Research Article/Arastirma Makalesi

gazi Gaziloees

OURMAL OF ENGINEERING SCIENCES

GAZI

JOURNAL OF ENGINEERING SCIENCES

Keywords: Power Systems, Wind Energy,

Optimization, Metaheuristic Search
Algorithms

a,* Gazi University,

Technology Faculty,

Dept. of Electrical and Electronics
Engineering

06560 - Ankara, Tiirkiye

Orcid: 0000-0002-2551-1603

e mail: tugba.akman@teias.gov.tr

b Gazi University,

Technology Faculty,

Dept. of Electrical and Electronics
Engineering

06560 - Ankara, Tirkiye

Orcid: 0000-0002-0692-172X
e-mail: hsayan@gazi.edu.tr

¢ Gazi University,

Technology Faculty,

Dept. of Computer Engineering
06560 - Ankara, Tirkiye

Orcid: 0000-0002-9775-9835
e-mail: ysonmez@gazi.edu.tr
*Corresponding author:
tugba.akman@teias.gov.tr

Anahtar Kelimeler: Giig
Sistemleri, Riizgar enerjisi,
Optimizasyon, Meta Sezgisel
Algortimalar

Estimation of Wind Power Probability Density Distribution
Functions Parameters By Using Meta-Heuristic Algorithms

Tugba Akman", Hasan Hiiseyin Sayan®, Yusuf Soyletmez*
Submitted: 02.05.2024 Revised: 14.06.2024 Accepted: 31.07.2024 do0i:10.30855/gmbd.0705A12

ABSTRACT

Wind energy is a very popular renewable energy resource and is used as an energy source global because of its
benefits of being environmentally friendly, renewable and having great reserves. The probability density
distribution of wind speed can be used to estimate wind power density. In this study, Weibull and Rayleigh
density distributions were employed to analytically eliminate the presumption that the total wind power is
described by a single random variant and to calculate the wind power probability density distribution. In the
modeling of complex high-dimensional stochastic wind power, although it can be solved with various
mathematical approaches, since there are generally large-scale power systems containing many generators,
buses, planning periods and non-linear stochastic variables, it is quite leisurely in searching for the optimum
point and most of the time the solutions are far from reality. Consequently, heuristic methods have now
substituted classical mathematical methods in obtaining wind parameters. Therefore, the advantage of heuristic
methods compared to classical methods is that they can produce efficient solutions in a shorter time and with
greater precision. Therefore, in this study, the main metaheuristic algorithms Symbiosis Organisms Search (SOS)
and Artificial Bee Colony (ABC) algorithms and the classical statistical methods Energy Pattern Factor and
Maximum Likelihood Method were employed to investigate the accuracy of wind power parameter calculations.

Riizgar Enerjisi Olasilik Yogunluk Dagilim1
Fonksiyonlar1 Parametrelerinin Meta-Sezgisel
Algoritmalar Kullanilarak Tahmini

0 Y4

Riizgar enerjisi olduk¢a popiler bir yenilenebilir enerji kaynagidir ve ¢evre dostu olmasi,
yenilenebilir olmasi ve biiyiik rezervlere sahip olmas gibi faydalar1 nedeniyle diinya ¢apinda bir
enerji kaynag olarak kullanilmaktadir. Riizgar hizinin olasilik yogunluk dagilimi, riizgar giicii
yogunlugunu tahmin etmek i¢in kullanilabilmektedir. Bu ¢aliymada, toplam riizgar giiciiniin tek
bir rastgele degiskenle tanimlandig1 varsayimini analitik olarak ortadan kaldirmak ve riizgar giicii
olasilik yogunluk dagilimini hesaplamak igin Weibull ve Rayleigh yogunluk dagilimlar
kullanilmistir. Karmagik yiiksek boyutlu stokastik riizgar enerjisinin modellenmesinde, gesitli
matematiksel yaklagimlarla ¢oziilebilmesine ragmen genellikle ¢ok sayida jenerator, bara,
planlama periyodu ve dogrusal olmayan stokastik degiskenler igeren biiyiik 6l¢ekli gii¢ sistemleri
bulundugundan oldukga yavastir. Optimum noktay: ararken ¢ogu zaman ¢oziimler gerceklikten
uzak olmaktadir. Sonug olarak, riizgar parametrelerinin elde edilmesinde giiniimiizde klasik
matematiksel yontemlerin yerini sezgisel yontemler almustir. Dolayisiyla sezgisel yontemlerin
klasik yontemlere gore avantaji, daha kisa siirede ve daha yiiksek hassasiyetle etkin ¢oziimler
iiretebilmesidir. Bu nedenle, bu ¢alismada riizgar gilicii parametre hesaplamalarinin dogrulugunu
aragtirmak icin bilinen basarili metasezgisel algoritmalardan Symbiosis Organisms Search (SOS)
ve Yapay Ar1 Kolonisi (ABC) algoritmalari ile klasik istatistiksel yontemlerden Enerji Egilim
Faktorii ve Maksimum Olabilirlik yontemleri kullanilmugtir.
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1. Introduction

With the increasing consumption of non-renewable conventional energy such as coal, natural gas and oil, the
use of renewable energy has become a very important strategy issue all over the world to solve the current and
future energy crisis. Wind energy has received great attention as a promising renewable energy source. It has
potential benefits in reducing emissions and consumption of thermal fuel reserves. Wind energy is a very
popular renewable energy resource and is used as an energy source global because of its benefits of being
environmentally friendly, renewable and having great reserves. With growing concerns about global climate
change, renewable energy resources, particularly wind power generation, are being promoted as a way to meet
emissions reduction targets.

