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Estimating Uniaxial Compressive Strength of Sedimentary Rocks 

with Leeb Hardness Using Support Vector Machine Regression 

Analysis and Artificial Neural Networks 

Highlights 

 Predicting uniaxial compressive strength using index test method 

 Machine learning algorithm to demonstrate forecasting performance 

 

Graphical Abstract 

The uniaxial compressive strength (UCS) of sedimentary rocks was predicted as a function of Leeb hardness using 

artificial neural networks (ANN) and Support Vector Machine (SVM) regression analysis. It was proved that the 

models created with ANN and SVM regression can be used reliably in predicting UCS values. 

 

 

Figure. Measured UCS vs predicted UCS 

 

Aim 

This study aims to estimate the uniaxial compressive strength of sedimentary rocks using ANN and SVM regression, 

with a specific focus on using Leeb hardness as a measurement. 

Design & Methodology 

Leeb hardness and uniaxial compressive strength values obtained from the publications of researchers working on 

this subject in the literature were used in both ANN training and SVM Regression analysis. 

Originality 

The uniaxial compressive strength of rocks as a function of Leeb hardness is predicted by ANN and SVM regression 

methods. 

Findings 

For both ANN and SVM regression analyses, a high correlation of r=0.93 was obtained between measured UCS 

values and predicted UCS values. 

Conclusion 

ANN and SVM regression models were found to give good results in predicting UCS values. If the models obtained 

as a result of the study are used, time, labour and cost savings will be achieved in UCS estimation. 

Declaration of Ethical Standards 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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ABSTRACT 

Uniaxial compressive strength (UCS) of rock materials is a rock property that should be determined for the design and stability of 

structures before underground and aboveground engineering projects. However, it is impossible to determine the properties of 

rocks such as UCS directly due to the lack of standardized sample preparation, necessary equipment, etc. In this case, the UCS of 

rocks is predicted by index test methods such as hardness, ultrasound velocity, etc. Determining the hardness of rocks is relatively 

more practical, fast, and inexpensive than other properties. In this study, the UCS of sedimentary rocks was predicted as a function 

of Leeb hardness using artificial neural network (ANN) and Support Vector Machine (SVM) regression analysis. With the proposed 

ANN and SVM regression models, it is aimed to obtain more accurate and faster prediction values. To better train the models 

created in the study, the number of data was increased by compiling data from the studies in the literature. The UCS values predicted 

by the models obtained with two different methods and the measured UCS values were statistically compared. It was proved that 

the models created with ANN and SVM regression can be used reliably in predicting UCS values..   

Keywords: Leeb hardness, uniaxial compressive strength, sedimentary rocks, artificial neural network, support vector 

machine regression. 

Sedimanter Kayaçların Tek Eksenli Basınç 

Dayanımının Leeb Sertliği Kullanılarak Destek Vektör 

Makineleri Regresyon Analizi ve Yapay Sinir Ağları 

ile Tahmin Edilmesi 

ÖZ 

Kayaların tek eksenli basınç dayanımı (UCS), yeraltı ve yerüstü mühendislik projelerinden önce yapıların tasarımı ve stabilitesi 

için belirlenmesi gereken bir kaya özelliğidir. Bununla birlikte, standartlaştırılmış numune hazırlama, gerekli ekipman vb. 

eksikliklerden dolayı kayaların UCS gibi özelliklerini doğrudan belirlemek mümkün olmamaktadır. Bu durumda, kayaçların 

UCS'si sertlik, ultrases hızı gibi indeks test yöntemleri ile tahmin edilir. Kayaçların sertliğini belirlemek diğer özelliklere göre 

nispeten daha pratik, hızlı ve ucuzdur. Bu çalışmada, sedimanter kayaçların UCS'si yapay sinir ağları (ANN) ve destek vektör 

makineleri (SVM) regresyon analizi kullanılarak Leeb sertliğinin bir fonksiyonu olarak tahmin edilmiştir. Önerilen ANN ve SVM 

regresyon modelleri ile daha doğru ve hızlı tahmin değerleri elde edilmesi amaçlanmıştır. Çalışmada oluşturulan modellerin daha 

iyi eğitilmesi için literatürdeki çalışmalardan veriler derlenerek veri sayısı artırılmıştır. İki farklı yöntemle elde edilen modellerin 

tahmin ettiği UCS değerleri ile ölçülen UCS değerleri istatistiksel olarak karşılaştırılmıştır. ANN ve SVM regresyonu ile 

oluşturulan modellerin UCS değerlerini tahmin etmede güvenilir bir şekilde kullanılabileceği ortaya konmuştur. 

