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ABSTRACT 

Objective: This study aims to explore potential molecular mechanisms and targets of 

cardiovascular toxicities caused by tyrosine kinase inhibitors. Therefore, toxicogenomic data 

mining was conducted focusing on sunitinib, sorafenib, pazopanib, axitinib, and their associations 

with cardiovascular diseases. 

Material and Method: Common genes between tyrosine kinase inhibitors and cardiovascular 

diseases were uncovered via comparative toxicogenomic databases. Additionally, protein-protein 

and gene-gene interactions were identified using STRING and GeneMANIA, respectively. 

Subsequently, hub proteins associated with tyrosine kinase inhibitor-induced cardiovascular 

diseases were determined through Metascape. Transcription factors and microRNAs related to this 

toxicity were identified using ChEA3 and MIENTURNET, respectively. Finally, gene ontology 

enrichment analysis and the most associated molecular pathways were identified using the DAVID 

database and Metascape, respectively. 

Result and Discussion: Toxicogenomic data mining revealed six genes common between tyrosine 

kinase inhibitors and cardiovascular diseases, with five of these genes (FLT1, FLT4, KDR, MAPK1, 

and MAPK3) identified as hub genes. Physical interaction was dominant among these hub genes 

(77.64%). Sunitinib, sorafenib, pazopanib, and axitinib generally downregulated the activities of 

these proteins. SOX17 and SOX18 were prominent among transcription factors, while hsa-miR-

199a-3p was the most important microRNA associated with this toxicity. Moreover, the Ras 

signaling pathway was mostly associated with tyrosine kinase inhibitor-induced cardiovascular 

toxicities. These findings make a substantial contribution to understanding the processes underlying 

cardiovascular diseases induced by sunitinib, sorafenib, pazopanib, and axitinib. They also reveal 

novel potential therapeutic targets, including genes, proteins, transcription factors, microRNAs, and 

pathways. 
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ÖZ 

Amaç: Bu çalışma, tirozin kinaz inhibitörlerinin neden olduğu kardiyovasküler toksisitelerin 

potansiyel moleküler mekanizmalarını ve hedeflerini araştırmayı amaçlamaktadır. Bu nedenle, 

sunitinib, sorafenib, pazopanib, axitinib ve bunların kardiyovasküler hastalıklarla ilişkilerine 

odaklanarak toksikogenomik veri madenciliği yapılmıştır. 

Gereç ve Yöntem: Tirozin kinaz inhibitörleri ile kardiyovasküler hastalıklar arasındaki ortak 
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genler, karşılaştırmalı toksikogenomik veritabanları aracılığıyla belirlenmiştir. Ayrıca, protein-

protein etkileşimleri ve gen-gen etkileşimleri sırasıyla STRING ve GeneMANIA kullanılarak 

belirlenmiştir. Daha sonra, tirozin kinaz inhibitörü ile ilişkilendirilmiş kardiyovasküler hastalıklara 

ait merkezi proteinler Metascape kullanılarak belirlenmiştir. Bu toksisite ile ilişkili transkripsiyon 

faktörleri ve mikroRNA'lar sırasıyla ChEA3 ve MIENTURNET kullanılarak belirlenmiştir. Son 

olarak, gen ontolojisi zenginleştirme analizi ve en çok ilişkilendirilen moleküler yollar sırasıyla 

DAVID veritabanı ve Metascape kullanılarak belirlenmiştir. 

Sonuç ve Tartışma: Toksikogenomik veri madenciliği, tirozin kinaz inhibitörleri ile 

kardiyovasküler hastalıklar arasında altı ortak geni ortaya çıkardı; bunlardan beşi (FLT1, FLT4, 

KDR, MAPK1 ve MAPK3) merkezi genler olarak belirlendi. Bu merkezi genler arasında fiziksel 

etkileşim baskın olarak gözlemlendi (%77.64). Sunitinib, sorafenib, pazopanib ve axitinib genel 

olarak bu protein aktivitelerini azaltmaktadır. Transkripsiyon faktörleri arasında SOX17 ve SOX18 