In traditional power system problems, deterministic models are used in the integration of wind energy, which
cannot reflect the uncertain situations of wind energy. Since wind power plants integrated to power systems
have dynamic and stochastic performance characteristics, stochastic power system models are more
appropriate. There are various studies aiming to research the impact of wind energy on generation resource
management because of its stochastic and non-dispersible properties for the integration of wind energy into
conventional power systems. Wind energy is produced thanks to wind turbines. Therefore, wind direction
and wind speed characteristics are very important for accurate calculation of wind power and effective plan
and modeling of wind turbines. Wind speed probability density distribution can be used to forecast wind
power density and determine the most probable wind direction [1-5]. The collective probability distribution
of wind direction and wind speed is of great interest as it can be utilized to optimize the layout of the wind
farm, that is, to acquire wind speed properties under different wind directions. Wind speed properties under
different wind directions play an important part in the design of wind turbines. It should be given that the
wind speed with the highest frequency and the wind speed that can catch the maximum wind energy are
different. To acquire maximum wind energy, the two wind speeds must be as close as likely. Additionally,
probability distribution is important in determining the prediction method and calculating the wind load [6
and 7]. This stochastic approach avoids local solution traps in solving power systems optimization problems
by adding probabilistic features to traditional power system models. This strategy eliminates the probabilistic
feasibility inherent in traditional models. Additionally, the solutions prevent the occurrence of reserve costs
due to overestimation of available wind power and penalty costs due to underestimation of available wind
power.

In a region, researchers utilize probability density functions (PDFs) to define the frequency distribution of
wind speed. In addition to wind speed, parameters such as air density, altitude, and surface roughness also
affect the calculation of wind power of wind power plants (WPPs) [8]. Data-based statistical distribution
methods such as gamma distribution, two-parameter gamma distribution, lognormal distribution, gaussian
distribution, rayleigh distribution, weibull distribution and hybrid distribution are commonly used to obtain
probability density functions [9-13]. These distribution methods are based on probability density functions
associated with wind speed data in modeling wind conditions. The two-parameter Weibull distribution
appears to be the most frequently used and accepted statistical model [14,15].

In the literature, studies are carried out on topics such as technical and economic evaluation of regional wind
energy potential, energy characteristics, wind turbine location and sizing, levelized unit energy costs,
environmental impacts, using wind speed data from previous years using different distribution methods. In
[16], M. K. Mridul et al. examined wind energy potential and characteristics for Faridpur, Bangladesh. To
make this happen, monthly resolution wind speed data for the region at a vertical height of 50 m for 2019 was
used. Weibull probability density function (PDF) and Weibull cumulative distribution function (CDF) were
calculated for the region using the Weibull distribution method. Using Weibull PDF and Weibull CDF, the
most probable wind speed, maximum energy carrying wind speed, energy and power densities were
calculated. In [17], ]. C. Lam et al. used long-term average wind speed data from three different regions in
Hong Kong to calculate Weibull PDF for three regions. Numerical wind speed estimates were obtained for
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each region using the calculated functions. In [18], A. S. S. Dorvlo used Weibull distribution in wind speed
modeling of four regions in Oman. In [19], A. Keyhani et al. tried to analyze the wind speed data of the
Firouzkooh region of Iran. For this purpose, wind speed and wind power production potentials of the region
were analyzed using 3-hour wind speed data from the past 10 years. In [20], A.H. Shahirinia et al. proposed
Monte Carlo simulation algorithm to find PDFs of solutions in the optimum power flow problem. In [21],
G.J. Osorio and others have used the Monte Carlo simulation approach to find PDFs of solutions to the
economic dispatch problem. In [22], M. Eladany et al. used a Weibull PDF to represent their stochastic nature,
since wind speed and solar irradiance are random variables. For this purpose, the stochastic wind power
probability based on Weibull PDF was included as a constraint in their proposed model. They examined the
effects of Weibull pdf factors on total cost values. In [23], S. Nasser Keshmiri and others applied the Weibull
distribution function and Normal distribution function to calculate the short-term and long-term
characterization functions of wind speed in solving the multi-objective economic dispatch optimization
problem. In [24], J. Hetzer et al. used Weibull PDF to calculate the parameters of stochastic wind power in
solving the wind power integrated economic dispatch problem. In [25], A. Albani et al. examined the wind
energy potential and characteristics of different locations in Malaysia according to Weibull and Rayleigh
types. In [26], C. Peng et al. analyzed the stochastic structure of wind power output, obtained the Weibull
distribution parameters of zonal wind speed for different time intervals respectively, and then obtained the
probability density functions of wind power output for different time intervals. In [27], H.T. Jadhav and R.
Roy modeled the random nature of wind power using Weibull PDF in solving the environmental economic
power dispatch problem. Also, the uncertainty in wind power is taken into account in the cost model by
including power imbalance terms such as overestimation and underestimation costs of available wind power.
In [28], S. Velamuri et al. used the Weibull distribution function to solve the stochastic structure of wind in
the static economic dispatch problem, since the integration of wind power into the existing system is
complicated due to its stochastic structure. They discussed the scenarios with and without wind power
penetration in detail. In [29], E. Arriagada et al. considered the demand and generation randomness to model
and solve the stochastic economic dispatch problem involving renewable energies. They modeled the demand,
wind speed, solar distribution through Normal, Weibull, Beta and Uniform distributions, respectively. In
[30], Z. Zhang et al. formulated the versatile distribution probability distribution model and developed it with
its applications since wind power forecast errors are one of the most challenging issues for power system
operation in economic dispatch applications.

