in 74 

cases. Statistical analysis further substantiated these findings, with t-statistics and p-values recorded at 

3.0469 and 0.0026, respectively, indicating the significance of the observed differences. 
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Table 2. Comparison of Classical Gradient descent and MC-Gradient Descent 

 Classical Gradient Descent MC-Gradient Descent 

Stable Convergence 258 cases 278 cases 

Better Convergence 17 cases 124 cases 

Convergence to same point 74 cases 

T-statistics 3.0469 

P-value 0.0026 

 

Momentum: 

The Momentum Gradient Descent method underwent testing in 405 scenarios. In these tests, the 

Multiplicative Momentum Gradient Descent approach maintained convergence in 269 instances, while 

the Classical Momentum method did so in 263 cases. Within the subset where both methods achieved 

convergence, the multiplicative variant outperformed the classical one in 118 cases. In contrast, the 

classical approach yielded superior outcomes in 19 cases, and both methods reached identical solu-

tions in 73 cases. The significance of the performance differential between the two methods was con-

firmed through statistical analysis, which yielded t-statistics and p-values of 2.9701 and 0.0033, re-

spectively. 

Table 3. Comparison of Momentum and MC-Momentum 

 Momentum MC-Momentum 

Stable Convergence 263 cases 269 cases 

Better Convergence 19 cases 118 cases 

Convergence to same point 73 cases 

T-statistics 2.9701 

P-value 0.0033 

 

NAG: 

The NAG method was evaluated across 405 scenarios. The Multiplicative NAG approach re-

mained convergent in 267 of these cases, whereas the Classical NAG method did so in 255 instances. 

In situations where both approaches achieved convergence, the multiplicative variant demonstrated 

superior performance in 118 cases. On the other hand, the classical version outperformed the multipli-

cative one in 18 instances, and both methods arrived at identical outcomes in 73 cases. Statistical 

analysis further underscored these results, revealing t-statistics and p-values of 3.0475 and 0.0026, 
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respectively, thereby highlighting the significant differences in performance between the two ap-

proaches. 

Table 4. Comparison of NAG and MC-NAG 

 NAG MC-NAG 

Stable Convergence 255 cases 267 cases 

Better Convergence 18 cases 118 cases 

Convergence to same point 73 cases 

T-statistics 3.0475 

P-value 0.0026 

 

AdaGrad: 

The AdaGrad algorithm was subjected to examination in 405 distinct scenarios. The Multiplica-

tive AdaGrad variant remained convergent in 257 of these cases, mirroring the Classical AdaGrad's 

convergence in an equal number of instances. Among the scenarios where convergence was achieved 

by both methods, the alternative multiplicative AdaGrad yielded more favorable outcomes in 115 cas-

es, while the classical AdaGrad delivered superior performance in 108 cases, and both methods 

reached identical solutions in 33 cases. A thorough statistical analysis was conducted to assess these 

findings, yielding t-statistics and p-values of 4.0893 and 5.8033*10-5, respectively, which underscore 

the significant performance differences between the two methodologies. 

Table 5. Comparison of AdaGrad and MC-AdaGrad 

 AdaGrad MC-AdaGrad 

Stable Convergence 257 cases 257 cases 

Better Convergence 108 cases 115 cases 

Convergence to same point 33 cases 

T-statistics 4.0893 

P-value 5.8033*10-5 

 

RMSProp: 

The RMSProp optimization technique was rigorously tested across 405 scenarios. In this series 

of tests, the Multiplicative RMSProp variant maintained convergence in 262 instances, closely fol-

lowed by the Classical RMSProp, which did so in 261 instances. Within the subset where both ver-
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sions converged, the multiplicative adaptation of RMSProp achieved more favorable outcomes in 119 

cases. Conversely, the classical version of RMSProp outperformed the multiplicative variant in 110 

cases, with both methods arriving at identical outcomes in 30 cases. Comprehensive statistical analysis 

was performed to evaluate these outcomes, resulting in t-statistics and p-values of 4.2504 and 

2.9842*10-5, respectively, thereby highlighting the significant performance distinctions between the 

two RMSProp adaptations. 

