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Abstract
In this article, we are intended to examine generalized skew-derivations that act as Jordan
homoderivations on multilinear polynomials in prime rings. More specifically, we show
that if F is generalized skew-derivation of a prime ring R with associated automorphism
α such that the relation

F (X2) = F (X)2 + F (X)X +XF (X)
holds for all X ∈ f(R), where f(x1, . . . , xn) is a noncentral valued multilinear polynomial
over extended centroid C, then either F = 0 or F = −idR or F = −idR + α (where idR

denotes the identity map of R).
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1. Introduction
In this paper we consider that R always be a prime ring with center Z(R), Qr its right

Martindale ring of quotients and C = Z(Qr), called the extended centroid of the prime
ring R. We refer the reader to [4] for the related all properties and the definitions of these
objects.
An additive mapping d : R 7→ R on R is said to be a derivation if d(ab) = d(a)b + ad(b)
for all a, b ∈ R. The additive mapping d : R 7→ R is said to be a Jordan derivation if
d(a2) = d(a)a + ad(a) for all a ∈ R. Thus it is clear that every derivation is a Jordan
derivation, but the converse is not true in general. An additive mapping G on R is said to
be a generalized derivation if G(ab) = G(a)b+ad(b) for all a, b ∈ R, where d is a derivation
of R. It is clear that any derivation on R is a generalized derivation on R. Moreover any
map f of R with form f(x) = a′x+xb′, where a′, b′ ∈ R, is a generalized derivation, known
as inner generalized derivation.

An additive mapping d : R −→ R is said to be a skew derivation of R if
d(ab) = d(a)b+ α(a)d(b)
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for all a, b ∈ R, where α is associated automorphism of d. Also an additive mapping G on
R is said to be a generalized skew derivation of R if there exists a skew derivation d of R
and associated automorphism α such that

G(ab) = G(a)b+ α(a)d(b)

for all a, b ∈ R, where d is associated skew derivation and α is associated automorphism
of G. The definition of generalized skew derivations is a unified notion of generalized
derivations and skew derivations, which are considered as classical linear mappings of
non-associative algebras, and have been investigated by many researchers from various
views [7–10,22,25].
We all known that automorphisms, derivations and skew derivations of R can be extended
both to Qr. In [9], Chang extends the definition of generalized skew derivations to the
right Martindale ring of quotient Qr of R as follows:
By a generalized skew derivation we mean an additive mapping G : Qr −→ Qr such that
G(ab) = G(a)b+ α(a)d(b) for all a, b ∈ Qr, where d is skew derivation of R and also α is
automorphism of R. Even more, there exists G(1) = a′ ∈ Qr such that G(x) = a′x+ d(x)
for all x ∈ R. In another language, any generalized skew derivation of R can be extended
to the right Martindale ring of quotient Qr.

An additive mapping F : R → R is called a homomorphism or an anti-homomorphism
on R if F (ab) = F (a)F (b) or F (ab) = F (b)F (a) holds for all a, b ∈ R respectively. The
additive mapping F is called a Jordan homomorphism, if F (a2) = F (a)2 holds for all
a ∈ R. A unified concept of a derivation and homomorphism has been introduced by El
Sofy Aly [15] as: an additive mappings δ : R → R is said to be a homoderivation if it
satisfies

δ(xy) = δ(x)δ(y) + δ(x)y + xδ(y)

for all x, y ∈ R.
For example, let R = Z(1,

√
5) = {a + b

√
5 : a, b ∈ Z}, be a ring. Then a mapping

δ : R → R such that a+ b
√

5 7→ −2b
√

5 is a homoderivation.
Let us consider the ring R =

{(
a b
0 0

)
: a, b ∈ R

}
and a mapping δ : R → R such

that δ
(
a b
0 0

)
=

(
0 b
0 0

)
. It is easy to verify that δ is an example of homoderivation.

Moreover, like Jordan derivation, we can define the notion of Jordan homoderivation.
An additive mapping δ : R → R satisfying δ(x2) = δ(x)2 + δ(x)x+ xδ(x) for all x ∈ R is
called a Jordan homoderivation. Thus every homoderivation is a Jordan homoderivation,
but the converse is not true in general.

Let us consider the ring R =
{(

a b
0 c

)
: a, b ∈ Z

}
and a mapping δ : R → R such

that δ
(
a b
0 c

)
=

(
0 b
0 0

)
. It is easy to verify that δ(x2) = δ(x)2 + δ(x)x + xδ(x) for

all x ∈ R, that is, δ is an example of Jordan homoderivation.
Many papers in the literature determine the structure of prime rings R as well as

structure of additive mappings which acts as a (anti)homomorphism, homomorphism, or
Jordan homomorphism on some appropriate subsets of the prime ring R.

At the beginning of this line of investigation Bell and Kappe [5, Theorem 3] proved
that there are no non-zero derivations of a prime ring R which acts as a homomorphism
or anti-homomorphism on a non-zero right ideal of the prime ring R. Later, this result
was extended to a non-central Lie ideal of a prime ring of characteristic not 2 (see [29]).