öne çıkmaktadır, hsa-miR-199a-3p ise bu toksisite ile en önemli mikroRNA'dır. Ayrıca, Ras sinyal 

yolunun tirozin kinaz inhibitörleri ile ilişkilendirilen kardiyovasküler toksisitelerle çoğunlukla 

ilişkilendirildiği görülmüştür. Bu bulgular, sunitinib, sorafenib, pazopanib ve axitinib tarafından 

indüklenen kardiyovasküler hastalıkların altında yatan süreçleri anlamada önemli bir katkı 

yapmaktadır. Ayrıca, genler, proteinler, transkripsiyon faktörleri, mikroRNA'lar ve yollar da dahil 

olmak üzere yeni potansiyel terapötik hedefleri ortaya koymaktadır. 

Anahtar Kelimeler: İn siliko veri madenciliği, kardiyovasküler hastalıklar, tirozin kinaz 

inhibitörleri 

INTRODUCTION 

Tyrosine kinase inhibitors (TKIs) are widely used in clinical practice to treat various cancers, 

ranging from blood malignancies to advanced solid tumors. Compared to conventional chemotherapy 

agents such as doxorubicin, TKIs are generally considered safer. However, despite their perceived 

safety, TKIs are often administered for prolonged periods without a prescribed upper limit on dosage. 

Consequently, some TKIs still pose significant risks of cardiac adverse events. For example, sunitinib 

(SUN) has been linked to congestive heart failure in approximately 4.1% of cases in a meta-analysis 

involving 6935 patients, while sorafenib (SRF) has been shown to cause myocardial ischemia in around 

2.7–3% of participants in clinical trials. Additionally, both SUN and SRF are associated with 

hypertension in up to 47% of patients, likely due to their inhibitory effects on vascular endothelial 

growth factor (VEGF) signaling [1-5]. A systematic review reported sufficient evidence of high- and 

all-grade hypertension for pazopanib (PAZ), axitinib (AXI), and SRF. It also indicated probable 

evidence of all-grade congestive heart failure or left ventricular ejection fraction decline for PAZ and 

SUN [6]. Another study reported that hypertension was the most commonly reported cardiovascular 

event and was most frequently associated with SRF and PAZ in 1624 pediatric adverse events linked to 

TKIs in pediatrics [7]. A case study documented two cases of acute heart failure following PAZ 

treatment [8]. Another case study reported a patient with metastatic renal cell carcinoma who suddenly 

developed life-threatening hyperkalemia following the initiation of AXI treatment [9]. 

TKI-induced cardiotoxicity encompasses two distinct categories: "on-target" and "off-target" 

effects. Within these categories, cardiac cells exhibit both adaptive and maladaptive reactions to the 

pharmacological impact of TKIs. Physiological reactions inherent to the heart, such as hypertrophic 

responses, activation of fetal gene programs, initiation of unfolded protein responses, and stimulation of 

antioxidant defenses, are frequently triggered by external chemical stressors and may serve to modulate 

cardiotoxicity adaptively over time. The manifestation of TKI-induced cardiotoxicity is influenced by 

both the pharmacological inhibition of intended targets or unintended off-targets and the stress responses 

elicited within cardiac cells [1,10]. 

To improve the quality of life and clinical treatment of patients with TKI-induced cardiotoxicity, 

it is necessary to understand the molecular mechanisms of TKI-induced cardiotoxicity. The present 

study utilized network toxicology strategies to investigate the mechanism of TKI-induced 

cardiovascular toxicity. Network toxicology is a scientific discipline that employs computer modeling 

and bioinformatics methods to study the toxic impacts of chemical substances on living organisms. By 

constructing interaction networks between chemical substances and molecules within organisms, 
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network toxicology predicts and assesses chemical substance toxicity, aiding in understanding toxicity 

mechanisms, screening for potentially harmful substances, and more [11]. In addition to network 

construction, data mining techniques are integral in extracting and analyzing vast datasets to identify 

patterns and relationships in biological systems relevant to toxicity. Furthermore, in silico analysis plays 

a crucial role by using computational methods to simulate and predict the effects of chemical substances 

on biological pathways, providing insights into toxic mechanisms and aiding in the identification of 

biomarkers and therapeutic targets. 