Anahtar Kelimeler: Leeb sertliği, tek eksenli basınç dayanımı, sedimanter kayaçlar, yapay sinir ağı, destek vektör 

makineleri regresyonu 

1. INTRODUCTION 

The physical and mechanical characteristics of rocks  

must be ascertained before beginning anyengineering 

project that involves rock, including surface and 

subsurface mining, tunnels, underground apertures, 

dams, and drilling foundations. Expensive and time-

consuming tests are performed to directly assess the 

strength and deformation of rock. In particular, the 
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process of preparing rock samples for testing is time-

consuming. For the aforementioned reasons, scientists 

have created and applied indirect testing techniques to 

ascertain and analyze the engineering characteristics of 

rocks. According to Shalabi [1], indirect methods can be 

quickly and cheaply applied, and they yield results 

quickly. One of the most popular metrics for estimating 

a rock's characteristics is its surface hardness [2]. 

One of the unique qualities of the minerals that comprise 

a rock is its hardness, which is a measurement of the 

mineral's resistance to surface abrasion or scratching. 

Given that rocks are made up of mineral assemblages, the 

hardness of the rock material is determined by the 

proportion of low- or high-hardness minerals [3]. Çelik 

et al. [4] state that hardness values can be used indirectly 

to evaluate mechanical qualities or to compare with other 

materials, but they cannot be used directly as physical 

and mechanical properties in engineering projects.  

The ability of an object to bounce back after collapsing 

or hitting a rock is known as rebound hardness. The 

degree of rebound is determined by the quantity of 

impact energy lost due to rock fracture and plastic 

deformation at the site of contact [5]. In the middle of the 

1970s, Leeb hardness (HL) was presented as a dynamic 

hardness testing technique for metallic material surface 

hardness assessments [6]. But according to Wilhelm et al. 

[7], its application in testing materials like rock and stone 

has grown. Because of its wider hardness scale, this 

approach was designed to give a new test that is quicker 

and more useful that can be used in a range of test 

orientations [8]. Although there are devices produced by 

different manufacturers, the basic working principle of 

these devices is the same. A tungsten carbide tip attached 

to a wound and tensioned spring mechanism is released, 

strikes the material surface and bounces back [9]. The 

energy measuring principle serves as the foundation for 

the device's tests. The HL value is obtained by 

multiplying the ratio of the impact velocity (Vi) by 1000 

and then by the rebound velocity (Vr) [10]. The harder 

the material under test, the higher the rebound value. 

When performing the Equotip tester test, the measured 

HL values can be converted into equivalent values of 

other conventional hardness measurement methods (e.g. 

Vickers hardness, HS), which are usually programmed 

on the display unit [11]. 

Some studies on HL, which has been widely used in 

recent years, are summarized below. Hack et al. [12] 

investigated the estimation of discontinuity wall strength 

of rocks by ball rebound and Equotip hardness testing. 

Verwaal and Mulder [13] performed both HL and UCS 

tests on rock samples of different diameters. They 

determined that rock strength can be predicted from 

Equotip hardness values. Meulenkamp and Grima [14] 

predicted the UCS values of rocks by using ANNwith HL 

measured on 194 rocks consisting of sandstone, 

limestone and granite samples. In their study, the authors 

used the rocks' porosity, density, grain size and rock type 

characteristics for artificial neural network (ANN) 

training. Although the large number of input parameters 

contributes to the training of the ANN, this makes the 

prediction impractical. Kawasaki et al. [15] investigated 

the relationship between UCS and HL on different rock 

types and found that UCS can be predicted from HL 

values. Aoki and Matsukura [16] used the Equotip 

hardness tester as an indirect method to estimate the UCS 

values of rocks. Their study emphasized that the Equotip 

test has advantages over the widely used Schmidt 

hammer test. Güneş Yılmaz [11] investigated the 

suitability of different test procedures with the Equotip 

hardness tester for UCS estimation of some carbonate 

rocks. Lee et al [17] used HL hardness values to estimate 

the UCS values of laminated shale formations. Mol [18] 