In [1–3,16,27,28,31], generalized derivations have also been discussed when it acts as ho-
momorphisms or anti-homomorphisms or Lie homomorphisms or Jordan homomorphisms
in prime rings.
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From the above cited results, the reader can notice that generalized derivations can
act as Jordan homomorphisms. When this is the case, the complete description of the
additive mappings can be obtained (see [16]). In the light of this discussion, one can think
of the question that what could be the form of a generalized derivation that acts as Jordan
homoderivation? A complete answer to this question is given by Bera and Dhara [6] as
the following:
Theorem A. Let R be a prime ring with characteristic is not 2 and f(x1, . . . , xn) be a
noncentral multilinear polynomial over C(= Z(U)) where U be the Utumi ring of quotients
of R. If F,G and H are three generalized derivations on R satisfying

F (x2) = G(x)2 +H(x)x+ xH(x)
for all x ∈ f(R), then one of the following holds:

(1) there exist a derivation d on R and λ1, λ2, λ3 ∈ C such that F (x) = λ1x + d(x),
G(x) = λ2x and H(x) = λ3x+ d(x) for all x ∈ R, with λ1 = λ2

2 + 2λ3;
(2) there exist a derivation d on R, a1 ∈ U and λ1, λ2, λ3 ∈ C such that F (x) =

λ1x + d(x), G(x) = λ2x and H(x) = λ3x + [a1, x] + d(x) for all x ∈ R, with
f(R)2 ∈ C and λ1 = λ2

2 + 2λ3;
(3) there exist a1, a2 ∈ U and λ1, λ2, λ3 ∈ C such that F (x) = λ1x+[a1, x], G(x) = λ2x

and H(x) = λ3x+ [a2, x] for all x ∈ R, with f(R)2 ∈ C and λ1 = λ2
2 + 2λ3.

As a reduction of above theorem, we have
Theorem B. Let R be a prime ring with characteristic is not 2 and f(x1, . . . , xn) be a
noncentral multilinear polynomial over C(= Z(U)) where U be the Utumi ring of quotients
of R. If F is a generalized derivation on R satisfying

F (u2) = F (u)2 + F (u)u+ uF (u)
for all u ∈ f(R), then either F = 0 or F (x) = −x for all x ∈ R.

Therefore, it is natural to ask that whether the above theorem is true in the settings
of generalized skew-derivations or not. In this note, we give an affirmative answer to this
question and obtained the common description of a generalized skew derivation and a
Jordan homoderivation. More precisely, we shall prove the following theorem:

Theorem 1.1. Let R be a noncommutative prime ring of characteristic is not 2, Qr its
right Martindale ring of quotients, C = Z(Qr) the extended centroid of the prime ring
R and f(x1, . . . , xn) a noncentral multilinear polynomial over C. Assume that F is a
generalized skew-derivation of R and α is the associated automorphism of F . If

F (u2) = F (u)2 + F (u)u+ uF (u)
for all u ∈ f(R), then one of the following holds:

(1) F = 0;
(2) F (x) = −x for all x ∈ R;
(3) F (x) = −x+ α(x) for all x ∈ R.

It is also important to observe that the assumption of primeness in the hypothesis of
our theorem is not redundant, the following example illustrates this:

Example 1.2. Let R =


 0 a1 b1

0 0 c1
0 0 0

 : a1, b1, c1 ∈ Z

, which is a ring over the set of

integers. It can be easily seen that R is not a prime ring. Define

F

 0 a1 b1
0 0 c1
0 0 0

 =

 0 0 a1
0 0 0
0 0 0

 , d

 0 a1 b1
0 0 c1
0 0 0

 =

 0 0 c1
0 0 0
0 0 0

 ,
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and

α

 0 a1 b1
0 0 c1
0 0 0

 =

 0 −a1 b1
0 0 −c1
0 0 0

 .

Clearly, F is a generalized skew-derivation of R with associated skew derivation d and
automorphism α and satisfies F (X2) = F (X)2 + F (X)X + XF (X) on R. But F takes
none of the forms given in the conclusion of Theorem 1.1.

In all what follows, for any multilinear polynomial over the extended centroid C of the
prime ring R we will adopt the following notation:

f(x1, . . . , xn) = x1x2 . . . xn +
∑

σ∈Sn,σ 6=id

ασxσ(1)xσ(2) . . . xσ(n)

for some ασ ∈ C. We always consider that characteristic of the prime ring R is not 2 and
f(x1, . . . , xn) is a non-central valued in the prime ring R.

We also recall that, if we consider R is a prime ring then C must be a field. Even more,
R is a subring of the right Martindale ring of quotients Qr and Qr is a prime ring with
identity. It should be remarked that Qr is centrally closed prime C-algebra.

Also, it is known to all that I, R and Qr satisfy the same generalized polynomial
identities (GPI) with coefficients in Qr, the right Martindale ring of quotients (see [13]).
Moreover, I, R, and Qr satisfy the same generalized polynomial identities (GPI) with
automorphisms (see [12, Theorem 1]).

2. The mapping is inner generalized skew derivation
In this section we consider that F is an inner generalized skew derivation associated

with an automorphism. We denote f(R) = {f(x1, . . . , xn)|x1, . . . , xn ∈ R}.

Proposition 2.1. Let R be a noncommutative prime ring of characteristic not 2, Qr

be its right Martindale ring of quotient and C be its extended centroid. Suppose that
f(x1, . . . , xn) be a noncentral multilinear polynomial over C. If F (x) = ax + pxp−1b for
all x ∈ R and for some a, b, p ∈ Qr such that

F (x2) = F (x)2 + F (x)x+ xF (x)

for all x ∈ f(R), then one of the following holds:
(1) F = 0;
(2) F (x) = −x for all x ∈ R;
(3) F (x) = −x+ pxp−1 for all x ∈ R.