The purpose of this research is to gain insight into the toxic mechanisms of TKI-induced 

cardiotoxicity, elucidate the toxicological profile of four TKIs (SUN, SRF, PAZ, and AXI), and predict 

their molecular mechanisms. Thus, it provides genomic biomarkers for further in vitro and in vivo 

studies. 

MATERIAL AND METHOD 

Identification of Overlapping Genes Between TKIs and Cardiovascular Diseases 

The identification of genes associated with the TKIs (SUN, SRF, PAZ, and AXI) and their 

connection to cardiovascular diseases (CVDs) was facilitated through the use of the Comparative 

Toxicogenomics Database (CTD; https://ctdbase.org) and its tools. CTD collects and integrates diverse 

data on chemical exposures and their biological impacts across different species. This involves manually 

curating and interconnecting data on chemicals, genes, phenotypes, anatomies, diseases, taxa, and 

exposures found in published literature [12].  

For the analysis of the genes related to the TKIs, each names of TKIs were entered one by one in 

the "Chemicals" section of the CTD, and all resulting genes were downloaded. The genes associated 

with CVDs were obtained from the “Direct Evidence” section of CTD, where “M” stands for 

“marker/mechanism” and “T” stands for “therapeutic.” To obtain common genes related to the four 

TKIs and CVDs, the Jvenn tool (https://jvenn.toulouse.inrae.fr/app/index.html) was used. It can process 

up to six lists of input and show the results using either the Edwards-Venn or classical layouts [13]. All 

findings presented in this study are based on data obtained in April 2024. 

Drug-Gene Binary Interaction Analysis 

To establish correlations between genes linked to CVDs and genes associated with the TKIs, a 

manual analysis was conducted using CTD (https://ctdbase.org). This involved scrutinizing the "gene 

interaction" card in the CTD chemical profile, specifically identifying interactions between the genes 

and TKIs in terms of protein activity, mRNA expression, and protein expression. The resulting table 

enumerates the interactions between TKIs and common genes, excluding interactions involving a 

combination of two or more chemicals and their collective impact on the genes [12]. 

Protein-Protein Interaction and Centrality Analysis 

For protein-protein interactions (PPI) of the common genes between TKIs and CVDs, String 

v.12.0 (https://string-db.org/cgi) was used [14]. The STRING database systematically collects and 

integrates protein-protein interactions-both physical interactions and functional associations. 

For the analysis, the protein set was entered into the “Multiple Proteins by Names/Identifiers” 

section, and Homo sapiens was selected as the target species. The minimum required interaction score 

was set to 0.4. The final PPI network was constructed using Cytoscape version 3.10.1 

(http://www.cytoscape.org/). Cytoscape is an open-source software for interactive analysis, integration, 

and visualization of network data [15]. Furthermore, the Molecular Complex Detection (MCODE) 

algorithm was utilized through Metascape to pinpoint densely interconnected network components. 

Metascape, accessible via the web at https://metascape.org/gp/index.html#/main/step1, is a web-based 

platform engineered to deliver thorough annotation and analysis of gene lists. In its design, Metascape 

integrates functional enrichment, interactome analysis, gene annotation, and membership search 

functionalities, harnessing the resources of over 40 distinct knowledgebases within a unified portal. 

Additionally, it streamlines comparative analyses of datasets derived from various independent and 

orthogonal experiments [16]. 



Karakuş                                                                                                               J. Fac. Pharm. Ankara, 48(3): 929-939, 2024 932 

Gene Network Analysis 

The common genes between TKIs and CVDs, which were put into GeneMANIA 

(http://genemania.org), were used to study the network of gene-gene interactions. GeneMANIA 

identifies additional genes associated with a given set of input genes by leveraging an extensive array 

of functional association data. This dataset encompasses diverse sources such as protein-protein and 

genetic interactions, pathways, co-expression patterns, co-localization tendencies, and similarities in 

protein domains. Currently, it maps 166,691 genes from nine organisms [17]. In this study, Homo 

sapiens was chosen as the target organism for analysis, and an automatically selected weighting method 

was employed. 