stated that rock surface abrasion affects rock hardness 

and used HL hardness to determine the degree of surface 

degradation. Asiri et al. [19] stated that HL values can be 

used to estimate UCS values on sandstone samples with 

different sample sizes. Asiri [20] stated that HL values 

can be used to predict UCS values as a result of HL and 

UCS tests performed on various rock samples. Su and 

Momayez [21] examined the relationships between HL 

values of rocks and HS, mechanical properties of rocks 

and drilling rate index. Corkum et al. [22] examined the 

relationship between HL and UCS values on sandstone, 

sedimentary, metamorphic and volcanic rocks. They 

proposed formulas to calculate UCS values based on HL 

values for every kind of rock. Güneş Yılmaz and Göktan 

[23] used two different rock core holders and investigated 

the effect of the holders on the HL values obtained on 16 

different rocks. At the end of the study, they found highly 

correlated relationships between the values obtained 

from both holders and UCS values. Güneş Yılmaz and 

Göktan [24] examined the relationship between HSR and 

HL values and UCS values of different types of rock 

samples. Çelik and Çobanoğlu [25] determined the HL, 

HS and HSR hardness values of 40 different rock types. 

They examined the correlations between the hardness 

values they obtained and the physical and mechanical 

properties of the rocks. Additionally, Çelik et al. [26] 

looked into how the length/diameter ratio (L/D) affected 

the HL measurements on five distinct rock samples. They 

concluded that samples with a diameter of 50 mm and a 

minimum L/D ratio of 1.5 would allow for more accurate 

HL measurements.  

When the studies in the literature were examined, it was 

seen that the researchers examined the relationships 

between HL values and UCS values determined on 

different rock types by regression analysis. However, 

with the exception of Meulenkamp and Grima [14], there 

are not enough studies with artificial neural networks. 

ANN algorithms have many advantages, but also 

disadvantages such as complexity in their multilayer 

structure, excessive learning, and the fact that the model 

provides different outputs each time. also includes 

negative features such as obtaining. Due to these 

disadvantages of ANN, it is the subject of this study to 

evaluate whether a machine learning model can be used 

to predict UCS. In this study, the UCS values of 

sedimentary rocks were tried to be predicted with the 



 

 

help of models obtained from both ANN and SVM 

regression (SVM-R) analysis..  

 

2. MATERIAL and METHOD 

Models obtained from ANN and SVM regression 

analyses need to be trained with a large number of data 

to make accurate predictions. Due to the limited number 

of sedimentary rocks tested in the laboratory within the 

scope of this study, HL and UCS values obtained from 

the publications of researchers working on this subject in 

the literature were used in both ANN training and SVM-

R analysis (Table 1). 

 

Table 1. References from which the data compiled 

References 

Verwaal and Mulder [13] 

Meulenkamp and Grima [14]) 

Aoki and Matsukura [16] 

Su and Momayez [21] 

Güneş Yılmaz and Göktan [23] 

Çelik and Çobanoğlu [25] 

Akbay et al. [27] 

 

200 sedimentary rocks with 50 randomly chosen UCS 

and HL values were used for testing in the study, while 

the remaining 150 were used for training. This procedure 

was carried out six times with different training and test 

data in order to demonstrate the learning success of the 

models. In ANN and SVM-R analyses, HL was used as 

the input parameter and UCS as the output parameter in 

the training and testing phase. 

 

2.1. Artificial Neural Network 

According to Kriegeskorte [28], ANNs are information-

processing systems that replicate the central nervous 

system and brain's functional principles. Modelling 

neurons, the biological components of the brain, and their 

use in computer systems was the first step in this field of 

study. Each connection that exists between neurons 

indicates the strength, or more accurately, the 

significance, of the input it receives. The foundation of 

an ANN's long-term memory is its weights. By 

continuously changing these weights, a neural network 

learns [29]. Following the failure of single-layer neural 

networks to address nonlinear issues, multilayer neural 

networks (MLN) were created. These networks are made 

up of an output layer, one or more hidden (intermediate) 

layers, and an input layer where data is input. Transitions 

between the forward and backward propagation layers 

occur in an MLN. The network's output and error values 

are computed during the forward propagation phase. The 

link weight values between layers are adjusted 

throughout the backpropagation phase in order to reduce 

the predicted error value [30]. Figure 1 shows the 

structure of the MLN. 

 

 
Figure 1. Multilayer neural networks (MLN) 

 

Since processing information and solving the problem in 

ANN is realized by connecting the cells in parallel, the 

data transferred is independent of each other. Since there 

is no time dependency in the connections, the whole 

network can work simultaneously. For this reason, it is 

frequently preferred in prediction problems due to its 

high information flow and processing speed [31]. In this 

study, an ANN with one input, one hidden and one output 

layer was used. 