Since F (x) = ax+ pxp−1b, our hypothesis

F (x2) = F (x)2 + F (x)x+ xF (x)

for all x ∈ f(R) yields

px2(p−1b) = axax+ axpx(p−1b) + px(p−1ba)x
+px(p−1bp)x(p−1b) + px(p−1b)x+ xax+ xpx(p−1b) (2.1)

for all x ∈ f(R).
This can be written as

px2a1 = axax+ axpxa1 + pxa2x+ pxa3xa1 + pxa1x+ xax+ xpxa1 (2.2)

for all x ∈ f(R), where a1 = p−1b, a2 = p−1ba, a3 = p−1bp. Thus, we consider the
generalized polynomial
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Ψ(x1, . . . , xn) =
pf(x1, . . . , xn)2a1 − af(x1, . . . , xn)af(x1, . . . , xn)
− af(x1, . . . , xn)pf(x1, . . . , xn)a1 − pf(x1, . . . , xn)a2f(x1, . . . , xn)
− pf(x1, . . . , xn)a3f(x1, . . . , xn)a1 − pf(x1, . . . , xn)a1f(x1, . . . , xn)
− f(x1, . . . , xn)af(x1, . . . , xn) − f(x1, . . . , xn)pf(x1, . . . , xn)a1.

To prove the above proposition we need the following Lemmas.

Lemma 2.2. If
Ψ(x1, . . . , xn) = 0

is a trivial generalized polynomial identity for R, then either p ∈ C or a1 ∈ C or a +
a3, p

−1(a+ 1) ∈ C.

Proof. Since R and Qr satisfy the same generalized polynomial identities (see [13]), Qr

satisfies Ψ(x1, . . . , xn) = 0. Let T = Qr ∗C C{x1, . . . , xn} is the free product of Qr and
C{x1, . . . , xn}, the free C-algebra of noncommutating indeterminates x1, . . . , xn. Then
Ψ(x1, . . . , xn) is a zero element in the free product T .

Assume that f(x1, . . . , xn) = X. Let a1 /∈ C. Then

pX2a1 − aXaX − aXpXa1 − pXa2X − pXa3Xa1 − pXa1X −XaX −XpXa1 = 0 ∈ T.

Since a1 /∈ C, we have from above

pX2a1 − aXpXa1 − pXa3Xa1 −XpXa1 = 0 ∈ T,

that is
(pX − aXp− pXa3 −Xp)Xa1 = 0 ∈ T.

If p ∈ C, we are done. So assume that p /∈ C. Then {p, a, 1} is linearly C-dependent.
There exist λ1, λ2, λ3 ∈ C such that λ1p + λ2a + λ3 = 0. Since p /∈ C, λ2 6= 0. Hence
a = βp+ γ for some β, γ ∈ C. Thus from above

(pX − βpXp− γXp− pXa3 −Xp)Xa1 = 0 ∈ T.

Since p /∈ C, we have from above that

(pX − βpXp− pXa3)Xa1 = 0 ∈ T (2.3)
and

(−γXp−Xp)Xa1 = 0 ∈ T. (2.4)
The equation (2.3) implies that pX(1 −βp− a3)Xa1 = 0 implying 1 −βp− a3 = 0, i.e.,

1 + γ − a− a3 = 0, i.e., a+ a3 ∈ C.
The equation (2.4) implies that −Xp(γ+1)Xa1 = 0 implying γ+1 = 0, i.e., a−βp+1 =

0, i.e., p−1(a+ 1) = β ∈ C. □

Lemma 2.3 ([17], Lemma1). Suppose that C be an infinite field and m ≥ 2. If A1, . . . , Ak

are not scalar matrices in Mm(C) then there exists some invertible matrix P1 ∈ Mm(C)
such that any matrices P1A1P

−1
1 , . . . , P1AkP

−1
1 have all non-zero entries.

Lemma 2.4. Let C be an infinite field and R = Mm(C) be the ring of all m×m matrices
over C, m ≥ 2. If R satisfies

Ψ(x1, . . . , xn) = 0,
then either p ∈ C · Im or a1 ∈ C · Im or a+ a3, p

−1(a+ 1) ∈ C · Im.



6 B. Dhara, G. S. Sandhu, N. Bera

Proof. We assume first that a1 /∈ C · Im, p /∈ C · Im and a+ a3 /∈ C · Im. Then by Lemma
2.3, there exists an invertible matrix B such that Ba1B

−1, BpB−1 and B(a + a3)B−1

have all non-zero entries. Let ϕ(x) = BxB−1 for all x ∈ R. Assume that ϕ(a) =
∑
aijeij ,

ϕ(a1) =
∑
a′

ijeij , ϕ(p) =
∑
pijeij and ϕ(a3) =

∑
a′′

ijeij . Then for any i 6= j, all the entries
a′

ij , pij , (a+ a′′)ij are non zeros.
Since ϕ is an inner automorphism, evidently

ϕ(p)x2ϕ(a1) = ϕ(a)xϕ(a)x+ ϕ(a)xϕ(p)xϕ(a1) + ϕ(p)xϕ(a2)x
+ϕ(p)xϕ(a3)xϕ(a1) + ϕ(p)xϕ(a1)x+ xϕ(a)x+ xϕ(p)xϕ(a1)