Analysis of Transcription Factors and MicroRNAs 

The common genes between TKIs and CVDs were input into ChIP-X Enrichment Analysis 

Version 3 (ChEA3) (https://maayanlab.cloud/chea3) to identify the transcription factors (TFs) 

responsible for their regulation. ChEA3 serves as a web-based tool for analyzing transcription factor 

(TF) enrichment, organizing TFs linked to gene sets submitted by users. Its background database 

comprises diverse gene set libraries derived from various origins, encompassing TF-gene coexpression 

data sourced from RNA-seq investigations, TF-target associations established through ChIP-seq studies, 

and TF-gene cooccurrence patterns derived from gene lists contributed by the community [18]. 

Next, the common genes were also subjected to the MIcroRNA Enrichment TURned NETwork 

(MIENTURNET) tool (http://userver.bio.uniroma1.it/apps/mienturnet/), and Homo sapiens was 

selected as the target to determine potential miRNA networks from miRTarBase that were 

experimentally confirmed. MIENTURNET uses computationally predicted or experimentally validated 

miRNA-target interactions from several organisms, including Homo sapiens, Mus musculus, Rattus 

norvegicus, Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio [19]. In the analysis, 

the threshold for the minimum number of miRNA-target interactions was set at 2, and the adjusted p-

value (FDR) was 0.5. 

Functional Enrichment Analysis of Common Genes 

Gene Ontology (GO) term enrichment analysis was conducted on annotated genes related to TKIs 

and CVDs using DAVID (https://david.ncifcrf.gov/tools.jsp). The Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) offers a comprehensive suite of functional annotation 

resources, enabling researchers to elucidate the biological significance inherent in extensive gene lists 

[20]. In this analysis, the common gene list was input into DAVID, and Homo sapiens was selected as 

the target species. For gene ontology analysis, the top 5 biological processes, cellular components, and 

molecular functions were determined, with a p-value < 0.05 and false discovery rate (FDR) < 0.05 set 

as the cutoff criteria. 

For molecular pathways analysis, Metascape was employed [16]. In this analysis, the common 

gene list was input into Metascape, and Homo sapiens was selected as the target species. The 

significance of the results was determined by p and q values. P-values were computed utilizing the 

cumulative hypergeometric distribution, and q-values were determined employing the Benjamini-

Hochberg method to control the false discovery rate (FDR) via sequential modified Bonferroni 

correction for multiple hypothesis testing, thereby addressing the issue of multiple comparisons [21]. 

RESULT AND DISCUSSION  

Common Genes Associated with TKIs and CVDs 

Searching the CTD database showed that SUN, SRF, PAZ, and AXI target 6220, 196, 24, and 11 

genes, respectively. Additionally, the number of CVD-associated genes was 3.79 million; 1674 of them 

were marked as “markers/mechanisms” and/or “therapeutics” in the "Direct Evidence" section. Six 

genes were common between the four TKIs and CVDs, alphabetically: Cytochrome P450 3A4 

(CYP3A4), Mitogen-activated protein kinase 1 (MAPK1, ERK2), Mitogen-activated protein kinase 

(MAPK3), Vascular endothelial growth factor receptor 1 (FLT1, VEGFR1), Vascular endothelial 
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growth factor receptor 2 (KDR, VEGFR2), and Vascular endothelial growth factor receptor 3 (FLT4, 

VEGFR3) (Figure 1B).  

 

Figure 1. A) Tyrosine kinase inhibitors (TKIs) often associated with cardiovascular toxicity,  

B) Common genes between TKIs and CVDs 

TKIs-Gene Binary Interaction Analysis Results 

Individual chemical-gene interactions were analyzed to uncover potential overlaps in protein 

activity, protein expression, and mRNA expression (Table 1). The findings suggest that the examined 

TKIs can downregulate the activity, mRNA expression, and protein expression of the five hub genes. 