In this study, Weibull and Rayleigh density distributions were employed to analytically eliminate the
presumption that the total wind power is described by a single random variant and to calculate the wind
power probability density distribution. This allows complex and uncertain wind characteristics to be
explained more accurately and effectively. To obtain Weibull functions, scale and shape parameters need to
be estimated. In order to obtain Weibull parameters, statistical methods such as the Maximum Likelihood
Method (MLM), Graphical Method, Empirical Method, Modified-Maximum Likelihood Method, Moment
Method, Energy Pattern Factor Method (EPFM) and Equivalent Energy Method Energy are used. In this
study, the Root Mean Square Error (RMSE) method was used in error analysis with the objective of identifying
which one of the Weibull and Rayleigh parameters computed by the EPFM and the MLM would be
appropriate for the real wind speed. What is clear throughout all these studies is that achieving stochastic
wind power becomes a composite optimization problem that is hard to resolve by direct mathematical
methods. In the modeling of complex high-dimensional stochastic wind power, although it can be solved with
various mathematical approaches, since there are generally large-scale power systems containing many
generators, buses, planning periods and non-linear stochastic variables, it is quite leisurely in searching for
the optimum point and most of the time the solutions are far from reality. Additionally, because of their
nonlinear properties, these methods cannot ensure successful results. Consequently, heuristic methods have
now substituted classical mathematical methods in obtaining wind parameters. The advantage of heuristic
methods compared to classical methods is that they can produce efficient solutions in a shorter time and with
greater precision. Heuristics are often stimulated by certain laws of nature, biological characteristics, or
mutual behaviors revealed by living things. Therefore, in this study, the main metaheuristic algorithms
Symbiosis Organisms Search (SOS) and Artificial Bee Colony (ABC) algorithms were used to investigate the
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accuracy of wind power parameter calculations. According to the results obtained, error analyzes were
calculated and the accuracies of the methods were compared. Thus, the accuracies of the methods were
compared according to the results obtained using different parameter estimation methods.

The remaining part of the study is organized as follows. Mathematical formulation of stochastic wind energy,
formulation of parameters for calculating wind power, Weibull and Rayleigh probability density functions,
stochastic modeling of wind energy are included in Section 2. In Section 3, the analysis studies and methods
used to compute the Weibull and Rayleigh parameters are explained in detail. In Section 4, the results obtained
using different methods and solutions for stochastic wind power are presented. The study ends with
concluding remarks in Section 5.

2. Wind Energy And Its Characteristics

Wind is a climate element that has properties such as speed, direction and frequency and is used in energy
generation due to these properties. Factors affecting wind speed can be listed as the geographical location of
the region, local surface texture and altitude. Therefore, wind speed is affected by the meteorological and
topographic structure of the region. The wind power plant to be established in a region depends on the wind
characteristics of the region. To determine the characteristics of wind power, data such as hourly average
speed, daily average speed, monthly average speed and seasonal average speed of the wind are needed.
However, information on the dominant wind direction of the region is needed in terms of the location of the
wind turbine to be installed. Thanks to all these data, parameters such as standard deviation, turbulence, wind
speed, most likely speed, cumulative distribution of speeds can be obtained.

More than one statistical approach can be used to evaluate wind data. PDF is employed to define the frequency
distribution of wind speed in the area. A variety of techniques are employed in the analysis of wind speeds,
with the objective of obtaining a probability density function. It is significant to use suitable statistical models
to model the wind modes of a certain region and express their frequency distributions. It is stated in the
literature that the two-parameter Weibull and Rayleigh distribution is an appropriate distribution method
since it provides best conclusions in forecasting the wind speed and wind power potency of a certain area.
The Weibull distribution is widely used because it is easy to calculate only two parameters, its accuracy can
be proven, it is suitable for monitoring wind speed distributions, and its pliability features. In this study,
Weibull and Rayleigh distributions were utilized to obtain the power output of WPPs. The shape and scale
parameters that determine distributions can be computed by many methods. Employing the hourly average
wind speed data collected for each station, the standard deviation, average speed, most likely speed, the speed
that contributes the most to the energy generation and average power density were calculated depending on
the Weibull and Rayleigh shape and scale parameters.

2.1. Weibull distribution

The mostly used statistical approach in determining the distribution of wind speed data is the Weibull
probability density function. The Weibull distribution is a distribution with higher sensitivity and more
flexibility than other distributions. The Weibull distribution is a two-parameter distribution. The two-
parameter Weibull probability density function can be expressed as in Eq.1.

k

Nk-1  _ vk
L@ =()(E) @ o<v<w (1)
Where (v) denotes the wind speed probability, (k) and (c) denote the shape and scale coefficients,
respectively. It is the probability of measured wind speed, expressed as f,, (v).