(2.5)

for all x ∈ f(R). Let ehk be the matrix unit, that is, the matrix whose only (h, k)th-entry
is 1 and all other entries are zero. Since f(x1, . . . , xn) is not central valued, by [23] (see also
[24]), there exist sequence of matrices r1, . . . , rn ∈ Mm(C) such that f(r1, . . . , rn) = γehk,
where 0 6= γ ∈ C, h 6= k. In (2.5), replacing the particular value of f(x1, . . . , xn) we have

0 = ϕ(a)ehkϕ(a)ehk + ϕ(a)ehkϕ(p)ehkϕ(a1) + ϕ(p)ehkϕ(a2)ehk

+ϕ(p)ehkϕ(a3)ehkϕ(a1) + ϕ(p)ehkϕ(a1)ehk + eijϕ(a)ehk + ehkϕ(p)ehkϕ(a1).
(2.6)

Left and right multiplying by ehk, it yields

ehkϕ(a)ehkϕ(p)ehkϕ(a1)ehk + ehkϕ(p)ehkϕ(a3)ehkϕ(a1)ehk = 0,

that is
ehk(

∑
aijeij)ehk(

∑
pijeij)ehk(

∑
a′

ijeij)ehk

+ehk(
∑

pijeij)ehk(
∑

a′′
ijeij)ehk(

∑
a′

ijeij)ehk = 0.

This implies
akhpkha

′
kh + pkha

′′
kha

′
kh = 0

that is
pkha

′
kh(a+ a′′)kh = 0.

This is a contradiction, since a′
ij , pij , (a+ a′′)ij are all non zeros for any i 6= j.

Thus we can conclude that either a1 ∈ C · Im or p ∈ C · Im or a+ a3 ∈ C · Im.
Again, left multiplying by ehkϕ(p)−1 and right by ehk, (2.6) yields

ehkϕ(p−1a)ehkϕ(p)ehkϕ(a1)ehk + ehkϕ(p)−1ehkϕ(p)ehkϕ(a1)ehk = 0.

Assuming ϕ(p−1a) =
∑
p′′

ijeij and ϕ(p)−1 =
∑
p′

ijeij , we have

p′′
khpkha

′
kh + p′

khpkha
′
kh = 0

that is
pkha

′
kh(p′′ + p′)kh = 0.

Thus as above by same argument, either p ∈ C · Im or a1 ∈ C · Im or p−1a+ p−1 ∈ C · Im.
Hence if p /∈ C · Im and a1 /∈ C · Im, then a + a3 ∈ C · Im and p−1a + p−1 ∈ C · Im.

Therefore conclusion follows.
□

Lemma 2.5. Let C be a finite field and let R = Mm(C) be the ring of all m×m matrices
over C, m ≥ 2. If char (R) 6= 2 and R satisfies

Ψ(x1, . . . , xn) = 0,

then either p ∈ C · Im or a1 ∈ C · Im or a+ a3, p
−1(a+ 1) ∈ C · Im.
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Proof. Let K be an extension field of C such that K is infinite. Let R = Mm(K) ∼=
R⊗C K. Note that f(x1, . . . , xn) is central-valued on R if and only if it is central-valued
on R. Now the generalized polynomial (GP) Ψ(x1, . . . , xn) is a multi-homogeneous of
multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn. Now linearizing the identity with
respect to first argument, that is, replacing x1 with x1 + y1 we have

Ψ(x1 + y1, . . . , xn) = 0.
This can be written as

Ψ(x1, . . . , xn) + Ψ(y1, . . . , xn) + Θ1(x1, . . . , xn, y1) = 0,
where

Θ1(x1, . . . , xn, y1) =
pf(x1, . . . , xn)f(y1, . . . , xn)a1 + pf(y1, . . . , xn)f(x1, . . . , xn)a1

− af(x1, . . . , xn)af(y1, . . . , xn) − af(y1, . . . , xn)af(x1, . . . , xn)
− af(x1, . . . , xn)pf(y1, . . . , xn)a1 − af(y1, . . . , xn)pf(x1, . . . , xn)a1

− pf(x1, . . . , xn)a2f(y1, . . . , xn) − pf(y1, . . . , xn)a2f(x1, . . . , xn)
− pf(x1, . . . , xn)a3f(y1, . . . , xn)a1 − pf(y1, . . . , xn)a3f(x1, . . . , xn)a1

− pf(x1, . . . , xn)a1f(y1, . . . , xn) − pf(y1, . . . , xn)a1f(x1, . . . , xn)
− f(x1, . . . , xn)af(y1, . . . , xn) − f(y1, . . . , xn)af(x1, . . . , xn)
− f(x1, . . . , xn)pf(y1, . . . , xn)a1 − f(y1, . . . , xn)pf(x1, . . . , xn)a1.

Note that Θ1(x1, . . . , xn, y1) is a multi-homogeneous of multi-degree (2, . . . , 2) in the in-
determinates x2, . . . , xn such that Θ1(x1, . . . , xn, x1) = 2Ψ(x1, . . . , xn). Since Ψ(x1, . . . , xn)
= 0 = Ψ(y1, . . . , xn), we have from above that

Θ1(x1, . . . , xn, y1) = 0.
Again linearizing the above identity with respect to x2 we shall get

Θ2(x1, . . . , xn, y1, y2) = 0
such that Θ2(x1, . . . , xn, x1, x2) = 22Ψ(x1, . . . , xn). Continuing this process of lineariza-
tion, finally we shall get

Θn(x1, . . . , xn, y1, . . . , yn) = 0
such that Θn(x1, . . . , xn, x1, . . . , x2) = 2nΨ(x1, . . . , xn).

