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Optimizasyon problemlerinin karmaşıklığının artmasıyla birlikte yeni 

metasezgisel algoritmalar geliştirilmektedir. Bu algoritmalar farklı problemler 

üzerinde üstün performanslar sergileyerek başarılarını göstermektedir. Bu 

çalışmada; son zamanlarda önerilen dört metasezgisel algoritma olan Yapay 

Sinekkuşu Algoritması (Artificial Hummingbird Algorithm, AHA), Afrika 

Akbabaları Optimizasyon Algoritması (African Vultures Optimization 

Algorithm, AVOA), Kerevit Optimizasyon Algoritması (Crayfish 

Optimization Algorithm, COA) ve Deniz Yırtıcıları Optimizasyon 

Algoritması’nın (Marine Predators Optimization Algorithm, MPA) 26 test 

fonksiyonu üzerindeki performansları karşılaştırılmıştır. Karşılaştırmalar 

sonucunda algoritmaların farklı fonksiyonlar üzerinde çok küçük farklarla 

birbirlerinden daha iyi performans gösterdiği gözlemlenmiştir. Aynı zamanda 

karşılaştırma sonuçları t-test istatistiksel testi ile değerlendirilmiştir. AVOA, 

çeşitli test fonksiyonları için çözümlerin kalitesini değerlendirmede diğer yeni 

metasezgisellere göre daha iyi veya karşılaştırılabilir performans göstermiştir. 

Gelecek araştırmalarda AVOA’nın farklı problemler üzerinde kullanılması 

hedeflenmektedir. 
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 With the increasing complexity of optimization problems, new metaheuristic 

algorithms are being developed. These algorithms show their success by 

exhibiting superior performances on different problems. In this paper, the 

performance of four recently proposed metaheuristic algorithms, namely 

Artificial Hummingbird Algorithm (AHA), African Vultures Optimization 

Algorithm (AVOA), Crayfish Optimization Algorithm (COA) and Marine 

Predators Optimization Algorithm (MPA) on 26 test functions are compared. As 

a result of the comparisons, it was observed that the algorithms outperformed 

each other with very small differences on different functions. At the same time, 

the comparison results were evaluated by t-test statistical test. AVOA has shown 

better or comparable performance to other recent metaheuristics in evaluating 

the quality of solutions for several test functions. It is aimed to use AVOA on 

different problems in future research.  
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1. Introduction 

Over the past few years, the difficulty of optimization problems has increased with the advancement of 

modern technology. Moreover, many metaheuristic algorithms inspired by nature have been developed 

to solve many optimization problems (Zhoa et al., 2022; Azizi et al., 2023; Deng et al., 2023; Ghaedi et 

al., 2023; Zhu et al., 2023). These algorithms solve large-scale problems by returning near-optimal 

results. In addition, newly developed metaheuristic algorithms prove their success by providing great 

superiority over the popular ones (Arslan, 2023). Among the popular metaheuristic algorithms, Genetic 

Algorithm (GA) is based on the principle of survival of the fittest (Mirjalili, 2019). Another famous 

algorithm in swarm-based population is Particle Swarm Optimization (PSO) (Kennedy et al. 1995). 

Artificial Bee Colony (ABC) (Karaboga, 2010), Ant Colony Optimization (ACO) (Dorigo et al., 2006) 

and Simulated Annealing (SA) (Dowsland et al., 2012) are other popular population-based algorithms. 

Evaluating the performance of both these popular algorithms and the newly developed metaheuristics 

among themselves allows us to find the most suitable algorithm for solving the problems. For this 

purpose, it is necessary to analyze the performance of newly developed metaheuristics. One of the goals 

of this paper is to observe the effectiveness of the newly developed Artificial Hummingbird Algorithm 

(AHA) (Zhao et al., 2022), African Vultures Optimization Algorithm (AVOA) (Abdollahadeh et al., 

2021), Crayfish Optimization Algorithm (COA) (Jia et al., 2023) and Marine Predator Optimization 

Algorithm (MPA) (Faramarzi et al., 2020). Another goal of this paper is to determine the most successful 

algorithm among the algorithms tested on 26 test functions to solve real-world problems. Other 

contributions of the paper are as follows: 

• To the best of our knowledge, there is no comparison of these four new metaheuristic algorithms 

in the literature. 

• 26 test functions were used to analyze their success. 

• According to the information obtained from the experimental results, AVOA showed the best 

success. 

In the rest of the paper, Section 2 gives detailed information about the algorithms and describes their 

pseudocode or flowcharts. Section 3 presents the test functions used and the parameters of the 

algorithms. Section 4 provides information about the experimental results, convergence graphs and t-

test results. Section 5 provides conclusions and future work. 

 

2. Algorithms  

In this section, newly proposed metaheuristics are explained in detail. 

 

2.1. Artificial Hummingbird Algorithm (AHA) 

AHA is developed by Zhao et al. in 2022 inspired by the behavior of the hummingbird (Zhao et al., 

2022). The metaheuristic modelled the flight skills, memory capacity and foraging strategies of 

hummingbirds. First, a hummingbird evaluates the characteristics of its food sources, including the 
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content of individual flowers, nectar quality, nectar refilling and the time of last visit. In AHA, each 

food source is assumed to have the same number and type of flowers. A food source is a solution vector 

and the nectar filling rate of the source indicates the fitness value of the function. A good fitness value 

is associated with a high nectar filling rate of the food source. Since each hummingbird is assigned to a 

specific food source, the hummingbird and the food source have the same position. The hummingbird 

can memorize the position and nectar filling rate of this particular food source and share it with other 

hummingbirds. The level of frequentation of each food source by different hummingbirds is recorded in 

a visit table. If this level of visit is high, that food is prioritized. Likewise, to obtain more nectar, the 

food with the highest nectar filling rate among the food sources with the same highest visitation level is 

preferred. A visit table is used to find the target food source and this table is updated at each iteration. 

Based on the behaviors described, there are guided foraging, territorial foraging and migration foraging 

phases. 

 

2.1.1. Guided foraging 

The tendency to visit the food source with the maximum nectar volume means that it has a high nectar 

filling rate and is not visited much. At this phase, the food sources with the highest level of visit are 

expected to be identified and then the one with the highest nectar filling rate is selected as the target 

food source. Once the target food source has been selected, the hummingbird can fly towards it to feed. 

Three flight skills are used and modelled during foraging in the AHA: omnidirectional, directional and 

axial flights. These flight patterns can be extended to a d -D domain. The mathematical model of axial 

flight is as given in Eq 1. 

𝐷(𝑖) = {
1  if  𝑖 = randi ([1, 𝑑])
0  else 

 𝑖 = 1,… , 𝑑 (1) 

The models for directional and omnidirectional flights are defined as in Eq 2-3 respectively. 

𝐷(𝑖) = {
1  if 

0  else 
 𝑖 = 𝑃(𝑗), 𝑗 ∈ [1, 𝑘], 𝑃 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘), 𝑘 ∈ [2, ⌈𝑟1 ⋅ (𝑑 − 2)⌉ + 1] 𝑖 = 1,… , 𝑑 

(2) 

𝐷(𝑖) = 1 𝑖 = 1,… , 𝑑 (3) 

where randi ([1, 𝑑]) generates a random number from the number range from 1 to 𝑑. 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘) 

produces a random integer permutation from the numbers from 1 to 𝑘. 𝑟1 a randomly generated number 

between [0,1]. The mathematical model representing the guided foraging behaviour and candidate food 

source is given in Eq. 4-5. 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖,tar(𝑡) + 𝑎 ⋅ 𝐷 ⋅ (𝑥𝑖(𝑡) − 𝑥𝑖,tar(𝑡)) (4) 

𝑎 ∼ 𝑁(0,1) (5) 

where 𝑥𝑖(𝑡) represents the position of the 𝑖th food source at time 𝑡. 𝑥𝑖,tar(𝑡) is the position of the target 

food source, and the 𝑖th bird is planning to visit this source. 𝑎 is the guided factor and follows a normal 

distribution. The update of the position of the 𝑖th food source is modeled in Eq. 6. 
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𝑥𝑖(𝑡 + 1) = {
𝑥𝑖(𝑡) 𝑓(𝑥𝑖(𝑡)) ≤ 𝑓(𝑣𝑖(𝑡 + 1))