Given that TKIs also target these hub genes in cancer cells and reduce their activity and/or expression, 

their ability to downregulate these genes in the cardiovascular system may indicate on-target toxicity. 

Table 1. TKIs-gene binary analysis results 

 

TKIs 

FLT1 (VEGFR1) FLT4 (VEGFR3) KDR (VEGFR2) MAPK1 (ERK2) MAPK3 

P.A. mR. E. P. E. P. A. mR. E. P. E. P. A. mR. E. P. E. P. A. mR. E. P. E P. A. mR. E. P. E. 

SUN ↓ ↓  ↓  ↓ ↓ ↓  ↓   ↓   

SRF ↓   ↓   ↓   ↓  ↓ ↓   

PAZ ↓      ↓   ↓   ↓   

AXI ↓   ↓   ↓   ↓   ↓   

P. A. = Protein activitiy.  mR. E. = mRNA expression.  P. E. = Protein expression 

PPI, Centrality Analysis, and Gene-Gene Network 

The PPI network analysis depicted 6 nodes and 7 edges, as shown in Figure 2A (upper panel), 

with a significant PPI enrichment p-value of 0.00263. Additionally, centrality analysis was conducted 

to identify hub proteins, revealing five hub proteins associated with TKIs-induced CVDs (Figure 2A, 

lower panel). 

To construct a connected network from shared genes, the GeneMANIA online plug-in was 

utilized. The findings indicated that a majority of genes linked to the examined TKIs were involved in 

physical interactions (77.64%), whereas other interaction types were less prominent (co-expression 

(8.01%); predicted interactions (5.37%); colocalization (3.63%); genetic interactions (2.87%); pathway 

(1.88%); shared protein domains (0.60%) (Figure 2B). These outcomes emphasize the prevalence of 

physical interactions among hub genes associated with CVDs, highlighting the pivotal role of direct 

molecular associations in the pathogenesis induced by TKIs. 
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Figure 2. A) PPI analysis of common genes and hub genes, B) Gen-gen interaction analysis of the hub 

genes 

Core Transcription Factors and miRNAs Involved in CVDs Induced by TKIs  

After analyzing transcription factors (TFs) for five hub genes in ChEA3, the top 10 TFs were 

identified. Subsequently, nodes and edges representing the relationships between TFs and hub genes 

were manually prepared in Excel and schematized in Cytoscape 3.10.1, as shown in Figure 3A. The 

results are sorted by mean rank (Table 2). 'MeanRank' refers to the mean rank of each TF across all 

libraries containing that TF, serving as the score by which a composite list of TFs is reranked. In Figure 

3A, green nodes represent TFs, whereas light brown nodes represent hub genes. These TFs may serve 

as potential targets for treating patients with TKIs-induced CVDs. Although there have not been any 

studies on some Table 2 TFs, there are studies highlighting the relationship between these TFs and 

CVDs. For instance, it is suggested that genetic variations in SOX18 and SOX17 in humans contribute 

to congenital heart disease [22,23]. Another study reported that SOX7 deficiency causes ventricular 

septal defects [24]. Other TFs, such as HAND1, play an essential role in cardiac morphogenesis [25]. 

Table 2. The top 10 TFs associated with to five hub genes 

Rank TF Mean Rank Overlapping Genes 

1 BCL6B 2.667 FLT1, FLT4, KDR 

2 SOX18 3.667 FLT1, FLT4, KDR 

3 SOX17 28.25 FLT1, FLT4, KDR 

4 HAND1 35.0 FLT1, KDR 

5 SOX7 45.0 FLT1, FLT4, KDR 

6 FOXE1 51.67 FLT1, FLT4, KDR 

7 GSC 54.0 FLT1, KDR 

8 SALL4 62.5 FLT4, KDR, MAPK1 

9 ANHX 100.0 KDR 

10 LHX1 101.0 KDR 

As a result of miRNA-target analysis, the top 10 miRNAs were identified and are shown in Figure 