Table 6. Comparison of RMSProp and MC- RMSProp 

 RMSProp MC-RMSProp 

Stable Convergence 261 cases 262 cases 

Better Convergence 110 cases 119 cases 

Convergence to same 

point 
30 cases 

T-statistics 4.2504 

P-value 2.9842*10-5 

 

To discern the strengths and limitations of the algorithms within various constrained environ-

ments, a meticulous evaluation was conducted, focusing on the impact of different constraint types on 

algorithm performance. 

Bounded Constraints: 

In the context of composite functions with bounded constraints, the alternative methods demon-

strated superior performance in 379 instances, while classical methods excelled in 199 cases. Statisti-

cal analysis underscored these findings, yielding a t-statistic of 5.3609 and a highly significant p-value 

of 1.19*10-7. 

Table 7. Comparison at Bounded Constraints 

 Classical Methods MC-Methods 

Better Convergence 119 cases 379 cases 

Convergence to same point 0 cases 

T-statistics 5.3609 

P-value 1.19*10-7 

 

 

Quadratic Constraints: 



International Journal of Pure and Applied Sciences 10(1); 209-227 (2024) 

  

 

223 

 

When analyzing composite functions subject to quadratic constraints, alternative methods sur-

passed classical methods in 62 instances, whereas classical methods were superior in 45 cases. Both 

methods converged to the same value in 141 scenarios. Statistical validation of these outcomes was 

provided by a t-statistic of 3.5332 and a p-value of 0.0004, indicating significant performance differ-

ences. 

Table 8. Comparison at Quadratic Constraints 

 Classical Methods MC-Methods 

Better Convergence 45 cases 62 cases 

Convergence to same 

point 
141 cases 

T-statistics 3.5332 

P-value 0.0004 

 

Other type of Constraints: 

In scenarios involving composite functions with other types of constraints, the alternative meth-

ods outshined classical approaches in 125 instances, while the latter prevailed in 25 cases. Additional-

ly, both methodologies achieved identical outcomes in 142 instances. The distinction in performance 

between the two methods was statistically significant, as evidenced by a t-statistic of 3.3093 and a 

p-value of 0.0010. 

Table 9. Comparison at Other types of Constraints 

 Classical Methods MC-Methods 

Better Convergence 25 cases 125 cases 

Convergence to same point 142 cases 

T-statistics 3.3093 

P-value 0.0010 

 

Unconstrained: 

Within the realm of unconstrained composite functions, alternative methodologies demonstrated 

superior performance in 26 instances, in contrast to classical approaches, which excelled in 3 cases. 

The significant disparity in efficacy between the two methodologies is corroborated by a t-statistic of 

3.9010 and a p-value of 0.0005, indicating a statistically significant difference. 
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Table 10. Comparison at Unconstrained functions 

 Classical Methods MC-Methods 

Better Convergence 3 cases 26 cases 

Convergence to same point 0 cases 

T-statistics 3.9010 

P-value 0.0005 

6. Discussion 

This study has attempted a comprehensive review of classical and multiplicative analysis-based 

optimization algorithms across a diverse set of scenarios and constraints, using exponen-

tial-quadratic-logarithmic composite functions. Findings from this research provide insight into the 

relative strengths and potential limitations of each approach under varying conditions. 

Algorithm Performance Across Scenarios: 

The classical gradient descent algorithm and its variations, including NAG, Momentum, AdaG-

rad, and RMSProp, were analyzed along with their multiplicative counterparts. In our tests across five 

scenarios, we consistently saw that multiplicative methods were especially adaptable and responsive, 

especially in tests with many iterations and different learning rates. This adaptability highlights how 

multiplicative computing can improve how algorithms combine and perform, especially in complex 

optimization cases. 

Convergence and Superiority: 

An important aspect of our findings concerns the convergence rates of classical and multiplica-

tive methods. While both approaches exhibited commendable convergence abilities, multiplicative 

methods frequently outperformed their classical counterparts, providing smaller values in most cases 

where convergence was achieved. This superiority was seen most in the Bounded constraints case, and 

while alternative methods gave better results for 379 cases, only 199 methods gave better results for 

classical methods. The Unconstrained case was the second most successful, as the number of scenarios 

was relatively small compared to the Bounded scenario, Classical algorithms only succeeded in con-

verging in %10 of the cases. While the Classical algorithms had difficulty converging, the alternative 

methods were successful in more scenarios and performed better in 90 percent of comparable situa-

tions. Regarding other types of constraints, alternative methods outperformed classical methods in 125 

cases, while classical methods showed superior performance in 25 cases; this indicated a significant 

advantage for alternative approaches in these specific conditions. 