𝑣𝑖(𝑡 + 1) 𝑓(𝑥𝑖(𝑡)) > 𝑓(𝑣𝑖(𝑡 + 1))
 (6) 

where 𝑓(. ) is the value of the fitness function. In this model, if the nectar filling rate of the candidate 

food source is better compared to the previous one, it indicates that the hummingbird abandons the 

previous food source and stays with the candidate food source in Eq. 4. According to the visit table, a 

hummingbird can find its desired target food source in each iteration. The visit table keeps track of how 

long each food source has been unvisited by the same hummingbird since the last time it was visited. A 

long absence indicates a high visit level. Therefore, each hummingbird wants to find the food source 

according to the high visit level. If more than one source has the same level, the one with the best nectar 

filling rate is selected. Each hummingbird in the population travels to the target food source using Eq. 4 

to the target food source. When guided foraging occurs in each iteration, the visit levels for that 

hummingbird are increased by one. At the same time, the visit level of the visited target food source is 

initialized to zero. Once this step has been performed, the food source is not changed, unless a better 

nectar filling rate solution is available. Updating a food source where the hummingbird of interest resides 

means updating the visit level for the others. The visit level to be updated is expressed as the highest 

level of the other food sources increased by 1. 

 

2.1.2. Territorial foraging 

After visiting the target food source where the flower nectar is consumed, a new food source can be 

sought to visit other available food sources. Therefore, the hummingbird can easily move to a 

neighbouring region within its territory, where it can find a new food source as a candidate solution that 

may be better than the current solution. The mathematical model of the territorial search and candidate 

food source at this stage is given in Eq. 7-8. 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + b ⋅ 𝐷 ⋅ (𝑥𝑖(𝑡)) (7) 

b ∼ 𝑁(0,1) (8) 

where 𝑏 is the territorial factor and has a normal distribution. After this step, the visit table should be 

updated. 

 

2.1.3. Migration foraging 

In the event of food shortages in the area that the hummingbird usually visits, it migrates to another 

distant food source. A migration coefficient is defined in the AHA. If the number of iterations exceeds 

the predefined value of the migration coefficient, the hummingbird that settled on the food source 

exhibiting the lowest rate of nectar filling will migrate to a new food source. After the hummingbird 

leaves the food source, the visit table will be updated. The modelling of foraging from the source with 

the worst nectar filling rate towards the new randomly generated source is given in Eq. 9. 

𝑥𝑤𝑜𝑟(𝑡 + 1) = 𝐿𝑜𝑤 + 𝑟 ⋅ (𝑈𝑝 − 𝐿𝑜𝑤) (9) 
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where 𝑥𝑤𝑜𝑟 is the ratio with the worst nectar filling in the population. 𝐿𝑜𝑤 and 𝑈𝑝 are the lower and 

upper bounds. The flowchart of AHA is given in Figure 1. 

 

Figure 1. The flowchart of AHA (Hosseinzadeh et al., 2024) 

2.2. African Vultures Optimization Algorithm (AVOA) 

AVOA is a recent metaheuristic developed by Abdollahzadeh et al (Abdollahzadeh et al., 2021). Based 

on the foraging and location behavior of vultures. In this metaheuristic, each vulture represents a 
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solution, and the fitness value is calculated from all solutions. According to this fitness value, vultures 

are categorized into two basic groups to find food and survive as a group. In the first group, the vulture 

with the highest value is considered the first and best vulture of the group, and in the second group, the 

vulture with the second highest value is considered the first and best vulture of the group. The other 

vultures are used to move or replace these two best vultures. In AVOA, the worst solution is considered 

to be the weakest and hungry vulture, and they try to avoid this vulture and get closer to the best vulture. 

AVOA consists of four phases: identifying the best vulture in the group, calculating the hunger rate of 

vultures, search and exploitation. 

 

2.2.1. Identifying the best vulture in the group 

The initial population is generated, and the fitness values of all solutions are computed. The top-

performing solution in the first group is considered the best, while the second-best solution is identified 

in the second group. The remaining solutions in both groups adjust their positions towards these top 

solutions. In each iteration, the shift is determined based on the computed fitness values. 

 

2.2.2. Calculating the hunger rate of vultures 

Vultures have the most energy when they are full and can fly long distances in search of food (Xue et 

al., 2018). However, when they are not full, they cannot fly for a long time in search of food because 

they do not have enough energy. To improve performance in solving complex problems, Eq. 10 is 

modelled. 

𝑡 = ℎ × (𝑠𝑖𝑛𝑤 (
𝜋

2
×

 iter 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
) + 𝑐𝑜𝑠 (

𝜋

2
×

 iter 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟 
) − 1) (10) 

where ℎ is obtained from random values between -2 and 2. 𝑖𝑡𝑒𝑟 and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 refer to the current and the 

maximum iteration, respectively. Hunger rates of vultures, which tend to decrease, are modelled in Eq. 

11. 

𝐹 = (2𝑟𝑎𝑛𝑑1 + 1) × 𝑧 × (1 −
 iter 

 𝑚𝑎𝑥𝑖𝑡𝑒𝑟
) + 𝑡 (11) 

where 𝑧 represents a randomly chosen number within the range of -1 to 1 and changes at each iteration. 

𝑟𝑎𝑛𝑑1 is a parameter that takes random values between 0 and 1. If 𝑧 is less than 0, it indicates the vulture 

is hungry, whereas if it exceeds 0, it signifies the vulture is full. If the F value is greater than or equal to 

1, vultures search for food in various locations to feed and the exploration phase in AVOA begins. If 

this value is less than 1, vultures forage in neighbouring solutions and the exploitation phase begins. 
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2.2.3. Exploration 

In this phase, the vultures choose two strategies and search different areas using the parameter p1. This 

parameter is evaluated before the search process and takes a value between 0 and 1. For the selection of 

strategies, Eq. 12 is used. 

𝑃𝑖(𝑡 + 1) =

{
 
 

 
 

𝑅(𝑖) − |𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| × 𝐹 
𝑖𝑓 𝑝1 ≥ 𝑟𝑎𝑛𝑑𝑃1  

𝑅(𝑖) − 𝐹 + 𝑟𝑎𝑛𝑑2 × ((𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑3 + 𝑙𝑏)

𝑖𝑓 
  
𝑝
1
< 𝑟𝑎𝑛𝑑𝑃1

 (12) 

where 𝑅(𝑖) represents one of the best vultures. The parameter 𝑋 represents the distance it travelled to 

protect the food, 𝑟𝑎𝑛𝑑2 and 𝑟𝑎𝑛𝑑3 are random numbers between [0,1]. The current vector position, 

represented by 𝑃(𝑖), indicates the distance. The lower boundary of the search space is 𝑙𝑏 and the upper 

boundary is 𝑢𝑏. As the value of 𝑟𝑎𝑛𝑑3 gets closer to 1, the search for different space areas and diversity 

in AVOA increases. The parameter 𝑟𝑎𝑛𝑑𝑃1  takes a random value between [0,1] to select one of the two 

strategies.  

 

2.2.4. Exploitation 

When the parameter 𝐹, i.e. the hunger rate, is less than 1, AVOA enters the exploitation. This phase is 

separated into two selections according to whether 𝐹 is smaller or larger than 0.5. These two choices 

depend on the values of the randomly generated 𝑝2 and 𝑝3. In the first choice, the vultures are full and 

have enough energy. This may lead them into conflicts over food acquisition. In the second selection, 

the behavior of the vultures makes the various vulture species aggressive in besieging and foraging on 

the food source. These behaviors depend on the parameter 𝑝2 and are modelled in Eq. 13.  