Note that Θn(x1, . . . , xn, y1, . . . , yn) is a multilinear generalized polynomial in 2n in-
determinates. Clearly Θn(x1, . . . , xn, y1, . . . , yn) = 0 is a generalized polynomial identity
(GPI) for R and R too. Since char(C) 6= 2, we have Ψ(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R
and hence conclusion follows by Lemma 2.4. □

Following corollary is straightforward.

Corollary 2.6. Let C be a field and let R = Mm(C) be the ring of all m × m matrices
over C, m ≥ 2. If char (R) 6= 2 and a, p, a1, a2, a3 ∈ R such that

px2a1 = axax+ axpxa1 + pxa2x+ pxa3xa1 + pxa1x+ xax+ xpxa1

for all x ∈ R, then either p ∈ C · Im or a1 ∈ C · Im or a+ a3, p
−1(a+ 1) ∈ C · Im.

Lemma 2.7. Let R be a primitive ring which is isomorphic to a dense ring of linear
transformations of a vector space V over C, such that dimCV = ∞. If char (R) 6= 2 and
R satisfies

Ψ(x1, . . . , xn) = 0,
then either p ∈ C or a1 ∈ C or a+ a3, p

−1(a+ 1) ∈ C.



8 B. Dhara, G. S. Sandhu, N. Bera

Proof. Since dimCV = ∞, by [30, Lemma 2], the set f(R) is dense on R. Thus by
hypothesis, R satisfies

px2a1 = axax+ axpxa1 + pxa2x+ pxa3xa1 + pxa1x+ xax+ xpxa1.

It is well known that for any v ∈ R, [v, soc(R)] = (0) implies v ∈ C. In this case also
we want to prove that either p ∈ C or a1 ∈ C or a+ a3, p

−1(a+ 1) ∈ C. On contrary, we
assume that p /∈ C and a1 /∈ C and either a+ a3 /∈ C or p−1(a+ 1) /∈ C. Then there exist
v1, v2, v3, v4 ∈ soc(R) such that

(1) [p, v1] 6= 0;
(2) [a1, v2] 6= 0
(3) either [a+ a3, v3] 6= 0 or [p−1(a+ 1), v4] 6= 0.

By Litoff’s theorem [21, p. 280], there exists idempotent e ∈ soc(R) such that
(1) v1, v2, v3, v4 ∈ eRe;
(2) pvi, vip, a1vi, via1, a3vi, via3, avi, via, p

−1vi, vip
−1 ∈ eRe for all i = 1, . . . , 4.

Moreover, eRe ∼= Mk′(C), the ring of all k′ × k′ matrices over C.
Since R satisfies

px2a1 = axax+ axpxa1 + pxa2x+ pxa3xa1 + pxa1x+ xax+ xpxa1, (2.7)

eRe satisfies

(epe)x2(ea1e) = (eae)x(eae)x+ (eae)x(epe)x(ea1e) + (epe)x(ea2e)x
+(epe)x(ea3e)x(ea1e) + (epe)x(ea1e)x+ x(eae)x+ x(epe)x(ea1e).

Then by Corollary 2.6, either epe ∈ Ce or ea1e ∈ Ce or e(a+ a3)e, ep−1(a+ 1)e ∈ Ce.
This leads to a contradiction with the choices of v1, v2, v3, v4 in soc(R). □

Proof of Proposition 2.1.
Since R and Qr satisfy the same generalized polynomial identities (see [13]), Qr satisfies

Ψ(x1, . . . , xn) = 0.
If Ψ(x1, . . . , xn) = 0 is trivial GPI for Qr, then by Lemma 2.2 either p ∈ C or p−1b ∈ C

or a+ a3, p
−1(a+ 1) ∈ C.

If Ψ(x1, . . . , xn) = 0 is a non-trivial GPI for Qr, by Martindale’s theorem [26], Qr

is a primitive ring with a nonzero socle and with C as its associated division ring. By
Jacobson’s theorem [19, p.75], Qr is isomorphic to a dense ring of linear transformations
of any vector space V over the field C. At first we assume that V is a finite dimensional
vector space over a field C, i.e, dimCV = m. By density of R, we have R ∼= Mm(C).
Since f(r1, . . . , rn) is noncentral valued of R, R must be noncommutative and so m ≥ 2.
In this case by applying Lemma 2.4 and Lemma 2.5, we get either p ∈ C or p−1b ∈ C or
a+ p−1bp, p−1(a+ 1) ∈ C.

On the other hand, if V is an infinite dimensional vector space over the field C, then
by Lemma 2.7 we conclude either p ∈ C or p−1b ∈ C or a+ p−1bp, p−1(a+ 1) ∈ C.

Thus we divide the rest part of the proof in the following two cases:

Case-i. When p ∈ C or p−1b ∈ C.

If p or p−1b are central, then F becomes a generalized derivation. Then by Theorem B,
we have our conclusions.

Case-ii. When a+ p−1bp, p−1(a+ 1) ∈ C.

Let p−1(a+ 1) = γ ∈ C. Thus a = γp− 1.
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Next let a+ p−1bp = λ ∈ C. This implies γp− 1 + p−1bp ∈ C, that is, γp+ p−1bp ∈ C.
Assume that γp + p−1bp = λ′ ∈ C. This implies p−1b = λ′p−1 − γ. Thus F (x) =
ax+ pxp−1b = (γp− 1)x+ px(λ′p−1 − γ) = −x+ λ′pxp−1 for all x ∈ R.