The dimensionless shape parameter (k) in Eq. 1 is the parameter that expresses the frequency of wind
blowing. If the wind speed in a region does not fluctuate much over time, that is, if it blows at an approximately
constant speed, the shape parameter (k) takes a large value. If the changes in wind speed are large, that is, if
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it does not blow at a constant speed, the shape parameter takes a small value. The other parameter in Eq.1 is
named the scale parameter (c), which has the identical unit as the wind speed. The scale parameter varies
contingenting on the average speed. This change occurs in direct proportion. In other words, a high average
speed means that the scale parameter is also high. The Weibull cumulative distribution function (cdf) is
expressed as in Eq.2.

F)=1-e@ 0<v<o @)
The Weibull cdf indicates the probability of wind speeds smaller than (v) speed.
2.2. Rayleigh distribution

Another statistical approach used to determine the distribution of wind speed data is the Rayleigh
distribution. Rayleigh distribution refers to the situation where the shape parameter of the Weibull
distribution is taken as constant "2". The biggest advantage of the Rayleigh distribution is that the distribution
is determined only by the average wind speed. In this case, the Rayleigh PDF is expressed by Eq. 3.

2v

frv) = (—) e_(%)z, 0<v<o 3)

c2

The Rayleigh cdf is expressed by Eq.4.
V.
Fr(v)=1- e_(E)Z, 0l<v<o (4)

2.3. Wind power and wind power density (WPD)

Wind power can be expressed mathematically as in Eq. 5.
Pw(v) = %pAV3 (5)

In the context provided, Pw represents the generated wind power in watts (W), where p denotes the air
density at a specific altitude measured in kilograms per cubic meter kg/m?, A signifies the swept area of the
rotor blade measured in square meters (m?) and v stands for the wind speed measured in meters per second
m/s. The standard density of air at sea level under conditions of 15.55 C and 1 atmosphere of atmospheric
pressure is denoted as p0 =1.225 kg /m?3. It is notable that both pressure and temperature vary with altitude,
consequently leading to alterations in air density (ph). It should be emphasized that the air density (ph)
observed at a certain height does not equate to the air density at sea level. Depending on the air density at sea
level, the corrected air density at height h (ph) is calculated as in Eq. 6.

ph = p0 — (1,194 10~*h) (6)

WPD denoted as the power per square meter of area m?. It can be computed utilizing the formula provided
in Eq. 7.

N1 /3

Pwpd = %pvs = 2t ?:V (7)
In this context, P4 denotes the wpd within each square meter of area m?, vi ith represents the wind speed
measured per hour, and N refers to the total number of wind speed measured in the sequences.

Extrapolation is a statistical technique used to estimate values beyond the range of observed data points.
Extrapolation involves establishing a direct proportionality between wind speed and altitude, considering that
wind speeds are typically measured at a level under than the height of the wind turbine. This process accounts
for the fact that wind speeds generally increase with height due to reduced surface friction and other
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atmospheric factors. Therefore, it becomes necessary to adjust the measured wind speeds to correspond with
the height of the turbine casing. Eq.8 is used for extrapolation.

_ . (Zn\*
-

(8)

In this equation, vy, refers to the wind speed at the height Z;, to be determined, v, is the wind speed measured
at the height Z,., and o stands for the Helman coefficient, which signifies the surface roughness coefficient. It
is conventionally accepted as 0.143 under specific circumstances.

3. Method

In the modeling of complex high-dimensional stochastic wind power, although it can be solved with various
mathematical approaches, it is quite leisurely in searching for the optimum point, since there are generally
large-scale power systems containing many generators, buses, planning periods and non-linear stochastic
variables. Most of the time the solutions are far from the truth. On the other hand, obtaining stochastic wind
power is a composite optimization problem that is hard to resolve by direct mathematical methods.
Additionally, because of their nonlinear properties, these methods cannot ensure successful results.
Consequently, heuristic methods have now substituted classical mathematical methods in obtaining wind
parameters. The advantage of heuristic methods compared to classical methods is that they can produce
efficient solutions in a shorter time and with greater precision. Heuristics are often stimulated by certain laws
of nature, biological characteristics, or mutual behaviors revealed by living things. Therefore, in this study,
Symbiosis Organisms Search (SOS) and Artificial Bee Colony (ABC) algorithms, which are the main
metaheuristic algorithms, were used to investigate the accuracy of wind power parameter calculations.
According to the results obtained, error analyzes were calculated and the accuracies of the methods were
compared. In this study, the RMSE method was used in error analysis to determine which one of the Weibull
and Rayleigh parameters computed by the EPFM and the MLM would be appropriate for the actual wind
speed. Thus, according to the results obtained using different Weibull parameter estimation methods, the
accuracies of the methods were compared.

3.1. Meta heuristic (MHS) optimization algorithms

There are two basic requirements that meta-heuristic search algorithms must meet in order to be successful.
These are neighborhood (exploitation) and exploration tasks. The exploitation mission entails a delicate
search conducted in the vicinity of reference locations, often referred to as fine-tuning or intensification in
the literature. Various simple yet efficient statistical methods exist for exploring the neighborhood of a related
location, making intensification a process that Metaheuristic Search (MHS) algorithms execute adeptly. The
primary determine of the performance of MHS algorithms lies in their exploration capabilities. Exploration,
crucial for averting local solution traps during the search process, is paramount. Local solution traps pose a
significant challenge in solving optimization problems, particularly in non-convex and multidimensional
search spaces, where numerous local solutions abound. While MHS algorithms excel in their exploitation
task, they often become ensnared in these local solution traps. In such instances, it is the exploration operators
that rescue the algorithms from these predicaments. Unlike intensification, the diversification process lacks
well-known and potent mathematical methods. Furthermore, as the complication of optimization problems
escalates, MHS algorithms encounter difficulties in effectively executing the exploration process. For these
myriad reasons, successful completion of the MHS process requires having a powerful exploration ability.
Consequently, in this study, experimental studies were carried out using SOS and ABC algorithms, which are
among the successful MHS algorithms in the literature for parameter estimation methods.
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3.1.1 Symbiosis organisms search algorithm