 

2.2. SVM Regression 

A statistical analysis technique called regression analysis 

is used to represent the cause-and-effect connection 

between two or more variables. It is widely used in many 

fields, including biology, medicine, economics, physics, 

chemistry, and social sciences [32, 33, 34, 35]. The 

SVM-R model was used as the regression model in this 

study. The kernel of the model was chosen as quadratic 

second-order polynomial kernel. 

For regression and classification, support vector machine 

(SVM) analysis is a widely used machine learning tool 

[36]. SVM-R analysis is a nonparametric technique since 

it is based on kernel functions. For ε-SVM-R analysis, 

the training dataset, predictor variables, and measured 

values are utilised. The objective is to develop a function 

f(x) that is as flat as feasible for each training point x, 

with a deviation from yn of no more than ε. 

A linear model is insufficient to effectively characterise 

certain regression problems. The method can be extended 

to nonlinear functions in such a situation thanks to the 

Lagrange dual formulation. A nonlinear kernel function 
(𝑥1, 𝑥2) = ⟨𝜑(𝑥1), 𝜑(𝑥2) > is used to replace the dot 

product 𝑥1 ′𝑥2 to create a nonlinear SVM-R model. 

where x is mapped to a high-dimensional space by the 

transformation φ(x). The built-in positive semi-definite 

kernel functions for SVM are displayed in Table 2 below. 

 

 

 

 



 

 

Table 2. Positive semi-defined kernel functions used for SVM 

Kernel Name Kernel Function 

Linear (dot 

product) 
𝐺(𝑥𝑗 , 𝑥𝑘) = 𝑥𝑗  ′𝑥𝑘 

Gaussian 𝐺(𝑥𝑗 , 𝑥𝑘) = exp (−∥∥𝑥𝑗 − 𝑥𝑘∥∥
2

) 

Polynomial 
𝐺(𝑥𝑗 , 𝑥𝑘) = (1 + 𝑥𝑗  ′𝑥𝑘)

𝑞
, where 𝑞 

is in the set {2,3, … }. 

 

The elements of the gramme matrix, 𝑔𝑖,𝑗 = G(𝑥𝑖 , 𝑥𝑗), are 

arranged in an n×n matrix. The inner product of the φ-

transformed predictors equals each 𝑔𝑖,𝑗 element. 

The corresponding element of the Gramme matrix (𝑔𝑖,𝑗) 

is substituted for the inner product of the predictors 

(𝑥𝑖 
′𝑥𝑗) in the dual formula for nonlinear SVM 

regression. The coefficients that minimise are found 

using the nonlinear SVM regression (Huang et al., 2005). 

 

𝐿(𝛼) =
1

2
∑  𝑁

𝑖=1 ∑  𝑁
𝑗=1 (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐺(𝑥𝑖 , 𝑥𝑗) +

𝜀 ∑  𝑁
𝑖=1 (𝛼𝑖 + 𝛼𝑖

∗) − ∑  𝑁
𝑖=1 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)                (1) 

 

subject to ; 

 

∑  𝑁
𝑛=1   (𝛼𝑛 − 𝛼𝑛

∗ ) = 0, ∀𝑛: 0 ≤ 𝛼𝑛 ≤ 𝐶, ∀𝑛: 0 ≤ 𝛼𝑛
∗ ≤

𝐶                   (2) 

 

The prediction function for new values is equal to; 

 

𝑓(𝑥) = ∑  𝑁
𝑛=1 (𝛼𝑛 − 𝛼𝑛

∗ )𝐺(𝑥𝑛, 𝑥) + 𝑏               (3) 

 

The Karush-Kuhn-Tucker (KKT) complementarity 

conditions are; 

 

∀𝑛: 𝛼𝑛(𝜀 + 𝜉𝑛 − 𝑦𝑛 + 𝑓(𝑥𝑛)) = 0                (4) 

∀𝑛: 𝛼𝑛
∗ (𝜀 + 𝜉𝑛

∗ + 𝑦𝑛 − 𝑓(𝑥𝑛)) = 0                (5) 

∀𝑛: 𝜉𝑛(𝐶 − 𝛼𝑛) = 0                 (6) 

∀𝑛: 𝜉𝑛
∗(𝐶 − 𝛼𝑛

∗ ) = 0                 (7) 

 

The most often used method for resolving SVM issues is 

sequential minimum optimisation (SMO) [37]. Two-

point optimisation is done via SMO. A working set of 

two points is chosen at each iteration utilising quadratic 

information and a selection procedure. We then apply the 

method for finding the solution for this working set that 

is presented in Lagrange multipliers [38, 39]. 