Then by hypothesis, we have λ′(λ′ −1)pf(R)2p−1 = 0 which implies λ′(λ′ −1) = 0. This
implies λ′ = 0 or λ′ = 1. Therefore, either F (x) = −x for all x ∈ R or F (x) = −x+pxp−1

for all x ∈ R.

We now consider that F is an inner generalized skew derivation having an associated
automorphism α. More precisely:

Proposition 2.8. Let R be a non-commutative prime ring of characteristic is not 2,
Qr be its right Martindale quotient ring and C be its extended centroid. Suppose that
f(x1, . . . , xn) be a non-central multilinear polynomial over C, F (x) = ax+α(x)c for some
a, c ∈ Qr and α is an automorphism of R, such that

F (x2) = F (x)2 + F (x)x+ xF (x)
for all x ∈ f(R). Then one of the following holds:

(1) F = 0;
(2) F (x) = −x for all x ∈ R;
(3) F (x) = −x+ α(x) for all x ∈ R.

Proof. Firstly we recall that, in case α is an inner automorphism on the prime ring R,
then in light of Proposition 2.1, we get our conclusions.
Therefore in what follows we may assume that α is not inner.
In view of [11] we know that R and Qr satisfy the same generalized polynomial identities
(GPI) with automorphisms. Therefore

Φ(x1, . . . , xn) = af(x1, . . . , xn)2 + α(f(x1, . . . , xn)2)c− (af(x1, . . . , xn)
+α(f(x1, . . . , xn))c)2 − (af(x1, . . . , xn) + α(f(x1, . . . , xn))c)f(x1, . . . , xn)

−f(x1, . . . , xn)(af(x1, . . . , xn) + α(f(x1, . . . , xn))c) = 0
(2.8)

is also satisfied by the right Martindale quotient ring Qr. Moreover, Qr is a centrally
closed prime C-algebra. Also if c = 0, then F is a generalized derivation of R again we
are done by Theorem B.
Thus assume that c 6= 0. In this case, by [12, Main Theorem] we assume that Φ(x1, . . . , xn)
is a non-trivial generalized identity for R and for Qr. By [20, Theorem 1], we have RC
has non-zero socle and Qr is primitive. Since α is an outer automorphism and any (xi)α-
word degree in Φ(x1, . . . , xn) is equal to 2 and char(R) = 0 or char(R) = p > 2, then by
[12, Theorem 3], Qr satisfies the generalized polynomial identity (GPI)

af(x1, . . . , xn)2 + fα(y1, . . . , yn)2c− (af(x1, . . . , xn) + fα(y1, . . . , yn)c)2

− (af(x1, . . . , xn) + fα(y1, . . . , yn)c)f(x1, . . . , xn)
− f(x1, . . . , xn)(af(x1, . . . , xn) + fα(y1, . . . , yn)c) = 0

(2.9)

where we denote by fα(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by replac-
ing each coefficient γσ with α(γσ). Also notice that fα(x1, . . . , xn) is not central valued
on R. By (2.9), Qr satisfies both

−
(
af(x1, . . . , xn)

)2
− f(x1, . . . , xn)af(x1, . . . , xn) = 0 (2.10)

and

fα(y1, . . . , yn)2c−
(
fα(y1, . . . , yn)c

)2
= 0. (2.11)
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By (2.10), we have (a+1)f(x1, . . . , xn)af(x1, . . . , xn) = 0. This implies a = 0 or a = −1.
On the other hand the relation (2.11) reduces to

fα(y1, . . . , yn)
(
fα(y1, . . . , yn)c− cfα(y1, . . . , yn)c

)
= 0. (2.12)

By [18, Lemma 2.4], this relation implies c ∈ C. Since c 6= 0, we have from (2.11) above

that fα(y1, . . . , yn)
(
fα(y1, . . . , yn)−fα(y1, . . . , yn)c

)
= 0, that is fα(y1, . . . , yn)2(

1−c
)

=

0. This implies c = 1. If a = −1 and c = 1, we have F (x) = −x + α(x) for all x ∈ R, as
desired. Thus we are to consider the case when a = 0 and c = 1. In this case by (2.9), Qr

satisfies the generalized polynomial identity

fα(y1, . . . , yn)f(x1, . . . , xn) + f(x1, . . . , xn)fα(y1, . . . , yn) = 0. (2.13)

Assuming p = fα(y1, . . . , yn), we have pf(X) + f(X)p = 0 for all X = (x1, . . . , xn) ∈ Qn
r .

This implies p ∈ C, that is, f(x1, . . . , xn) is central valued, a contradiction. □

3. The proof of Theorem 1.1
In light of the results contained in the previous Section, Theorem 1.1 is proved if one

of the following holds:

• d = 0, that is, F is centralizer on R;
• α is an identity mapping on R, that is, F is a generalized derivation on R;
• d is inner skew derivation of R, that is, F is an inner generalized skew derivation

on R.

Therefore in all that follows, we may assume that

• d is nonzero;
• α is not an identity mapping on R;
• d is not an inner skew derivation on R.

Let us also recall the following:

Fact 3.1. Let R be a prime ring, α be an X-outer automorphism of R and D be an
X-outer skew derivation of R. If Φ(xi, D(xi), α(xi)) is a generalized polynomial identity
(GPI) for R, then R also satisfies the generalized polynomial identity Φ(xi, yi, zi), where
xi, yi and zi are distinct indeterminates ([14, Theorem 1]).