Similar to other population-based algorithms, the SOS algorithm is a population-based iterative method to
find the overall best solution in the search space. The name given to the population in the SOS algorithm is
ecosystem. In the initial population creation phase, a group of organisms is randomly initialized in the search
space. Each organism represents a candidate solution to the problem. Each organism within the ecosystem
has a best fitness value that indicates its degree of compatibility with the desired goal.

In general, all meta-heuristic algorithms subject the solutions they obtain at the end of each iteration to a
replacement process to determine the new generations to be produced in the next step.

In the SOS algorithm, the new generation is produced by imitating the biological interaction between two
organisms in the ecosystem. The process, which resembles real-life biological interaction and consists of three
phases: is modeled as a mutual benefit phase, a unilateral benefit phase, and a phase where one benefits and
the other is harmed.

The character of the interaction defines the main principle of each universe. In the mutualism phase,
interactions provide benefits to both parties. In the commensalism phase, while one side gains, it has no effect
on the other. In the parasitism phase, one side gains and the other side suffers. In all stages, each organism
interacts with the others in a random manner. The process continues until the termination criterion is met.

3.1.2. Artificial bee colony algorithm (ABC)

ABC algorithm is one of the algorithms based on swarm intelligence. Bee Colony, like other swarm
intelligence-based algorithms, has the ability to divide labor and organize itself. This algorithm explores both
the global and regional spaces based on the neighborhood rule. Within the colony, bees are partitioned into
three groups:

1-Worker Bees: Worker bees employ the neighborhood principle to search for food sources abundant in
nectar. There is one worker in each food source. Therefore, the number of worker bees is equal to the number
of food sources.

2-Onlooker Bees: Onlooker bees wait in the hive and after sharing the food sources and information of other
bees with them through dance, they turn to the food source where nectar is abundant.

3-Scout Bees: At the beginning of the foraging process, scout bees disperse randomly and start searching for
food.

Steps for Artificial Bee Colony:

1-Initialization of the Algorithm: This stage is the stage of generating random food resources in the
environment. It corresponds to the algorithm producing a random starting value between the lower and upper
limits of the parameter.

2-Identification of New Sources: Identification of new sources is carried out according to the neighborhood
principle. The worker bee identifies a new food source in the neighborhood of the food source.

3- Determining the Quality of the Source: A best value is appointed to the parameter vectors corresponding
a new source, followed by the application of a greedy selection process. If the new source is of better quality
than the other, the old source is deleted from memory and the new source is stored in memory.

4-Selecting the Source: When worker bees return to the hive, they convey information to the onlooker bees
about the quality of the source through dance. Accordingly, onlooker bees choose the source for themselves.
Sources with high nectar quality (fitness value) are more likely to be selected.
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3.2. Statistical methods

In this study, the EPFM and MLM, which are statistical methods, were employed to determine the parameters
of Weibull and Rayleigh distributions.

Energy pattern factor method

Energy Pattern Factor Method is defined mathematically as in Eq. 9, depending on the average wind speed
data.

v3
Where E) ¢ is computed using the average of the cube of the speed and the cube of the average of the speed.
After E,f is calculated, the shape (k) and scale (c) parameters can be easily calculated with Eq. 10 and Eq. 11.

3,69

k=1 1
+(Epf)2 (10)
14

c = l"(l—-i-%) (11)

Maximum likelihood method

The shape (k) and scale (c) parameters can be computed using the Maximum Likelihood Method, as
described by Eq. 12 and Eq. 13.

ILavfine) i)

— -1
k= ) (12)
N yk o1
=y (13)

Where, N represents the total wind speed data, while V; Khmentions to the wind speed measured for the
hour.

Error analysis

Error analysis is necessary to determine which one of the Weibull and Rayleigh parameters, computed using
the EPFM and MLM, are appropriate for the actual wind speed data. Various established analysis methods,
like root mean square error (RMSE), mean square error (MSE), mean absolute error, chi-square, and
coefficient of determination are employed in this error analysis process. In this study, the RMSE method given
in Eq.14 was used.

RMSE = [~y (Vim — Xip)? ] V2 (14)
4. Analysis Studies And Results

In this study, the wind speed distribution was appraised for sample wind speed data by utilizing the Weibull
and Rayleigh distribution method to acquire the power output of WPPs.