𝑃𝑖(𝑡 + 1) =

{
  
 

  
 

|𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| ×
 𝑖𝑓 𝑝2 ≥ 𝑟𝑎𝑛𝑑𝑃2

𝑅(𝑖) − 𝑅(𝑖) × (
𝑃(𝑖)

2𝜋
)(

𝑟𝑎𝑛𝑑5
× cos(𝑃(𝑖))

+𝑟𝑎𝑛𝑑6 × sin(𝑃(𝑖))

)

 𝑖𝑓 𝑝2 < 𝑟𝑎𝑛𝑑𝑃2

 (13) 

In Eq. 13, parameters 𝑟𝑎𝑛𝑑4, 𝑟𝑎𝑛𝑑5 and 𝑟𝑎𝑛𝑑6 take randomly generated values between 0 and 1. If the 

parameter 𝐹 is less than 0.5, the second selection of this phase takes place. In this selection, a random 

value between 0 and 1 is generated for 𝑟𝑎𝑛𝑑𝑃3 . If the parameter 𝑝3 is greater than or equal to 𝑟𝑎𝑛𝑑𝑃3 , 

multiple vultures gather on the food source and competition occurs between them to get the food. In the 

other case, a siege war is fought between the vultures. The mathematical model of this selection is shown 

in Eq. 14. 

𝑃(𝑖 + 1) = {
𝐸𝑞. 16 𝑖𝑓  𝑝3 ≥ 𝑟𝑎𝑛𝑑𝑃3
𝐸𝑞. 17 𝑖𝑓  𝑝3 < 𝑟𝑎𝑛𝑑𝑃3

 (14) 
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The movement of the vultures to congregate on the food source they have found is described in Eq. 15 

is expressed in Eq. 16. 

𝐴1 =  BestVulture 1(𝑖)

−
 BestVulture 1(𝑖) × 𝑃(𝑖)

 BestVulture 1(𝑖) − 𝑃(𝑖)
2
× 𝐹

𝐴2 =  BestVulture 2(𝑖)

−
 BestVulture 2(𝑖) × 𝑃(𝑖)

 BestVulture 2(𝑖) − 𝑃(𝑖)
2
× 𝐹

 (15) 

where, in the current iteration,  BestVulture 1(𝑖) and BestVulture 2(𝑖) are the best vultures. 

𝑃(𝑖 + 1) =
𝐴1 + 𝐴2

2
                (16) 

When 𝐹 <  0.5, the leader vultures of the groups are hungry and do not have enough energy to cope 

with the group members. In this case, the leader vultures move in different directions. Eq. 17 gives a 

model of the movement. 

𝑃(𝑖 + 1) = 𝑅(𝑖) − |𝑅(𝑖) − 𝑃(𝑖)| × 𝐹 × LF (𝑑) (17) 

where 𝑑 is the problem size, |𝑅(𝑖) − 𝑃(𝑖)| is the distance of the vulture. To increase the efficiency of 

AVOA, Levy Flight (LF) (Yang, 2010; Yang, 2009) was also included. Modelling of this flight is as in 

Eq. 18. 

𝐿𝐹(𝑥) = 0.01 ×
𝑢 × 𝜎

|𝑣|
1
𝛽

, 𝜎 (
Γ(1 + 𝛽) × sin (

𝜋𝜌
2 )

Γ(1 + 𝛽2) × 𝛽 × 2(
𝛽 − 1
2

)
)

1
𝛽

 (18) 

where 𝑢 and 𝑣 are random numbers generated between 0 and 1 and β is a constant value set at a default 

of 1.5. The flowchart of AVOA is given in Figure 2. 

 

2.3. Crayfish Optimization Algorithm (COA) 

COA is a proposed by Jia et al. in 2023, inspired by the behavior of crayfish (Jia et al., 2023). The 

metaheuristic was developed in three stages, based on the behaviors of summer holiday destination, 

competition and foraging. In the holiday destination phase, the crayfish find a cave for a holiday and 

settle down. When there is more than one crayfish, there is a competition for the found cave. This 

behavior is modelled as the competition phase. Foraging behavior is the stage in which the food is broken 

down according to the size of the food. The transition between these stages depends on the air 

temperature. The optimum air temperature range is 20-30°C and the amount of feeding of crayfish can 

be affected by temperature. The temperature of the crayfish’s environment is defined in Eq. 19. 

𝑡𝑒𝑚𝑝 = 𝑟𝑎𝑛𝑑 × 15 + 20 (19) 
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where 𝑡𝑒𝑚𝑝 is the temperature of the environment in which the crayfish are found. The mathematical 

model of crayfish intake as a function of temperature is given in Eq. 20. 

 

Figure 2. The flowchart of AVOA (Abdollahadeh et al., 2021) 

𝑝 = 𝐶1 × (
1

√2 × 𝜋 × 𝜎)
× exp (−

(𝑡𝑒𝑚𝑝 − 𝜇)2

2𝜎2
)) (20) 

where 𝜎 and 𝐶1 control the uptake of crayfish at different temperatures, while 𝜇 is the optimum 

temperature for crayfish. The stages of COA are described in the following sections. 

2.3.1. Summer holiday place phases (Exploration) 

When the temperature is above 30°C, crayfish go on holiday to explore caves (Jia et al., 2023). This 

expands the solution space of the algorithm.  The mathematical equation of the cave, represented by 

𝑋shade , is determined as provided in Eq. 21. 

𝑋shade = (𝑋𝐺 + 𝑋𝐿)/2        (21) 

where 𝑋𝐺  represents the best position so far with respect to the number of iterations, while 𝑋𝐿 represents 

the best position of the current population. The parameter 𝑋shade  used in Eq. 3 is taken to model Eq. 22 

for entering the cave. 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝐶2 × rand × (𝑋shade − 𝑋𝑖,𝑗
𝑡 ) (22) 

where, 𝑋𝑖,𝑗 represents the position of the 𝑖th individual in the 𝑗th dimension. 𝑡 denotes the current 

iteration, and 𝑡 + 1 represents the next iteration. 𝐶2 is the decay curve defined in Eq. 23. 
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𝐶2 = 2 − (𝑡/𝑇) (23) 

where 𝑇 is the maximum iteration. When the random rand is less than 0.5, it means that there are no 

other crayfish competing for the cave. In this way, the crayfish enters the cave directly without 

competing for a holiday. In COA, when the random number is equal to or exceeds 0.5, the competition 

phase initiates. 

2.3.2. Competition phase (Exploitation) 

Exploitation is choosing the best among the existing solutions. A crayfish enters a competitive phase 

and performs exploitation in order not to give the existing cave it has found to another crayfish. When 

there is more than one crayfish interested in the cave, the temperature is more than 30°C and the random 

number is greater than or equal to 0.5. In this case, the crayfish compete for the cave. The mathematical 

model of this competition is given in Eq. 24.  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 − 𝑋𝑧,𝑗
𝑡 + 𝑋shade  (24) 

Crayfish in 𝑋𝑖 update their position relative to another crayfish in 𝑋𝑧. This improves the exploration 

capability and extends the range of the COA. A random crayfish is represented by 𝑧. 

2.3.3. Foraging Phase (Exploitation) 

In the foraging phase COA develops the exploitation by approaching the optimum solution. In this 

exploitation, the temperature must be less than or equal to 30°C for the crayfish to feed.  When they find 

food, they decide according to its size. If the food is small, they eat it directly, but if it is large, they 

shred it up and eat it with their second and third legs. The food size, 𝑄, is given in Eq. 25. 

𝑄 = 𝐶3 × 𝑟𝑎𝑛𝑑 × (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖/ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑) (25) 

The constant 𝐶3 represents the largest food and its defined value for the algorithm is 3. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 denotes 

the fitness value of the 𝑖th crayfish, while 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑 represents the fitness value of the food position. 

It is determined that the food is very large if 𝑄 > (𝐶3 + 1)/2. In this case, the crayfish will shred the 

food with its first leg. The mathematical model for this fragmentation is given in Eq. 26. 