3B. Among these 10 miRNAs, hsa-miR-199a-3p emerged as the most important miRNA in TKIs-

induced CVDs. Some studies suggest that hsa-miR-199a-3p might be beneficial. For instance, Joris et 

al. [26] reported that it could help with repair after a heart attack by promoting heart muscle cell growth. 
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This is according to a study highlighting the role of hsa-miR-199a-3p in regulating endothelial nitric 

oxide synthase pathway, which is crucial for blood vessel health. Eulalio et al., [27] reported that hsa-

miR-199a stimulated marked cardiac regeneration and almost complete recovery of cardiac functional 

parameters after myocardial infarction in mice. 

 

Figure 3. A) Core transcription factors associated with five hub genes obtained from ChEA3 and 

prepared in Cytoscape, B) Core miRNAs associated with five hub genes obtained from 

MIENTURNET 

GO Enrichment Analyses and Molecular Pathways of Hub Genes  

The top five enriched terms associated with TKIs-induced CVDs, identified in each GO category 

(biological processes, cellular components, and molecular functions) using the DAVID web tool, are 

outlined in Table 3. The findings underscore phosphorylation, a fundamental cellular process involving 

the addition of phosphate groups to proteins, as a primary biological process associated with hub genes. 

This suggests that dysregulation of phosphorylation pathways may play a pivotal role in the 

pathogenesis of CVDs resulting from exposure to SUN, SRF, PAZ, and AXI. 

Furthermore, the analysis identified the receptor complex, a dynamic assembly of proteins that 

mediate cellular signaling and responses to extracellular stimuli, as the most significant cellular 

component involved in these four TKI-induced CVDs (Table 3). This highlights the importance of 

receptor-mediated signaling pathways in the development and progression of CVDs associated with TKI 

exposure. 

Moreover, vascular endothelial growth factor-activated receptor activity emerged as the 

predominant molecular function implicated in these four TKI-induced CVDs, underscoring the critical 

role of VEGF signaling in vascular homeostasis and endothelial function. Dysregulation of VEGF 

receptor activity may disrupt angiogenesis and vascular integrity, contributing to the pathophysiology 

of TKI-induced CVDs. These insights shed light on the molecular mechanisms underlying the adverse 

cardiovascular effects of TKIs and may inform strategies for mitigating their cardiotoxicity (Table 3). 

The molecular pathway associated with the five hub genes determined via Metascape highlighted 

'Ras signaling' as the top pathway, with Log10(p) value of -11.11 and Log10(q) value of -7.22 (Figure 

4 and 5). 

Ras signaling is a crucial pathway involved in regulating various cellular processes, including cell 

growth, differentiation, and survival. The Ras protein acts as a molecular switch, cycling between an 

active (GTP-bound) and inactive (GDP-bound) state, and plays a central role in transmitting 

extracellular signals to the nucleus, thereby influencing gene expression and cellular behavior. The 

central role of Ras in pathologic and physiologic cardiac hypertrophy has been demonstrated in the 

literature. The dysregulation of Ras signaling has been implicated in several pathological conditions, 

including hypertrophy, fibrosis, and cardiomyopathy [28-31]. Activation of Ras signaling can lead to 

cardiac hypertrophy, a condition characterized by an increase in the size of individual cardiac muscle 
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cells. This is often a compensatory response to increased workload or pathological stimuli, such as 

hypertension or myocardial infarction. Prolonged hypertrophy can ultimately lead to heart failure. Ras 

signaling has been linked to the activation of fibroblasts and the production of extracellular matrix 

proteins, contributing to cardiac fibrosis. Fibrosis is the excessive deposition of collagen and other 

matrix components in the myocardium, leading to stiffening of the heart muscle and impaired function 

[28-31]. Given the role of Ras signaling in TKIs-induced cardiovascular pathology, it has emerged as a 

potential therapeutic target for the treatment of various CVDs. Strategies aimed at modulating Ras 

activity or downstream effectors may offer new avenues for intervention in conditions such as heart 

failure, myocardial infarction, and cardiac hypertrophy induced by TKIs. 