To accomplish this, wind speed data collected on an hourly basis at a height of 10 meters from previous years
(2017-2023) were utilized for sampling. To augment the sample size, monthly wind data for each year were
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used for the analysis of the month in which the study would be carried out. Thus, a total of 210 samples (30x7)
were obtained for each month. In addition, in the study, a total of 2520 samples (12x30x7) were obtained for
each year to perform annual wind speed density analysis The hub height of the Wind Power Plants (WPPs)
considered in this study is 60 meters. Firstly, wind speeds measured at 10 meters were extrapolated to a height

of 60 meters using Eq.8.
Table 1.Monthly Weibull parameters and error rates
Month Method k ¢ (m/s) Total Absolute Error
PDF)
1 EPFM  1.717411459 8.67863556 1.057163145
MLM 1.893688801 8.780044354 1.072190066
SOS 1.93790154  8.426067466 1.029933202
ABC 1.93790154  8.426067466 1.029933202
2 EPFM  1.664487508 8.485753366 1.217339419
MLM 1.839293457 8.601385704 1.221227883
SOS 1.772402485 7.731485147 1.187690659
ABC 1.772402485 7.731485147 1.187690229
3 EPFM  1.660331232 8.526912911 1.200393361
MLM 1.848815707 8.633043177 1.209073163
SOS 2.535576968  7.24714609 1.020983218
ABC 2.535576968  7.24714609 1.020980205
4 EPFM 228637684  7.504895939 1.161691776
MLM 2.400027209 7.501433401 1.186059408
SOS 2.991909833 6.798685873 0.904142669
ABC 2.991909833 6.798685873 0.904141737
5 EPFM  2.154721077 8.065113452 1.079968581
MLM 2.26397308  8.073843755 1.074433314
SOS 3.057083425 7.161685369 0.877583603
ABC 3.057083425 7.161685369 0.877581742
6 EPFM  2.636954789 8.941351355 1.02255627
MLM 2.72188761  8.939281583 1.036578088
SOS 2.938431072 8.249564957 1.022011556
ABC 2.93843212  8.249566059 0.982279277
7 EPFM  2.824861796 10.47225927 0.869551938
MLM 2.969093713 10.47311463 0.889549484
SOS 2.803249784 10.16567707 0.860841843
ABC 2.803249659 10.16567742 0.860841848
8 EPFM  2.757587495 11.72821533 0.982064225
MLM 2.885180007 11.73811724 1.007545094
SOS 2.500539326 11.37318236 0.942404509
ABC 2494763278 11.40699189 0.942525427
9 EPFM  2.061162654 9.019482043 1.11356985
MLM 2.171788742  9.049960909 1.113006916
SOS 2.523388861 8.571365917 1.021959869
ABC 2.523525868 8.571404076 1.021959871
10 EPFM  1.716321095 7.848924512 0.959466217
MLM 1.763831225 7.887966999 0.960614025
SOS 1.686378108 8.131140252 0.946971951
ABC 1.615935565 8.413819769 0.947260968
11 EPFM  1.390579972 6.858483495 1.404128669
MLM 1.523624512  6.976649336 1.371037576
SOS 1.644921194 6.192311987 1.342020413
ABC 1.645575281 6.194206006 1.342043041
12 EPFM  1.547648146 7.588513891 1.023703576
MLM 1.601892705 7.640100392 1.023121314
SOS 1.527209518 8.037642206 1.023142593
ABC 1.527749909 8.038734949 1.023142626

EPFM and MLM, which are statistical methods, were used to compute the Weibull and Rayleigh distribution
parameters. In addition, SOS and ABC algorithms, which are the main metaheuristic algorithms, were used
to investigate the accuracy of parameter calculations. Thus, error analyzes were calculated according to the
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results obtained using different Weibull parameter estimation methods and the accuracies of the methods
were compared.

Table 1 includes 12-month Weibull parameters and error values for sample speed data. Table 2 includes
Rayleigh parameters and error values for 12 months for sample speed data. Additionally, Tables 3 and 4
include Weibull and Rayleigh distribution parameters and error values for all years for sample speed data.

Table 2.Monthly Rayleigh parameters and error rates

Month Method k ¢ (m/s) Total Absolute Error
PDF)
1 EPFM 2 8.731662084 1.047152591
MLM 2 6.300343352 1.366081151
SOS 2 5.84163526 1.212501768
ABC 2 8.275893334 1.032868932
2 EPFM 2 8.556390518 1.238829739
MLM 2 6.226544481 1.497560071
SOS 2 7.610389021 1.206364316
ABC 2 7.610389021 1.206326739
3 EPFM 2 8.599539774 1.128228634
MLM 2 6.240416653 1.399599897
SOS 2 7.708630802 1.102799364
ABC 2 7.708630802 1.102799364
4 EPFM 2 7.50176564 1.24470644
MLM 2 5.118123337 1.43945807
SOS 2 6.48436174 1.150452937
ABC 2 6.48436174 1.150452937
5 EPFM 2 8.059460861 1.147406513
MLM 2 5.564677206 1.456989053
SOS 2 7.784568174 1.14330202
ABC 2 7.784568079 1.14330202
6 EPFM 2 8.965232692 1.125957118
MLM 2 6.027069385 1.472964291
SOS 2 9.271317852 1.119462978
ABC 2 9.271317852 1.119462978
7 EPFM 2 10.52574397 0.984574222
MLM 2 7.020762202 1.124358562
SOS 2 10.15707544 0.971734021
ABC 2 10.15707544 0.971734021
8 EPFM 2 11.777429 1.035611668
MLM 2 7.883916162 1.198967896
SOS 2 11.92195684 1.034259069
ABC 2 11.92195684 1.034259069
9 EPFM 2 9.015531887 1.133806407
MLM 2 6.286225309 1.439087393
SOS 2 8.227730338 1.103912681
ABC 2 8.227730338 1.103912681
10 EPFM 2 7.897205394 1.066779905
MLM 2 5.763936027 1.535197342
SOS 2 8.034220489 1.06405699
ABC 2 8.034220489 1.06405699
11 EPFM 2 7.061048885 1.40451224
MLM 2 5.410238036 1.585324399
SOS 2 6.322905066 1.352756353
ABC 2 6.322905066 1.352756353
12 EPFM 2 7.702498833 1.099015125
MLM 2 5.768359904 1.473046301
SOS 2 7.724976848 1.098921919
ABC 2 7.724976848 1.098921919
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Table 3. Annual Weibull parameters and error rates