 

3.  RESULTS of THE MODELS 

In the study, 150 of the 200 UCS and HL data of the rocks 

were randomly selected and used in the training of SVM-

R and ANN. The remaining 50 data were used for testing. 

In this way, six training and six test data sets were 

obtained and analysed for both SVM and ANN. In order 

to determine the prediction performance of ANN and 

SVM-R methods for different test sets in the database, 

training and testing were performed six times. Some of 

the data in a training set used for ANN were used for 

validation. This ensured that the network learned well. 

For SVM-R, only training and test sets were used. In the 

training and testing phase of the models obtained in ANN 

and SVM-R analyses, HL values of the rocks were used 

as input and UCS values were used as output parameters.  

The most appropriate models were created with SVM-R 

analysis and ANN using the training sets. Afterwards, 

UCS values were predicted with the test process. 

 

3.1. UCS Prediction with ANN 

In the network architectures created for ANN in the 

study, HL stiffness values were considered as input 

parameter and UCS strength as output parameter. 

Levenberg-Marquardt as the training function, tangent 

sigmoid in the input layer and purelin activation 

functions in the output layer were used. In addition, a 

hidden layer with 2 cells and a maximum number of 100 

epochs (cycles) were used. Figure 2 shows the structure 

of the ANN model developed within the scope of the 

study. 

 

 
Figure 2. Structure of the developed ANN model 



 

 

The number of cells in the input layer, hidden layer, and 

output layer were all fixed to one, two, and one 

respectively throughout the investigation. The 

relationships between the predicted and measured UCS 

values for Training-1, Test-1, and All Data-1 obtained for 

ANN are given in Figure 3. 

 

 

 
Figure 3. Relationships between predicted UCS values and measured UCS values for training, testing, and the whole data set in 

ANN model 

 

The models and correlation values (r) expressing the 

relationships between the predicted UCS and measured 

UCS values for the training, test, and whole data set 

generated by ANN are given in Table 3. In general 

(training, test, validation and all data) correlation values 

were found to be 0.90 and above. The high correlation 

values indicate that uniaxial compressive strengths of 

sedimentary rocks can be predicted from HL. Figures 4 

and 5 show a comparison of the predicted and measured 

values by ANN model for Training-1 and Test-1 data, 

respectively. 

 

 

Figure 4. The relationship between the predicted and measured UCS values by ANN model with training data 
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Figure 5. Relationship between predicted and measured UCS values predicted by ANN with test data 

 

The relationship between the UCS values predicted by 

ANN analysis and the measured UCS values for the Test-

1 set is given in Figure 6. A high correlation (r=0.93) was 

obtained between measured UCS values and predicted 

UCS values. 

 

 
Figure 6. The relationship between the predicted UCS values obtained from the ANN model and the measured UCS values 

 

3.2. UCS Prediction with SVM Regression Method 

A second order polynomial kernel was used in SVM 

regression analysis. For each of the 6 training sets, a 

regression model was obtained using SVM regression. 

With the test sets corresponding to these training sets, 

predicted UCS values were obtained. The r, RMSE, and 

MAE values and models found by SVM Regression for 

the six training and six test sets are given in Table 3. 

Figures 7 and 8 show the comparative graphs of the 

predicted UCS and measured UCS values obtained with 

the SVM regression model for Training-3 and Test-3 

data. 
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Figure 7. Predicted and measured UCS values found with SVM regression model for Train-3 data 

 

 
Figure 8. Predicted and measured UCS values found with SVM model for Test-3 data 

 

The relationship between the UCS values predicted by an 

SVM Regression analysis and the measured UCS values 

for the Test-3 set is given in Figure 9. A high correlation 

(r=0.93) was obtained between measured UCS values 

and predicted UCS values. 
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Figure 9. The relationship between the predicted UCS values obtained from the SVM Regression model and the measured UCS 

values 

 

3.3. Measured Results of ANN and SVM Regression 

Models 

The proposed models and calculated correlation numbers 

as a result of SVM regression and ANN models are given 

in Table 3. As can be seen from Table 3, SVM regression 

gives better results than ANN for RMSE and MAE error 

values both in training and testing when the correlation 

(r) values are close to each other. In four of the six tests, 

SVM regression r values are higher than ANN's r values. 