The Proof of Theorem 1.1:

Here we can write F (x) = ax+d(x) for all x ∈ R, where a ∈ Qr and d is a skew derivation
of R (see [9]). By [14, Theorem 2] we know that R and Qr satisfy the same generalized
polynomial identities with a single skew derivation. Thus Qr satisfies

Ψ(x1, . . . , xn, d(x1), . . . , d(xn)) =
af(x1, . . . , xn)2 + d(f(x1, . . . , xn)2)

−
(
af(x1, . . . , xn) + d(f(x1, . . . , xn)

)2

−(af(x1, . . . , xn) + d(f(x1, . . . , xn))f(x1, . . . , xn)
−f(x1, . . . , xn)(af(x1, . . . , xn) + d(f(x1, . . . , xn)) = 0,

(3.1)
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that is

af(x1, . . . , xn)2 + d(f(x1, . . . , xn))f(x1, . . . , xn)

+α(f(x1, . . . , xn))d(f(x1, . . . , xn)) −
(
af(x1, . . . , xn) + d(f(x1, . . . , xn)

)2

−(af(x1, . . . , xn) + d(f(x1, . . . , xn))f(x1, . . . , xn)
−f(x1, . . . , xn)(af(x1, . . . , xn) + d(f(x1, . . . , xn)) = 0.

(3.2)

The action of any skew derivation d on a monomial of f(x1, . . . , xn) can be described as
follows:

d

(
γσ · xσ(1) · · ·xσ(n)

)
= d(γσ)xσ(1) · · ·xσ(n)

+α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

So from above we have

d(f(x1, . . . , xn)) = fd(x1, . . . , xn) +
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).

Using the above value of d(f(x1, . . . , xn)) in (3.2), we get

af(x1, . . . , xn)2 + fd(x1, . . . , xn)f(x1, . . . , xn)

+
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)f(x1, . . . , xn)

+α(f(x1, . . . , xn))fd(x1, . . . , xn) + α(f(x1, . . . , xn))
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j)).

d(xσ(j+1))xσ(j+2) · · ·xσ(n) −
(
af(x1, . . . , xn) + fd(x1, . . . , xn)

+
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)

)2
− af(x1, . . . , xn)2

−fd(x1, . . . , xn)f(x1, . . . , xn) −
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1)).

xσ(j+2) · · ·xσ(n)f(x1, . . . , xn) − f(x1, . . . , xn)af(x1, . . . , xn) − f(x1, . . . , xn)fd(x1, . . . , xn)

−f(x1, . . . , xn)
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n) = 0.

(3.3)

By our assumption of this section, d is not inner. As d is outer, using [14] Qr satisfies
the following:
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af(x1, . . . , xn)2 + fd(x1, . . . , xn)f(x1, . . . , xn)

+
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)f(x1, . . . , xn)

+α(f(x1, . . . , xn))fd(x1, . . . , xn)

+α(f(x1, . . . , xn))
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

−
(
af(x1, . . . , xn) + fd(x1, . . . , xn) +

∑
σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j)).

yσ(j+1)xσ(j+2) · · ·xσ(n)

)2
− af(x1, . . . , xn)2 − fd(x1, . . . , xn)f(x1, . . . , xn)

−
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)f(x1, . . . , xn)

−f(x1, . . . , xn)af(x1, . . . , xn) − f(x1, . . . , xn)fd(x1, . . . , xn)

−f(x1, . . . , xn)
∑

σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n) = 0.

(3.4)

After splitting above expression, left hand side of the equation can be written as sum of
the monomials having no yi and sum of the monomials having yi, that is, Ψ1(x1, . . . , xn)+
Ψ2(x1, . . . , xn, y1, . . . , yn) = 0. Assuming y1 = · · · = yn = 0, we can write that

Ψ1(x1, . . . , xn) = Ψ2(x1, . . . , xn, y1, . . . , yn) = 0.

Note that ψ2(x1, · · · , xn, y1, · · · , yn) contains sum of monomials having y′
is of degree one

(which is denoted by Ω1) and sum of monomials having y′
is of degree two (which is denoted

by Ω2). Thus

Ω1(x1, · · · , xn, y1, · · · , yn) + Ω2(x1, · · · , xn, y1, · · · , yn) = 0.

Replacing yi with λyi in Ψ2(x1, . . . , xn, y1, . . . , yn) = 0, where λ is any positive integer,
this can be written as

λΩ1(x1, . . . , xn, y1, . . . , yn) + λ2Ω2(x1, . . . , xn, y1, . . . , yn) = 0.

Now assuming λ = 1 and λ = 2 respectively in above equation, we shall obtain a system
of 2 homogeneous equations, the coefficient matrix of the system is a vander Monde matrix(

1 1
2 22

)
.

Since the determinant of the matrix is nonzero, it follows immediately that

Ω2(x1, . . . , xn, y1, . . . , yn) = 0

which implies( ∑
σ∈Sn

α(γσ)
n−1∑
j=0

α(xσ(1) · · ·xσ(j))yσ(j+1)xσ(j+2) · · ·xσ(n)

)2
= 0. (3.5)
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If α is an inner automorphism, that is α(x) = qxq−1, for all x ∈ R and an invertible
q ∈ Qr , then we write (3.5) as follows( ∑

σ∈Sn

γσ

n−1∑
j=0

qxσ(1) · · ·xσ(j)q
−1yσ(j+1)xσ(j+2) · · ·xσ(n)

)2
= 0. (3.6)

Replacing each yi by qyi, for i = 1, 2, . . . , n we get qf(x1, . . . , xn)qf(x1, . . . , xn) = 0,
implies that f(x1, . . . , xn)qf(x1, . . . , xn) = 0. Then by [18, Lemma 2.6] we get q ∈ C.
Therefore α is an identity mapping on R, contradiction. Hence we may assume that α is
not inner. Thus, by (3.5) we have that Qr satisfies( ∑

σ∈Sn

α(γσ)
n−1∑
j=0

zσ(1) · · · zσ(j)yσ(j+1)xσ(j+2) · · ·xσ(n)

)2
= 0. (3.7)

that is fα(x1, . . . , xn)2 = 0 is an identity for Qr, which is again a contradiction. Thus the
proof is completed.