Year Method k c (m/s) Total Absolute Error PDF)
2018 EPFM 2.250149  8.534181 0.897163043
MLM 2.358513  8.543171 0.9145299
SOS 2.821013  7.843502 0.808812755
ABC 2.821013  7.843502 0.808812755
2019 EPFM 1.857433  9.614972 0.980346637
MLM 1.994699  9.694583 1.04043706
SOS 1.809924  8.065538 0.810631753
ABC 1.809924  8.065538 0.810631753
2020 EPFM 2.142101  9.59528 1.054014657
MLM 2.237293  9.639677 1.071148791
SOS 1.938589  9.258395 1.028914645
2021 ABC 1.938628  9.258457 1.02891552
EPFM 2.140984  9.285866 1.072734491
MLM 2.250454  9.326096 1.124340203
SOS 1.887262  8.528088 1.002346029
2022 ABC 1.888214  8.529815 1.002355878
EPFM 1.991107  8.7342 0.808026101
MLM 2.089238  8.767511 0.833448118
SOS 2413021  7.580767 0.680924857
ABC 2413021  7.580767 0.680924857
2023 EPFM 1.324577  6.438738 0.794619966
MLM 1.413673  6.544893 0.818395018
SOS 1.391989  5.695548 0.769080567
ABC 1.388009  5.732565 0.769250984
Table 4.Annual Rayleigh parameters and error rates
Year Method k c(m/s) Total Absolute Error PDF)
2018 EPFM 2 8.529405 0.953625763
MLM 2 5.848135 1.085541793
SOS 2 8.008161 0.93396745
ABC 2 8.008161 0.93396745
2019 EPFM 2 9.635003 1.003059886
MLM 2 6.859567 1.220425539
SOS 2 7.911173 0.8375703
ABC 2 7.911173 0.8375703
2020 EPFM 2 9.588652 1.042193133
MLM 2 6.660969 1.333532937
SOS 2 9.307622 1.031107434
2021 ABC 2 9.307622 1.031107434
EPFM 2 9.279463 1.049004291
MLM 2 6.434743 1.300527507
SOS 2 8.47798 1.009771258
2022 ABC 2 8.47798 1.009771258
EPFM 2 8.734933 0.80703664
MLM 2 6.139414 1.138353325
SOS 2 7.968295 0.750608413
ABC 2 7.968295 0.750608413
2023 EPFM 2 6.68556 1.153322329
MLM 2 5.247191 1401980124
SOS 2 5.841635 1.056066522
ABC 2 5.841635 1.056066522

When Tables 1, 2, 3 and 4 are surveyed, It can be observed that metaheuristic algorithms give supeiror results

than statistical methods. In this content, hourly average speed (Vavg), most likely speed (Vmls), maximum

speed and wind power density (WPD) were delibareted utilizing the parameters idenitified by the probability
method. Average speed, most likely speed, Vmax and WPD values are specified in Tables 5, 6.
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Table 5. Monthly wind speed and power values

Month  Vavg Vmls Vmax Standard Deviation Power Density ~ Turbine
(m/s) (m/s) (m/s) (o) (P/A) Power
Output
W)
1 7.738234 4.585011516 30.9488277 4.428751217 58.66914426 294.871.12
2 7.582904 4.96709581 24.0713105 4.489829158 74.59265622 374.902.69
3 7.621144 5.731264396 29.0384063 4462153762 114.5881724 575.920.15
4 6.648267 4.96709581 20.6325518 2.869962061 74.59265622 374.902.69
5 7.142511 6.495432982 21.7788047 3.31282396 166.8064269 838.369.10
6 7.945231 5.731264396 16.8117089 3.094777948 114.5881724 575.920.15
7 9.328198 5.731264396 18.7221304 3.410198699 114.5881724 575.920.15
8 10.43747 6.495432982 20.2504675 3.931218476 166.8064269 838.369.10
9 7.989807 5.731264396 22.9250576 3.909109217 114.5881724 575.920.15
10 6.998716 4.585011516 20.2504675 4.190261331 58.66914426 294.871.12
11 6.257692 3.82084293 259817319 4.414853274 33.95205108 170.643.01
12 6.826162 3.438758637 26.7459005 4.478762328 24.75104523 124.398.75

Table 6. Annual wind speed and power values

Month Vavg Vmls Vmax Standard Deviation (o) Power Density ~ Turbine Power Output (W)
(m/s) (m/s) (m/s) (P/A)

2018 7,55898816 5,731264396 26,74590051  3,360655982 114,5881724 575.920,15

2019 8,53879884 5,731264396 30,94882774  4,610257326 114,5881724 575.920,15

2020 8,49772171 6,113348689 2598173193  4,070751859 139,0676012 698.953,76

2021 8,22371015 7,259601568 22,54297329  3,901810491 232,8771183 1.170.440,40

2022 7,74113246 6,495432982 24,07131046  3,937277433 166,8064269 838.369,10

2023 5,92492356 3,82084293 29,03840627  4,473940855 33,95205108 170.643,01

In this study, the Nordex N60 model turbine, one of the most commonly utilized turbine types in Turkey, was
employed to estimate wind power based on the 12-month average speed derived from the sampled wind data.
The rated power of the Nordex N60 turbine is 1300 kW, the casing length is 60 m, the blade diameter is 60 m,
and taking these technical specifications into consideration, the power output of a WPP with an installed
power of 1.3 MW was calculated using Eq. 5. The results obtained are given in Tables 5 and 6.