𝑋food = exp (−
1

Q
) × 𝑋food  (26) 

where 𝑋food  represents the optimal solution. When the food is cut into small pieces, it is taken into the 

mouth using the second and third legs. The search equation for the food eaten by the crayfish is given 

by Eq. 27. When 𝑄 ≤ (𝐶3 + 1)/2, the crayfish moves towards the food and eats it with its first leg. This 

situation is modelled in Eq. 28.  COA’s pseudo code is given in Algorithm 1. 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝑋food × 𝑝 × (cos (2 × 𝜋 × 𝑟𝑎𝑛𝑑 ) − sin (2 × 𝜋 × 𝑟𝑎𝑛𝑑 )) (27) 

𝑋𝑖,𝑗
𝑡+1 = (𝑋𝑖,𝑗

𝑡 − 𝑋food ) × 𝑝 + 𝑝 × rand × 𝑋𝑖,𝑗
𝑡  (28) 
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Algorithm 1     COA 

1. Initialize parameters of COA 

2. Randomly generate an initial population 

3. Calculate the fitness value of the population to get 𝑋𝐺 , 𝑋𝐿 

4. while ( 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥𝑖𝑡𝑒𝑟  ) 

5.        Defining temp by Eq. 19 

6.        if (𝑡𝑒𝑚𝑝 >  30) 

7.                Define cave 𝑋shade according to Eq. 21 

8.                if (𝑟𝑎𝑛𝑑 <  0.5 ) 

9.                        Crayfish conducts the summer resort stage according to Eq. 22 

10.              else 

11.                      Crayfish compote for caves through Eq. 24 

12.              end if 

13.       else 

14.              The food size 𝑄 and food intake 𝑝 are obtained by Eq. 20 and Eq. 25 

15.               if (𝑄 >  2 ) 

16.                       Crayfish shreds food by Eq. 26 

17.                       Crayfish foraging according to Eq. 27 

18.               else 

19.                       Crayfish foraging according to Eq. 28 

20.               end if 

21.        end if 

22.        Update fitness values, 𝑋𝐺 , 𝑋𝐿 

23.        𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

24. end while 

 

2.4. Marine Predators Algorithm (MPA) 

MPA is a new metaheuristic developed by Faramarzi et al. in 2020 inspired by the attack behavior of 

marine predators on their prey (Faramarzi et al., 2020). In the metaheuristic, predators use two basic 

motions, Brownian and Levy, when targeting their prey. In order to achieve a balance between these 

two motions, sea predators calculate a velocity ratio based on their current position relative to the prey. 

MPA initially generates solutions by randomly distributing them within the search space as defined in 

Eq. 29. 

𝑋0 = 𝑋𝑚𝑖𝑛 + 𝐵(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (29) 

where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum limits for the search space. The parameter 𝐵 

takes randomly generated values between 0 and 1. MPA consists of Elite and Prey matrices. The Elite 
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matrix identifies the best hunter. Thus, the hunter ensures that the prey is searched and detected by using 

its location. This matrix is modelled in Eq. 30. 

Elite = [

𝑋1,1
𝐼 ⋯ 𝑋1,𝑑

𝐼

⋮ ⋱ ⋮
𝑋𝑛,1
𝐼 ⋯ 𝑋𝑛,𝑑

𝐼
]    (30) 

where 𝑛 and 𝑑 are the population and problem size respectively. 𝑋𝐼⃗⃗⃗⃗  is defined as the best sea predator 

that forms the Elite matrix with 𝑛 iterations. This matrix is updated as the predator may change because 

of each iteration. 

In the MPA, the population consists of predators and prey. The main reason for this formation is that 

while the predator is looking for prey, it can also become prey for other predators. To update the 

positions of the predators, the Prey matrix given in Eq. 31 is used to update the positions of the predators. 

Prey = [

𝑋1,1 ⋯ 𝑋1,𝑑
⋮ ⋱ ⋮
𝑋𝑛,1 ⋯ 𝑋𝑛,𝑑

]  (31) 

where 𝑋𝑖,𝑗 is the 𝑗th dimension of the 𝑖th prey. MPA performs its steps according to three rates depending 

on the prey and predator speed. 

2.4.1. First step 

This step is used for high search ability when the step size or movement speed is large. This is the case 

when the predator moves faster than the prey. If the current iteration is less than one third of the 

maximum iteration, the position is updated according to Eq. 32. Also, the best strategy is for the hunter 

not to move at all. This rule is given mathematically below. 

if 𝑖𝑡𝑒𝑟 <
1

3
 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 then 

 Stepsize 
𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = �⃗� 𝐵⊗ ( Elite 𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗� 𝐵⊗𝑃𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖) 𝑖 = 1,2,3…𝑛

 Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
 =  Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖
+ 𝑃 ⋅ �⃗� ⊗  stepsize ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖

 

(32) 

where ⊗ stands for multiplication on an element-by-element basis. 𝑅𝐵 denotes Brownian motion and 

takes a random number vector. �⃗� 𝐵⊗𝑃𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 denotes the simulation of the motion of the prey. The 

parameter 𝑃 is equal to 0.5 and 𝑅 is a vector taking random values between 0 and 1. 

2.4.2. Second step 

In this step, search and exploitation are of equal importance, and the prey and predator move at the same 

speed. Thus, search tends to turn into exploitation. Half of the individuals in the population are used for 

search and the other half for exploitation at this stage. The prey plays the role of exploitation and the 

predator the role of search. Prey adopt Lévy motion and predators adopt Brownian motion. The 

equations for this step are defined as follows. 
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if 
1

3
∗ 𝑡𝑚𝑎𝑥 < 𝑡current <

2

3
∗ 𝑡𝑚𝑎𝑥 (33) 

The number of iterations is between one-third and two-thirds of the maximum iteration. For the first half 

of the population the following equations are used. 

 Stepsize 
𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = �⃗� 𝐿⊗ ( Elite 𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗� 𝐿⊗  Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
)𝑖 = 1,… , 𝑛/2

 Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
 =  Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖
+ 𝑃 ⋅ �⃗� ⊗  Stepsize ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖

 (34) 

where 𝑅𝐿 is a random number vector and represents the Lévy motion. The movement of the prey is 

modelled by �⃗� 𝐿⊗𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 
𝑖. Stepsize are small steps that lead to better exploitation. For the rest of the 

population the following modelling is used. 

 Stepsize ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖
= �⃗� 𝐵⊗ (�⃗� 𝐵⊗  Elite 𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −  Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖
)𝑖 = 𝑛/2, . . , 𝑛 

  Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
 =  Elite ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖 + 𝑃. 𝐶𝐹 ⊗  stepsize ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
 

(35) 

𝐶𝐹 = (1 −
 𝑖𝑡𝑒𝑟 

 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 
)
(2×

 𝑖𝑡𝑒𝑟  
 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

)

 (36) 

where 𝐶𝐹 is the control factor representing the movement of the predator. In order not to mathematically 

model the Brownian motion of the predator, the elite is multiplied by 𝑅𝐵 and the prey position is updated 

according to the predator’s motion. 

2.4.3. Third step 

This step is when the speed of the predator is higher than that of the prey and corresponds to a high 

exploitation ability. When the number of iterations is higher than two thirds of the maximum iteration, 

the position is updated by the Lévy equation. Below are the equations used. 

if  𝑖𝑡𝑒𝑟  >
2

3
 𝑀𝑎𝑥𝑖𝑡𝑒𝑟  then 

 Stepsize 
𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = �⃗� 𝐿⊗ (�⃗� 𝐿⊗  Elite 𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −  Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
) 𝑖 = 1,… , 𝑛 

 Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
      =  Elite 𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖
+  P.CF ⊗  Stepsize ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖
 

(37) 

In addition, two different environmental effects, fish aggregating devices (FADs) and eddy 

transformation, are used to better model marine predators in the MPA. This transformation is modelled 

in Eq. 38. 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ==

{
  
 

  
 

 Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
+ 𝐶𝐹 [

𝑋 𝑚𝑖𝑛

+�⃗� ⊗ (
𝑋 𝑚𝑎𝑥

−𝑋 𝑚𝑖𝑛
)
]⊗ �⃗⃗�  if 𝑟 ≤  FADs 

 Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
+ [ FADs (1 − 𝑟) + 𝑟] (

 Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑟1

− Prey ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑟2

)  if 𝑟 >  FADs 

 (38) 

FAD is equal to 0.2 and is expressed as a probabilistic effect. �⃗⃗�  is a binary vector of sequences generated 

by generating randomly between [0,1]. If the generated number is less than 0.2, the sequence takes the 
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value 0, otherwise it takes the value 1. r is a number that takes a random value between [0,1]. 𝑋 𝑚𝑖𝑛 and 

𝑋 𝑚𝑎𝑥 indicate the lower and upper limits of the dimensions. Finally, 𝑟1 and 𝑟2 represent the random 

indices of the prey matrix. MPA’s pseudo code is presented Algorithm 2. 