Only the r-value of ANN in test-2 is higher than the r-

value of SVM regression and equal for test-3. These 

results show that SVM regression gives better results 

than ANN for RMSE and MAE, indicating the error rate 

and r-value. In Table 3, Tr indicates training, and Ts 

indicates test. 

 

Table 3. Uniaxial compressive strength predictions and performance values of sedimentary rocks with ANN 

The data 
ANN SVM 

Model 𝒓 RMSE MAE Model 𝒓 RMSE MAE 

Tr-1 𝑦 = 0,82𝑥 + 11 0,915 16.36 12.60 𝑦 = 0,85𝑥 + 8.5 0,915 15.94 11.53 

Tr -2 𝑦 = 0,83𝑥 + 12 0,911 16.80 12.4 𝑦 = 0,83𝑥 + 10.2 0,912 14.59 11.98 

Tr -3 𝑦 = 0,81𝑥 + 11 0,915 13.96 12.07 𝑦 = 0,83𝑥 + 12 0.917 11.76 11.92 

Tr -4 𝑦 = 0,74𝑥 + 21 0,921 13.85 11.18 𝑦 = 0,86𝑥 + 9 0,923 13.86 11.14 

Tr -5 𝑦 = 0,86𝑥 + 10 0,925 15.43 12.29 𝑦 = 0,87𝑥 + 8.4 0,932 15.35 12.08 

Tr -6 𝑦 = 0,84𝑥 + 11 0,917 14.78 11.15 𝑦 = 0,84𝑥 + 6.37 0,907 15.66 11.20 

Ts-1 𝑦 = 0,85𝑥 + 11 0,932 14.23 11.52 𝑦 = 0,84𝑥 + 8.9 0,934 13.33 11.16 

Ts-2 𝑦 = 0,83𝑥 + 7.9 0,939 14.36 10.34 𝑦 = 0,87𝑥 + 11.3 0,938 13.94 10.50 

Ts-3 𝑦 = 0,77𝑥 + 11 0,942 11.86 9.44 𝑦 = 0,82𝑥 + 8.5 0,942 11.63 9.38 

Ts-4 𝑦 = 0,77𝑥 + 18 0,951 9.73 8.07 𝑦 = 0,87𝑥 + 8 0,952 9.60 7.83 

Ts-5 𝑦 = 0,88𝑥 + 11 0,915 16.31 13.32 𝑦 = 0,80𝑥 + 10 0,920 15.94 13.15 

Ts-6 𝑦 = 0,84𝑥 + 12 0,940 10.55 8.30 𝑦 = 0.9𝑥 + 4.22 0,949 9.87 8.11 

y = predicted UCS 

x = measured UCS 
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4. DISCUSSION 

In this study, ANN and SVM regression analyses were 

developed to predict sedimentary rocks' HL hardness 

values and UCS values. As a result of the analyses, the 

most appropriate model was determined. With ANN, 

correlation (r), RMSE and MAE error values were found 

for training, testing, validation and overall (all samples). 

When the error values were analysed, it was seen that 

SVM regression analyses gave generally lower error 

values than ANN in training and test results. When the 

correlation (r) values obtained with ANN and SVM 

regression models were analysed, it was seen that both 

models gave successful results. In all four tests, the 

correlation values of the SVM regression model were 

relatively higher than the r values obtained from ANN 

models. The SVM regression model obtained the highest 

prediction value with a correlation coefficient of 0.952 

for Ts-4. 

It is seen that UCS-HL values have a high positive 

correlation. As a result, it was determined that SVM 

regression and ANN models gave good results in 

predicting UCS values.  

When the literature was examined, it was seen that there 

were a limited number of studies on the subject. 

Meulenkamp and Grima [14] predicted the UCS values 

of rocks by using ANN with HL measured on 194 rocks 

consisting of sandstone, limestone and granite samples. 

In their study, the authors used the rocks' porosity, 

density, grain size and rock type characteristics for ANN 

training. Although the large number of input parameters 

contributes to the training of the ANN, this makes the 

prediction impractical. Within the scope of this study, if 

the models obtained from the study are used, time, labour 

and cost savings will be achieved by estimating UCS.  

In future studies, it is thought that the success of the 

models will increase by using the number of rock groups 

and Leeb hardness, as well as the hardness values 

obtained from other hardness experimental methods 

(Shore, Schmidt, etc.) in training the models because they 

are economical and practical. 
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