The probability density function f(V) indicates the probability of observing speed V at any moment, and the
cumulative distribution function F(V) indicates the probability that the speed observed at any moment is
equal to or less than speed V. From Figure 1 to Figure 8, the probability density distributions of the Weibull
and Rayleigh distribution corresponding to the wind speed of the 1st, 2nd and 3rd months and probability
distributions for a sample year are shown. Although in this study, analyzes were made for 12 months and all
years, functions were calculated and distribution graphs were prepared, only the graphs for the 1st, 2nd and
3rd months are given in the study. Other analyzes are also given in the appendix of the study. Calculation of
Weibull and Rayleigh distribution parameters, average wind speed, maximum wind speed, pdf and cdf was
performed with MATLAB R2019a.

When the graphs and tables given in the study are examined, it is seen that the absolute error values of the
Weibull and Rayleigh parameters calculated with metaheuristic algorithms are quite small. When the
obtained test results are compared with the real wind speed data, it is clearly seen that they are effective and
accurate. In addition, as can be seen from the graphs, it is understood that the probability density distributions
calculated with metaheuristic algorithms have a more successful and uniform distribution.
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Figure 1. Weibull distribution probability density functions for the 1st month
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Figure 2. Weibull distribution probability density functions for the 2nd month
0,16
0,14
0,12
0,1
=008
=
0,06
0,04
0,02
0
P8P (0 TP G PSP A
S R R S R e S R QR O IS
57 A QT NV AT AT QD A0 AV O T D (PN
A L S A R R AR SRS RN
A AV % G A Y O Qv Vo Xy \’\\%\"’
Qv Y % B Sy OF v Oy NN RN NN NY N

s EPFV] e VLV e SOS s ABC

Figure 3. Weibull distribution probability density functions for the 3rd month
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Figure 5. Rayleigh distribution probability density functions for the 1st month
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Figure 6. Rayleigh distribution probability density functions for the 2nd month
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Figure 7. Rayleigh distribution probability density functions for the 3rd month
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Figure 8. Rayleigh distribution probability density functions for the 4th month
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Figure 9. Annual Weibull distribution probability density functions
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Figure 10. Annual Rayleigh distribution probability density functions

5. Discussion

In this section, firstly, a study was conducted to verify the effectiveness of the proposed methods. Then,
comparison test results were given on the graphs to make the solutions of the experimental results of the
proposed algorithms understandable. The parameters of stochastic wind energy were solved using both
statistical methods and SOS and ABC metaheuristic algorithms. Thus, error analyzes were calculated
according to the results obtained using different Weibull parameter estimation methods and the accuracies
of the methods were compared.

The stochastic situation of modern power systems has been in existence for many years and continues to be
one of the most fundamental problems today. In this study, since the wind speed is uncertain for any time
interval, Weibull probability density function (PDF) is used to estimate the wind speed. In the solution of the
problem, the effectiveness of the methods is investigated by using metaheuristic-based methods and statistical
methods. Since the discovery and neighborhood search ability of the algorithm is improved in metaheuristic
methods, local optimum traps are avoided and optimum values are increased. When the proposed MHS
algorithms are applied to the test functions, it is clearly seen that the algorithms are successful in calculating
the stochastic wind power parameters and provide effective and accurate results. In summary, as a result of
the comprehensive experimental study, the proposed MHS algorithms are presented to the literature as one
of the effective MHS methods that can be used in obtaining the stochastic wind power parameters.

6. Results

In the designing and modeling of modern power systems, both the power ranges of the load and the power
ranges of generation are utilized as input variables. While the capacity factor is traditionally taken into account
in the generation of power ranges of dispatchable power plants for generation series, the implementation of
probabilistic approaches in generating power series for wind and solar sources is crucial for ensuring accurate
modeling of power systems.

In this study, probabilistic approaches such as the Weibull and Rayleigh distribution methods were utilized
to derive the power series of WPPs. The accuracy of the methods was investigated by using statistical methods
and metaheuristic algorithms to calculate the parameters of these distribution methods. In order to achieve
this objective, wind speed data measured in daily periods for previous years (2017-2023) for Turkey were used
as an example. With these data, 12-month average wind speed, maximum wind speed, power density and
wind power were determined using both Weibull and Rayleigh distribution. Probability density functions and
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cumulative distribution functions obtained from different statistical and metaheuristic methods were created
for the data used. Accordingly, it has been clearly seen that metaheuristic algorithm methods provide more
effective results in estimating the parameters of stochastic wind energy. Based on these significant
experimental findings, metaheuristic algorithms can indeed be employed to address various power system
challenges within larger power systems that integrate diverse renewable energy sources. In summary, as can
be understood from the comprehensive experimental study, it has been presented to the literature that
effective MHP methods can be used in solving power systems problems.
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