Algorithm 2   MPA 

1. Initialise 𝑺𝒕𝒆𝒑, 𝑷, 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊. 

2. while  𝐭 < 𝒕𝒎𝒂𝒙 do 

3. Calculate 𝒇(𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊) for each 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝒊 

4. Create the Elite matrix. 

5. Memorise it. 

6. Update CF according to Eq. 36 

7.     for each  𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊 do 

8.             if (𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕  <
𝟏

𝟑
∗ 𝒕𝒎𝒂𝒙) then 

9.                   Position 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊 according to Eq. 32. 

10.             else 

11.                   if (
𝟏

𝟑
∗ 𝒕𝒎𝒂𝒙 < 𝒕current <

𝟐

𝟑
∗ 𝒕𝒎𝒂𝒙)  then 

12.                        if (𝒊 <
𝟏

𝟐
∗ 𝒏) then 

13.                              Position 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊 according to Eq. 34. 

14.                        else 

15.                              Position 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊 according to Eq. 35.  

16.                       end if 

17.                   else 

18.                         Position 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊 according to Eq. 37. 

19.                   end if 

20.             end if 

21.             Calculate  𝒇(𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊) for each 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝒊. 

22.             Update the position and fitness value of the best 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊. 

23.             Memorize the best 𝑷𝒓𝒆𝒚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝒊. 

24.             Apply the 𝑭𝑨𝑫 effect according to Eq. 38. 

25.     end for 

26.     𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕 + +  

27. end while 

The ability to recall the best places where the predator has been successful in searching for prey is related 

to the so-called environmental response, the so-called marine memory. In MPA, this ability is used to 

save memory. Once the effect of the FADs has been achieved and the location of the prey has been 

updated, the matrix is evaluated to increase the Elite. In the current iteration, after comparing the fitness 

value of each solution with the value from the previous iteration, the best one is selected. This greedy 

selection aims to improve the quality of the solution during each iteration. In addition, it helps hunters 

to remember the previous locations of the hunting areas with a successful search.  

2.5. Detailed Comparison of Algorithms 

The features of the algorithms are compared in detail and shown in Table 1. The algorithms have the 

differences listed in the table, which are due to their special features. 
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Table 1. Detailed comparisons of algorithms 

Feature AHA AVOA COA MPA 

Inspiration 

Hummingbirds’ 

flight skills and 

foraging strategies 

African vultures’ 

foraging and 

social behavior 

Crayfish’s summer 

resort, competition, 

and foraging 

behaviors 

Foraging 

strategies of 

marine predators 

Key Mechanisms 

Three foraging 

strategies (guided, 

territorial, 

migration), visit 

table 

Coefficient 

vector (𝐹), phase 

shift mechanism, 

rotational search 

Temperature 

regulation, three 

behavioral stages 

Lévy and 

Brownian 

movements, three 

optimization 

phases 

Exploration 

Techniques 

Guided foraging, 

migration foraging 

Rotational 

search equation, 

phase shift for 

diverse random 

motions 

Temperature-based 

behavior regulation 

Lévy flights for 

global search 

Exploitation 

Techniques 

Territorial foraging, 

memory update 

mechanism 

Utilization of the 

second-best 

solution, four 

exploitation 

mechanisms 

Local search within 

territorial foraging 

Brownian 

motions for local 

refinement 

Memory 

Management 

Visit table to track 

nectar sources and 

visit frequency 

None None None 

Adaptive 

Mechanisms 

Adaptive step sizes, 

flight pattern 

adjustments 

Adaptive 

coefficients  

Adaptive behaviors 

based on temperature 

Adaptive step 

sizes  

Computational 

Complexity 
Low Low Low Low 

Unique Features 

Unique flight skills 

simulation (axial, 

diagonal, 

omnidirectional) 

Phase shift 

mechanism to 

prevent local 

optima trapping 

Multi-stage foraging 

mechanism, 

temperature regulation 

for phase control 

Three distinct 

optimization 

phases, 

combination of 

Lévy and 

Brownian motion 

 

3. Experimental Design 

In this section, the test functions to be used in performance analysis and the parameters used in the 

algorithms are explained. 

3.1. Test functions 

In this article, 26 test functions are used to evaluate the algorithms’ performance. 𝐹1 to 𝐹13 are unimodal 

functions and are given in Table 2. Likewise, the rest are multimodal functions and are presented in 

Table 3. 

In the tables, the dimensions of 𝐹12 and 𝐹13 for unimodal functions and 𝐹25 and 𝐹26 for multimodal 

functions are taken as 2. For all other functions, the dimension value is set to 50. In addition, 𝐹𝑚𝑖𝑛 is the 

minimum value that a function can reach, and the range is both the upper and lower bounds within the 

search space. In addition, plot graphs of some functions are shown in Figure 3. 
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Table 2. Unimodal test functions 

Unimodal function Range Dimension 𝑭𝒎𝒊𝒏 

𝑭𝟏 - Sphere [-100, 100] 50 0 

𝑭𝟐 - Powell Sum [-1, 1] 50 0 

𝑭𝟑 - Schwefel’s 2.20 [-100, 100] 50 0 

𝑭𝟒 - Schwefel’s 2.21 [-100, 100] 50 0 

𝑭𝟓 - Step [-100, 100] 50 0 

𝑭𝟔 - Quartic Noise [-1.28, 1.28] 50 0 

𝑭𝟕 - Rosenbrock [-30, 30] 50 0 

𝑭𝟖 - Brown [-1, 4] 50 0 

𝑭𝟗 - Dixon and Price [-10, 10] 50 0 

𝑭𝟏𝟎 - Powell Singular [-4, 5] 50 0 

𝑭𝟏𝟏 - Zakharov [-5, 10] 50 0 

𝑭𝟏𝟐 - Booth [-10, 10] 2 0 

𝑭𝟏𝟑 - Brent [-10, 10] 2 0 

Table 3. Multimodal test functions 

Multimodal function Range Dimension 𝑭𝒎𝒊𝒏 

𝑭𝟏𝟒 - Schewel’s 2.26 [-500, 500] 50 0 

𝑭𝟏𝟓 - Rastrigin [-5.12,5.12] 50 0 

𝑭𝟏𝟔 - Qing [-500, 500] 50 0 

𝑭𝟏𝟕 - Alpine N. 1 [-10, 10] 50 0 

𝑭𝟏𝟖 - Xin-She Yang [-5, 5] 50 0 

𝑭𝟏𝟗 - Ackley [-32, 32] 50 0 

𝑭𝟐𝟎 - Salomon [-100, 100] 50 0 

𝑭𝟐𝟏 - Griewank [-100, 100] 50 0 

𝑭𝟐𝟐 - Periodic [-10, 10] 50 0.9 

𝑭𝟐𝟑 - Xin-She Yang N.2 [-2pi, 2pi] 50 0 

𝑭𝟐𝟒 - Adjiman [-1, 2] 2 -2.02181 

𝑭𝟐𝟓 - Bird [-2pi, 2pi] 2 -106.7645 

𝑭𝟐𝟔 - Egg crate [-5, 5] 2 0 

 

 

Figure 3. Plot graphs of some test functions 
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3.2. Parameters 

Each algorithm specific parameter is given in Table 4. The population size and the maximum iteration 

were taken the same for all of them. Descriptions of the parameters are also given in the table. 

Table 4. Parameters of algorithms 

Algorithm Parameter Value Description 

AHA 
Migration 

coefficient 
2𝑛 Migration coefficient depending on population size. 

AVOA 

𝑝1 0.6 
Exploration and exploitation are the parameters for the choice 

of strategy. 
𝑝2 0.4 

𝑝3 0.6 

𝐿1 0.8 It gives the probability parameters for selecting the first- and 

second-best vulture. 𝐿2 0.2 

𝑤 2.5 Parameter whether to terminate exploration or exploitation. 

COA 

𝐶1 0.2 It is used to control the intake of crayfish at different 

temperatures. 𝜎 3 

𝜇 25 Refers to the optimum temperature for crayfish. 

𝐶3 3 Explains the food factor parameter. 

MPA 
FADs 0.2 It is the impact factor parameter. 

𝑃 0.5 It is a constant parameter. 