Statistical Significance: 

Statistical analysis, including t-statistics and p-values, played an important role in validating the 

performance differences observed between classical and multiplicative methods. The significant 

p-values obtained across various algorithms and types of constraints strengthen the robustness of ap-

proaches based on multiplicative analysis and shows a significant improvement over traditional meth-

ods in certain optimization scenarios. 
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Constraint-Specific Observations: 

Evaluation based on types of constraints further illuminated the strengths and weaknesses of the 

algorithms. There were examples of the superiority of both classical and alternative methods, espe-

cially in scenario with quadratic; This suggested that the choice of optimization method may depend 

on the specific nature of the constraint. However, in unconstrained environments, alternative methods 

have demonstrated their versatility and distinct advantage in broader optimization applications. 

Multiplicative Methods' Superiority: 

The superior performance of multiplicative methods in certain scenarios can be attributed to their 

natural fit with the exponential growth or decay models common to the exponen-

tial-quadratic-logarithmic composite functions tested. Thanks to this adaptability, it enables effective 

research in an optimization environment where classical algorithms may have difficulty in uncon-

strained situations. Future studies can create new models by blending the best features of multiplica-

tive analysis-based methods with the features of traditional methods. 

Limitations: 

A limitation of this work is the computational efficiency and RAM usage of methods based on 

multiplicative calculus. This should be taken into consideration when using multiplicative calcu-

lus-based optimization algorithms in large-scale projects and algorithms that require high processing 

speed and RAM capacity, such as deep learning. 

Implications and Future Directions: 

The analyzes obtained from this study have the potential to provide advantages in practical ap-

plication in various fields beyond academic interest. It is thought that the proven superiority of meth-

ods based on multiplicative analysis in certain scenarios will direct scientists to further research on 

optimization and applications in other fields. Future studies may focus on improving these methods 

and analyzing the performance of real-world problems. 

This study opens a different innovative way to complex optimization problems by presenting a 

comparative analysis on optimization based on classical and multiplicative analysis. This performance 

increase obtained on the composite function with multiplicative calculus also paves the way for the 

evaluation of other alternative calculus methods. 

7. Conclusion 

Our investigation into the application of multiplicative calculus within optimization algorithms 

has revealed a promising avenue for addressing complex optimization problems, especially in positive 

domains. The multiplicative methods exhibited exceptional performance in unconstrained and bound-

ed scenarios, outperforming classical algorithms in a significant majority of cases. These findings un-

derscore the potential of multiplicative calculus-based methods for enhancing optimization techniques. 

However, the computational efficiency and RAM usage of these methods pose challenges that warrant 

further exploration.  

Zou and colleagues examined the convergence properties of adaptive methods such as RMSProp 

and Adam, finding them to be effective in a variety of scenarios [3]. Our study supports these results 

and shows that multiplicative adaptations not only preserve but also strengthen these traits. In particu-

lar, our statistical analysis shows that multiplicative methods provide faster and more stable conver-

gence in various optimization environments. Boyd and Vandenberghe’s work on convex optimization 
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provides a solid foundation for understanding optimization in constrained environments [22]. Our 

research builds on these principles by applying multiplicative computation to gradient descent algo-

rithms, demonstrating superior performance in constrained and unconstrained scenarios that Boyd and 

Vandenberghe describe as challenging for classical methods. Wilson’s work addresses several limita-

tions of classical gradient descent methods, including handling of positivity constraints, convergence 

issues, and performance in non-convex optimization [4]. Multiplicative methods inherently preserve 

positivity constraints and provide non-negative variables throughout the optimization process. Multi-

plicative methods show stronger convergence properties, increasing the probability of reaching opti-

mal solutions, especially in convex scenarios. Additionally, Multiplicative based methods exhibited 

greater robustness to local minima, improving performance in complex optimization environments. 

The strengths of adaptive methods such as AdaGrad and RMSProp are emphasized by Ruder, faster 

convergence and stability are achieved by integrating the MC calculation in our work[1]. The 

non-linear structure of MC based methods enables faster convergence.  

Future research could focus on developing hybrid models that combine the strengths of both 

classical and multiplicative approaches, potentially mitigating limitations and expanding the applica-

bility of these advanced optimization strategies. 
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