Acknowledgements
The authors would like to thank referee for his/her valuable comments and suggestions
which have helped the authors to improve the manuscript.

Author contributions. All the co-authors have contributed equally in all aspects of the
preparation of this submission.

Conflict of interest statement. The authors declare that they have no known compet-
ing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Funding. This work is supported by a grant from Science and Engineering Research
Board (SERB), DST, New Delhi, India. Grant No. is MTR/2022/000568. This work is
done when Dr. G. S. Sandhu visited Belda College for a period of one week from 11 Dec.,
2023 to 17 Dec., 2023 under the support of this project grant.

Data availability. No data was used for the research described in the article.

References
[1] E. Albaş and N. Argaç, Generalized derivations of prime rings, Algebra Colloq. 11,

399-410, 2004.
[2] A. Ali and D. Kumar, Generalized derivations as homomorphisms or as anti-

homomorphisms in a prime ring, Hacet. J. Math. Stat. 38, 17-20, 2009.
[3] A. Ali, N. Rehman and S. Ali, On Lie ideals with derivations as homomorphisms and

anti-homomorphisms, Acta Math. Hungar. 101, 79-82, 2003.
[4] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized iden-

tities, Pure and Applied Math. 196, Marcel Dekker, New York, 1996.
[5] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic

conditions, Acta Math. Hungar. 53 (3-4), 339-346, 1989.
[6] N. Bera and B. Dhara, Jordan Homoderivation behavior of generalized derivations in

prime rings, Ukrainian Math. J. 75 (9), 1178-1194, 2023.
[7] J. C. Chang, Generalized skew derivations with annihilating Engel conditions, Tai-

wanese J. Math. 12, 1641-1650, 2008.
[8] J. C. Chang, Generalized skew derivations with nilpotent values on Lie ideals,

Monatsh. Math. 161, 155-160, 2010.



14 B. Dhara, G. S. Sandhu, N. Bera

[9] J. C. Chang, On the identity h(x) = af(x)+g(x)b, Taiwanese J. Math. 7 (1), 103-113,
2003.

[10] H. W. Cheng and F. Wei, Generalized skew derivations of rings, Adv. Math.(China)
35, 237-243, 2006.

[11] C. L. Chuang, Differential identities with automorphisms and antiautomorphisms I,
J. Algebra 149, 371-404, 1992.

[12] C. L. Chuang, Differential identities with automorphisms and antiautomorphisms II,
J. Algebra 160 (1), 130-171, 1993.

[13] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math.
Soc. 103 (3), 723-728, 1988.

[14] C. L. Chuang and T. K. Lee, Identities with a single skew derivation, J. Algebra 288
(1), 59-77, 2005.

[15] M. M. El Sofy Aly, Rings with some kinds of mappings, M.Sc. Thesis, Cairo University,
Branch of Fayoum, 2000.

[16] V. De Filippis, Generalized Derivations as Jordan Homomorphisms on Lie Ideals and
Right Ideals, Acta Mathematica Sinica, 25 (12), 1965-1974, 2009.

[17] V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of
generalized derivations on multilinear polynomials, Comm. Algebra 40, 1918-1932,
2012.

[18] V. De Filippis, B. Dhara and N. Bera, Generalized skew derivations and generalization
of commuting maps on prime rings, Beitr. Algebra Geom. 63, 599-620, 2022.

[19] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math.
Soc., Providence, RI, 1964.

[20] V. K. Kharchenko, Generalized identities with automorphisms, Algebra and Logic,
14, 132-148, 1975.

[21] C. Lanski, Differential identities, Lie ideals, and Posner’s theorem, Pacific J. Math.
134, 275-297, 1988.

[22] T. K. Lee, Generalized skew derivations characterized by acting on zero products,
Pacific J. Math. 216, 293-301, 2004.

[23] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica
20 (1), 27-38, 1992.

[24] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202,
97-103, 1975.

[25] K. S. Liu, Differential identities and constants of algebraic automorphisms in prime
rings, Ph.D. Thesis, National Taiwan University 2006.

[26] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J.
Algebra 12, 576-584, 1969.

[27] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms,
Glas. Mat. 39 (1), 27-30, 2004.

[28] G. Scudo, Generalized derivations acting as Lie homomorphisms on polynomials in
prime rings, Southeast Asian Bull. Math. 38, 563-572, 2014.

[29] Y. Wang and H. You, Derivations as homomorphisms or anti-homomorphisms on Lie
ideals, Acta Math. Sinica 32 (6), 1149-1152, 2007.

[30] T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra
Colloq. 3, 369-478, 1996.

[31] X. Xu, J. Ma and F. Niu, Compositions, derivations and polynomials, Indian J. Pure
Appl. Math. 44 (4), 543-556, 2013.