All 

Algorithms 

Population size 50 

Max. iterations 1000 

5. Simulation Results 

In this paper, the algorithms run 30 times independently for comparison. The simulations were carried 

out on MATLAB R2022b platform on an i5-12450H machine with 2.5Ghz speed and 8 GB RAM. The 

simulation results of unimodal and multimodal functions are given in Table 5 and Table 6, respectively. 

The algorithms with the lowest average and best values are presented in bold.  

Simulation results evaluations for unimodal functions are as follows: 

• Considering the technical characteristics of functions and algorithms in general, the following 

conclusions can be drawn. 𝐹1 is a simple continuous function. It behaves the same in all 

dimensions. Therefore, it is easy to optimize and all functions except MPA obtained the 

optimum value. MPA generated results very close to the optimum, which may be due to the 

effect of Lévy and Brownian motions, local minima avoidance strategies and simulation of 

environmental effects. 

• 𝐹2 is a function that evaluates the contribution of each dimension separately. For an algorithm 

to be successful in this function, it needs to have adaptive parameter tuning and strong global 

search capabilities. Since all the algorithms we used in the comparison successfully optimize 

𝐹2, it can be said that they have these capabilities. 
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Table 5. Simulation results for unimodal functions 

Unimodal functions Algorithms AHA AVOA COA MPA 

𝑭𝟏 

 

Best 0.00E+00 0.00E+00 0.00E+00 3.16E-48 

Worst 1.56E-292 0.00E+00 0.00E+00 4.36E-45 

Average 5.22E-294 0.00E+00 0.00E+00 7.47E-46 

Std 0.00E+00 0.00E+00 0.00E+00 1.04E-45 

𝑭𝟐 

 

Best 0.00E+00 0.00E+00 0.00E+00 2.13E-133 

Worst 0.00E+00 0.00E+00 0.00E+00 6.34E-118 

Average 0.00E+00 0.00E+00 0.00E+00 2.16E-119 

Std 0.00E+00 0.00E+00 0.00E+00 1.16E-118 

𝑭𝟑 

 

Best 5.23E-171 0.00E+00 0.00E+00 2.22E-26 

Worst 1.58E-148 0.00E+00 0.00E+00 3.49E-24 

Average 5.41E-150 0.00E+00 0.00E+00 6.14E-25 

Std 2.88E-149 0.00E+00 0.00E+00 8.35E-25 

𝑭𝟒 

Best 3.01E-151 0.00E+00 0.00E+00 1.76E-18 

Worst 4.03E-134 0.00E+00 0.00E+00 3.27E-17 

Average 1.35E-135 0.00E+00 0.00E+00 1.21E-17 

Std 7.36E-135 0.00E+00 0.00E+00 7.68E-18 

𝑭𝟓 

 

Best 0.00E+00 4.95E-09 2.73E-04 1.18E-08 

Worst 0.00E+00 4.42E-08 9.78E-01 6.99E-08 

Average 0.00E+00 1.57E-08 2.10E-01 2.87E-08 

Std 0.00E+00 8.11E-09 2.70E-01 1.44E-08 

𝑭𝟔 

 

Best 3.06E-06 2.78E-06 1.44E-08 2.03E-04 

Worst 2.11E-04 1.71E-04 1.02E-04 1.46E-03 

Average 8.18E-05 3.91E-05 2.70E-05 6.53E-04 

Std 5.44E-05 3.90E-05 2.90E-05 2.97E-04 

𝑭𝟕 

 

Best 5.86E-286 0.00E+00 0.00E+00 1.10E-05 

Worst 8.36E-248 0.00E+00 0.00E+00 2.41E-04 

Average 2.80E-249 0.00E+00 0.00E+00 6.58E-05 

Std 0.00E+00 0.00E+00 0.00E+00 4.95E-05 

𝑭𝟖 

 

Best 0.00E+00 3.95E-27 6.34E-18 0.00E+00 

Worst 0.00E+00 1.38E-20 4.55E-12 0.00E+00 

Average 0.00E+00 1.07E-21 4.04E-13 0.00E+00 

Std 0.00E+00 2.98E-21 9.27E-13 0.00E+00 

𝑭𝟗 

 

Best 4.50E+01 9.13E-08 4.39E+01 4.25E+01 

Worst 4.70E+01 1.45E-05 4.63E+01 4.47E+01 

Average 4.55E+01 4.32E-06 4.48E+01 4.33E+01 

Std 3.94E-01 4.41E-06 6.52E-01 5.29E-01 
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Table 5. Simulation results for unimodal functions (continued) 

𝑭𝟏𝟎 

 

Best 0.00E+00 0.00E+00 0.00E+00 3.81E-50 

Worst 3.58E-301 0.00E+00 0.00E+00 7.12E-48 

Average 1.47E-302 0.00E+00 0.00E+00 1.55E-48 

Std 0.00E+00 0.00E+00 0.00E+00 1.90E-48 

𝑭𝟏𝟏 

 

Best 6.67E-01 4.48E-03 6.67E-01 6.67E-01 

Worst 6.67E-01 5.30E-02 6.67E-01 6.67E-01 

Average 6.67E-01 1.73E-02 6.67E-01 6.67E-01 

Std 6.52E-17 1.01E-02 1.35E-07 3.43E-09 

𝑭𝟏𝟐 

 

Best 0.00E+00 0.00E+00 0.00E+00 1.11E-48 

Worst 1.97E-292 0.00E+00 0.00E+00 4.46E-30 

Average 6.57E-294 0.00E+00 0.00E+00 1.49E-31 

Std 0.00E+00 0.00E+00 0.00E+00 8.14E-31 

𝑭𝟏𝟑 

 

Best 1.38E-87 1.38E-87 1.38E-87 1.38E-87 

Worst 1.38E-87 1.38E-87 1.38E-87 1.38E-87 

Average 1.38E-87 1.38E-87 1.38E-87 1.38E-87 

Std 6.8E-103 6.8E-103 6.8E-103 6.8E-103 

 

• In the functions where AHA could not achieve the optimum value, it performed very close to 

the other algorithms. For example, 𝐹3 shows a very small difference of approximately 5.23E-

171 compared to the others except MPA. 

• In 𝐹3 and 𝐹4 functions, AVOA and COA’s global search capability and ability to avoid local 

minima in a large search area made it successful in this function.  

• 𝐹5  has a flat and stepped structure and divides the solution space with sharp changes. Therefore, 

it can be interpreted that the AHA that is successful in this function has the ability to sample the 

solution space well.   

• 𝐹6 is a high-order polynomial function with a random noise term added. This function tests how 

robust the algorithms are to random noise. It can be evaluated that COA is closer to the optimum 

value (1.44E-08) than other algorithms with a noise-resistant and stable optimization capability. 

• 𝐹7  has a narrow and oblique solution path that makes it difficult to reach the global optimum. 

This function tests the algorithms' ability to avoid local minima while reaching the global 

optimum. It can be said that AVOA and COA, which are successful in this function, are due to 

their high routing ability and strong local search capabilities.  
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• The structure of  𝐹8 tests the performance of algorithms, especially in situations that require 

parameter adaptations. All of the algorithms used in the comparisons have achieved success in 

this function with their adaptive and flexible parameterization capabilities.  

• Unlike the other functions, 𝐹9 has a significantly higher performance than the other algorithms 

of AVOA. This function has a large number of peaks with local minima. This means that AVOA 

has a large search capacity to reach the global optimum and the ability to avoid local minima. 

• 𝐹10 has a complex structure with linear and nonlinear components. All algorithms were seen to 

be successful in this function. Thus, it is considered that it captures the relationships in the non-

linear structure well. 

• 𝐹11 has a complex and nonlinear structure and global optimization is difficult. AVOA, with its 

lower optimal value, accurately analyzes complex nonlinear relationships compared to the 

others.  

• 𝐹12 and 𝐹13 are functions with an easy structure to optimize. All algorithms were successful 

with these functions. In 𝐹13, all algorithms had the same success by obtaining the value 1.38E-

87. 

• In seven functions (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹7, 𝐹10 and 𝐹12)  AVOA and COA reached the optimum 

value. 