Table 3. The top 5 gene ontology enrichments, include biological processes, cellular components, and 

molecular functions associated with the five hub genes (https://david.ncifcrf.gov/tools.jsp) 

No. ID Biological Processes P value Bonferroni Benjamini FDR Fisher 

Exact 

1 GO:0016310 phosphorylation 5.3x10-6 9.6x10-4 7.5x10-4 5.4x10-4 2.0x10-7 

2 GO:0038084 vascular endothelial growth factor 

signaling pathway 

8.2x10-6 1.5x10-3 7.5x10-4 5.4x10-4 1.4x10-8 

3 GO:0048010 vascular endothelial growth factor 

receptor signaling pathway 

2.3x10-5 4.2x10-3 1.3x10-3 9.4x10-4 6.8x10-8 

4 GO:0035924 cellular response to vascular 

endothelial growth factor stimulus 

2.8x10-5 5.2x10-3 1.3x10-3 9.4x10-4 9.1x10-8 

5 GO:0080090 regulation of primary metabolic 

process 

4.6x10-5 8.4x10-3 1.7x10-3 1.2x10-3 1.9x10-7 

  Cellular Component      

1 GO:0043235 receptor complex 1.0x10-3 3.5x10-2 3.6x10-2 3.1x10-2 2.1x10-5 

2 GO:0005769 early endosome 2.2x10-3 7.5x10-2 3.8x10-2 3.3x10-2 6.7x10-5 

3 GO:0005925 focal adhesion 4.2x10-3 1.4x10-1 3.8x10-2 3.3x10-2 1.7x10-4 

4 GO:0031143 pseudopodium 4.4x10-3 1.4x10-1 3.8x10-2 3.3x10-2 1.1x10-5 

5 GO:0005901 caveola 1.8x10-2 4.7x10-1 1.1x10-1 9.4x10-2 2.0x10-4 

  Molecular Function      

1 GO:0005021 vascular endothelial growth factor-

activated receptor activity 

1.6x10-6 6.7x10-5 6.7x10-5 6.0x10-5 1.0x10-9 

2 GO:0019838 growth factor binding 4.1x10-5 1.8x10-3 6.9x10-4 6.1x10-4 1.6x10-7 

3 GO:0004714 transmembrane receptor protein 

tyrosine kinase activity 

4.8x10-5 2.1x10-3 6.9x10-4 6.1x10-4 2.0x10-7 

4 GO:0005524 ATP binding 2.1x10-4 8.8x10-3 2.2x10-3 2.0x10-3 2.0x10-5 

5 GO:0004713 protein tyrosine kinase activity 3.5x10-4 1.5x10-2 3.0x10-3 2.7x10-3 4.1x10-6 

 

Figure 4. A) The top molecular pathways associated with five hub genes obtained from Metascape, B) 

The pathways associated with five hub genes are colored by its p-value obtained from Metascape 

https://david.ncifcrf.gov/tools.jsp
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Figure 5. Ras signaling pathway downloaded from KEGG pathway (https://www.genome.jp/kegg/) 

[32] 

In conclusion, this study employed network toxicology and bioinformatics approaches to 

elucidate the molecular mechanisms underlying cardiovascular toxicity induced by TKIs such as SUN, 

SRF, PAZ, and AXI. Through comprehensive data mining and analysis, we identified FLT1, FLT4, 

KDR, MAPK1, and MAPK3 as hub genes/proteins, SOX17 and SOX18 as transcription factors, and 

hsa-miR-199a-3p as a key microRNA, along with pathways implicated in TKI-induced cardiotoxicity. 

Notably, Ras signaling emerged as a pivotal pathway in mediating these adverse effects. These findings 

not only enhance our understanding of TKI-associated cardiovascular diseases but also highlight 

potential targets for future therapeutic interventions aimed at mitigating TKI-induced cardiotoxicity and 

improving patient outcomes.  
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