Table 6. Simulation results for multimodal functions 

Multimodal functions Algorithms AHA AVOA COA MPA 

𝐹14 

 

Best 7.62E+00 1.27E-05 9.67E+01 7.55E+01 

Worst 4.05E+01 4.72E+01 1.58E+02 1.32E+02 

Average 2.24E+01 6.03E+00 1.32E+02 1.01E+02 

Std 8.79E+00 1.20E+01 1.45E+01 1.38E+01 

𝐹15 

 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝐹16 

 

Best 8.91E-01 1.89E-03 9.70E+01 1.29E+00 

Worst 7.14E+00 1.14E+02 6.32E+03 4.08E+02 

Average 3.64E+00 5.49E+00 2.14E+03 6.19E+01 

Std 1.70E+00 2.11E+01 1.56E+03 1.06E+02 

𝐹17 

 

Best 7.63E-167 0.00E+00 0.00E+00 7.21E-30 

Worst 6.01E-152 0.00E+00 0.00E+00 1.90E-26 

Average 2.09E-153 0.00E+00 0.00E+00 4.57E-27 

Std 1.10E-152 0.00E+00 0.00E+00 5.13E-27 
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Table 6. Simulation results for multimodal functions (continued) 

𝐹18 

 

Best 5.09E-243 0.00E+00 0.00E+00 3.65E-39 

Worst 3.81E-223 1.85E-263 0.00E+00 1.13E-23 

Average 1.29E-224 6.16E-265 0.00E+00 3.82E-25 

Std 0.00E+00 0.00E+00 0.00E+00 2.06E-24 

𝐹19 

 

Best -4.44E-16 -4.44E-16 -4.44E-16 3.11E-15 

Worst -4.44E-16 -4.44E-16 -4.44E-16 3.11E-15 

Average -4.44E-16 -4.44E-16 -4.44E-16 3.11E-15 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝐹20 

 

Best 0.00E+00 0.00E+00 0.00E+00 9.99E-02 

Worst 1.18E-147 0.00E+00 0.00E+00 2.00E-01 

Average 4.11E-149 0.00E+00 0.00E+00 1.47E-01 

Std 2.15E-148 0.00E+00 0.00E+00 5.07E-02 

𝐹21 

 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Average 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝐹22 

 

Best 9.00E-01 9.00E-01 9.00E-01 9.00E-01 

Worst 9.00E-01 9.00E-01 9.00E-01 1.03E+00 

Average 9.00E-01 9.00E-01 9.00E-01 1.00E+00 

Std 4.52E-16 4.52E-16 4.52E-16 2.12E-02 

𝐹23 

 

Best 1.21E-20 1.21E-20 6.25E-20 1.21E-20 

Worst 3.23E-20 1.21E-20 4.72E-16 3.45E-20 

Average 1.35E-20 1.21E-20 3.39E-17 1.67E-20 

Std 5.09E-21 5.25E-27 9.22E-17 6.54E-21 

𝐹24 

 

Best -2.02E+00 -2.02E+00 -2.02E+00 -2.02E+00 

Worst -2.02E+00 -2.02E+00 -2.02E+00 -2.02E+00 

Average -2.02E+00 -2.02E+00 -2.02E+00 -2.02E+00 

Std 1.36E-15 1.09E-15 1.36E-15 1.36E-15 

𝐹25 

 

Best -1.07E+02 -1.07E+02 -1.07E+02 -1.07E+02 

Worst -1.07E+02 -1.07E+02 -8.73E+01 -1.07E+02 

Average -1.07E+02 -1.07E+02 -1.06E+02 -1.07E+02 

Std 3.09E-14 3.10E-14 3.55E+00 2.95E-14 

𝐹26 

 

Best 0.00E+00 0.00E+00 0.00E+00 1.17E-241 

Worst 0.00E+00 0.00E+00 0.00E+00 1.33E-192 

Average 0.00E+00 0.00E+00 0.00E+00 4.85E-194 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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• Similarly, AHA produced the optimum value in six functions (𝐹1, 𝐹2, 𝐹5, 𝐹8, 𝐹10 and 𝐹12) In 

addition, MPA is another algorithm that reaches the optimum value in 𝐹8. 

• In general, AVOA and COA had better performance, while AHA produced results close to these 

two algorithms with very small differences. MPA was behind the other algorithms except 𝐹8 

and 𝐹13. 

Simulation results evaluations for multimodal functions are as follows: 

• As in 𝐹9, 𝐹14 and 𝐹16 also have multiple local minima, making optimization difficult. The 

superiority of AVOA over other algorithms in these functions is due to its effective local 

minimum avoidance strategies. 

• 𝐹17 has a complex and fluctuating solution space that is difficult to optimize. 𝐹18 tests how 

algorithms perform in a large solution space.  𝐹19 tests their ability to efficiently explore the 

large solution space. All algorithms were successful in all three functions. 

• For eight functions (𝐹15, 𝐹17, 𝐹18, 𝐹20, 𝐹21, 𝐹24, 𝐹25 and 𝐹26) AVOA and COA produced 

optimum values. 

• AHA has the same performance in all functions except 𝐹17 and 𝐹18, where AVOA and COA 

reach the optimum value. 

• In 𝐹20, 𝐹21, 𝐹22, 𝐹23, 𝐹24, 𝐹25 and 𝐹26 functions that evaluate global search capabilities, all 

algorithms performed well by reaching similar objective function values.  

• MPA has an optimum result in 𝐹15, 𝐹21, 𝐹24. 

• In 𝐹14, no algorithm produced the minimum value, but AVOA had the best performance with 

the best value of 1.27E-05. 

• The functions for which all algorithms produce the same value are 𝐹19 and 𝐹22. 

• Like the unimodal functions, AHA follows AVOA and COA with very small differences. At 

the same time, MPA was the most unsuccessful except for a few functions. 

• In general, the algorithms outperformed each other with very small differences such as 7.63E-

167 and 7.21E-30. 

When all evaluations are taken into account, the rankings of the algorithms in terms of average and best 

values for all simulation results are given in Table 7. 

Table 7. Rank ordering of algorithms 

Algorithms Best Average 

AHA 16 12 

AVOA 23 20 

COA 19 19 

MPA 8 6 
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In Table 7, the values of the most successful algorithms are bolded. AVOA was the most successful in 

terms of best and average values. AVOA is followed by COA, AHA, MPA respectively. AVOA 

outperformed its closest competitor COA by four points in the best values and one point in the average 

values. 

5.1. Convergence plots of test functions 

A convergence plot is a type of graph often used to observe or evaluate the performance of an 

optimization algorithm (Yiğit et al., 2023). This graph is a visualization of how fast or effective an 

algorithm is in the optimization process when it tries to minimize the value of a target function. For this 

purpose, the convergence graphs of the averages of all runs of the algorithms on the test functions are 

given in Figure 5.  

In the convergence plot of unimodal functions, COA was the fastest converging algorithm for most 

functions except for a few functions (𝐹5, 𝐹8, 𝐹9 and 𝐹11). COA is followed by AVOA. At the same time, 

these two algorithms started to produce the same value after a certain number of iterations. In addition, 

AHA was the algorithm with the fastest convergence only in 𝐹8, followed by MPA. Although 𝐹13 

functions produced the same result, AHA reached this value later than the other algorithms. 

When the convergence plots of the multidimensional functions are analysed, it is seen that COA 

converges faster in general. In 𝐹14, although none of the algorithms produced the optimum value, AVOA 

converged the fastest. In 𝐹23, contrary to the general results, COA is worse. Looking at the simulation 

results tables, it is observed that MPA generally performs poorly and is successful in some functions. 

This shows that MPA converges less than the others in the convergence plots. 

5.2. t-test Results 

The t-test is a hypothesis test used to assess statistical significance between two groups (Kim, 2015). 

This test is used to determine whether the difference between the means of the groups is indeed 

significant. In this subsection, a one-tailed t-test analysis of the simulation results was performed. The 

significance level in the analysis was set at 5%. An ℎ value equal to 1 and 𝑝 values less than 0.05 indicate 

that the algorithm on the right performs better and there is a significant difference. In addition, no value 

indicates that the two algorithms have the same performance on that function. The results are presented 

in Table 8 and Table 9 for unimodal and multimodal functions, respectively. 

According to Table 8, the evaluations are as follows: 

• COA significantly outperformed AVOA in 𝐹5, 𝐹8, 𝐹9 and 𝐹10 functions. 

• In seven out of thirteen functions (𝐹1, 𝐹6, 𝐹7, 𝐹9, 𝐹10, 𝐹11 and 𝐹12), AHA is less successful,  and 

in nine functions (𝐹1, 𝐹3, 𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹9, 𝐹10 and 𝐹11), MPA is less successful than AVOA. 
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Figure 5. Convergence plots of test functions  
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Figure 5. Convergence plots of test functions (continued) 

• AHA compared to MPA in seven functions (𝐹1,𝐹4, 𝐹5, 𝐹6, 𝐹7, 𝐹10 and 𝐹11)   showed that there 

was a significant difference. 

• COA has achieved superiority in AHA (𝐹1,𝐹6, 𝐹7, 𝐹9, 𝐹10 and 𝐹12) and MPA (𝐹1,𝐹4, 𝐹5, 𝐹6, 

𝐹7, 𝐹10 and  𝐹11)  with six functions. 

• Since all algorithms produced the same value in 𝐹13, no significant differences were observed. 
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Table 8. Unimodal functions t-test results 

 

 

AVOA-COA AVOA-AHA AVOA-MPA COA-AHA COA-MPA AHA-MPA 

𝒉 𝒑 𝒉 p 𝒉 𝒑 𝒉 𝒑 𝒉 𝒑 𝒉 𝒑 

𝐹1 - - 1.00E+00 0.00E+00 1.00E+00 9.19E-05 1.00E+00 0.00E+00 1.00E+00 9.19E-05 1.00E+00 9.19E-05 

𝐹2 - - - - 0.00E+00 1.57E-01 - - 0.00E+00 1.57E-01 0.00E+00 1.57E-01 

𝐹3 - - 0.00E+00 1.56E-01 1.00E+00 1.87E-04 0.00E+00 1.56E-01 1.00E+00 1.87E-04 0.00E+00 1.87E-04 

𝐹4 - - 0.00E+00 1.62E-01 1.00E+00 8.73E-10 0.00E+00 1.62E-01 1.00E+00 8.73E-10 1.00E+00 8.73E-10 

𝐹5 1.00E+00 9.92E-05 0.00E+00 1.00E+00 1.00E+00 1.16E-04 0.00E+00 1.00E+00 0.00E+00 1.00E+00 1.00E+00 4.27E-12 

𝐹6 0.00E+00 9.15E-01 1.00E+00 1.26E-03 1.00E+00 3.75E-12 1.00E+00 4.14E-05 1.00E+00 8.71E-13 1.00E+00 1.45E-11 

𝐹7 - - 1.00E+00 0.00E+00 1.00E+00 2.59E-08 1.00E+00 0.00E+00 1.00E+00 2.59E-08 1.00E+00 2.59E-08 

𝐹8 1.00E+00 1.19E-02 0.00E+00 9.71E-01 0.00E+00 9.71E-01 0.00E+00 9.88E-01 0.00E+00 9.88E-01 - - 

𝐹9 1.00E+00 2.46E-55 1.00E+00 6.96E-62 1.00E+00 1.49E-57 1.00E+00 1.14E-05 0.00E+00 1.00E+00 0.00E+00 1.00E+00 

𝐹10 - - 1.00E+00 0.00E+00 1.00E+00 5.40E-05 1.00E+00 0.00E+00 1.00E+00 5.40E-05 1.00E+00 5.40E-05 

𝐹11 1.00E+00 1.48E-54 1.00E+00 1.48E-54 1.00E+00 1.48E-54 0.00E+00 1.00E+00 0.00E+00 1.00E+00 1.00E+00 3.57E-14 

𝐹12 - - 1.00E+00 0.00E+00 0.00E+00 1.63E-01 1.00E+00 0.00E+00 0.00E+00 1.63E-01 0.00E+00 1.63E-01 

𝐹13 - - - - - - - - - - - - 

 

Table 9. Multimodal functions t-test results 

 

 

AVOA-COA AVOA-AHA AVOA-MPA COA-AHA COA-MPA AHA-MPA 

𝒉 𝒑 𝒉 p 𝒉 𝒑 𝒉 𝒑 𝒉 𝒑 𝒉 𝒑 

𝐹14 1.00E+00 1.01E-24 1.00E+00 2.58E-06 1.00E+00 5.12E-22 0.00E+00 1.00E+00 0.00E+00 1.00E+00 1.00E+00 8.43E-23 

𝐹15 - - - - - - - - - - - - 

𝐹16 1.00E+00 1.56E-08 0.00E+00 6.82E-01 1.00E+00 3.71E-03 0.00E+00 1.00E+00 0.00E+00 1.00E+00 1.00E+00 2.57E-03 

𝐹17 - - 0.00E+00 1.52E-01 1.00E+00 1.74E-05 0.00E+00 1.52E-01 1.00E+00 1.74E-05 1.00E+00 1.74E-05 

𝐹18 0.00E+0 1.00E+0 1.00E+00 0.00E+00 0.00E+00 1.59E-01 1.00E+00 0.00E+00 0.00E+00 1.59E-01 0.00E+00 1.59E-01 

𝐹19 - - - - 1.00E+00 0.00E+0 - - 1.00E+00 0.00E+00 1.00E+00 0.00E+00 

𝐹20 - - 0.00E+00 1.52E-01 1.00E+00 4.24E-16 0.00E+00 1.52E-01 1.00E+00 4.24E-16 1.00E+00 4.24E-16 

𝐹21 - - - - - - - - - - - - 

𝐹22 - - - - 1.00E+00 1.80E-22 - - 1.00E+00 1.80E-22 1.00E+00 1.80E-22 

𝐹23 1.00E+00 2.69E-02 0.00E+00 6.43E-02 1.00E+00 2.86E-04 0.00E+00 9.73E-01 0.00E+00 9.73E-01 1.00E+00 2.94E-02 

𝐹24 0.00E+00 1.00E+0 0.00E+00 1.00E+00 0.00E+00 1.00E+0 - - - - - - 

𝐹25 0.00E+00 1.63E-01 0.00E+00 1.00E+00 0.00E+00 4.28E-01 0.00E+0 8.37E-01 0.00E+00 8.37E-01 1.00E+00 2.62E-10 

𝐹26 - - - - 1.00E+00 0.00E+0 - - 1.00E+00 0.00E+00 1.00E+00 0.00E+00 

According to Table 9, MPA was the algorithm that performed less well compared to the others, as in 

the case of unimodal functions. AVOA outperformed COA in 𝐹14 ,𝐹16 and  𝐹23 functions.  Similar to 

Table 7, AHA exhibits a more significant difference than MPA and has demonstrated superior 

performance in nine different test functions (𝐹14, 𝐹16, 𝐹17, 𝐹19, 𝐹20, 𝐹22, 𝐹23, 𝐹25 and 𝐹26). 
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6. Conclusion 

The development of many optimization algorithms provides different possibilities for solving problems. 

For this purpose, recently proposed AHA, AVOA, COA and MPA algorithms were compared for the 

first time and the best performance was analyzed. According to the analyses obtained from the 

simulation results, AVOA has the highest performance in 26 different test functions. Other newly 

proposed algorithms followed AVOA with very small differences. Moreover, each of them 

outperformed each other in some functions. The success or failure of algorithms on certain test functions 

compared to others can be explained by factors such as the exploration and exploitation balance of the 

algorithms, their working mechanisms, and the complexity and dimensionality of the test functions. The 

difficulty of a test function increases with the number of dimensions; therefore, the convergence of some 

methods is slower compared to others. For instance, algorithms with strong exploration capabilities can 

be successful in larger solution spaces and irregular functions, whereas algorithms effective at finding 

local optima can perform better on less complex functions. Additionally, the parameter settings of the 

algorithms and their suitability to the problem structure can significantly affect performance. The 

combination of these factors explains why certain algorithms perform better or worse on specific test 

functions. After the simulations, statistical analysis was performed to determine whether there was a 

significant difference. The fact that the algorithms follow each other with very small differences shows 

that the appropriate one should be used for different problems. In future research, it is aimed to analyze 

the newly proposed metaheuristics in various test functions and to use them on different problems. 
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