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 The mapping and quantification of agricultural surfaces using remote sensing (RS) data at 
different scales and environmental conditions have become essential to ensure the 
implementation of a sustainable water resource management policy. On a global scale, the 
steady increase in publications over the last decades reflects the significance of optical satellite 
images in studying land use (LU). In the present study, we suggest a methodology to identify 
the most suitable dates and spectral bands for mapping irrigated crops in the Guigou 
depression. The methodology relies primarily on fieldwork and spectral reflectance (SR) 
analysis. The extraction of irrigated crops is carried out using the Support Vector Machine 
(SVM) classification algorithm. The integration of SR data and fieldwork has indicated that 
August is the most favorable month for studying irrigated crops. Thus, it was concluded that 
the Near Infrared band is the most effective for discriminating agricultural surfaces. Results 
from processing Landsat 8 satellite images (L8SI) reveal that classification accuracy varies 
depending on land use (LU) classes. The mapping of major LU classes indicates a high level of 
agreement between the classified image and ground truth, with an accuracy of 0.97 (97%). 
The crop types classification (irrigated crops) shows low accuracy for potatoes and carrots, 
with an F1 Score, User's Accuracy, and a Producer's Accuracy below 0.8. Based on the 
classification accuracy level, we observed that the combination of SR, fieldwork, and legend 
selection criteria has a high potential for distinguishing irrigated crops from other LU classes. 
The approach developed in this work has highlighted the importance of Landsat OLI images 
in mapping and quantifying agricultural surfaces in the GD. This approach could be valuable 
in other regions to select periods favorable to the study of irrigated crops. 

Research Article 
 
Received: 13.05.2024 
Revised: 09.08.2024 
Accepted: 27.08.2024 
Published:01.02.2025 
 

 

 
 
 

1. Introduction  
 

Optical remote sensing (RS) provides pertinent and 
efficient data for monitoring land surface dynamics 
across diverse environmental conditions [1,2] at global 
and continental scales [3-6]. Open access to satellite data 
archives and the availability of satellite images have 
contributed to the development of various supervised 
classification algorithms that allow for extracting 
information from raw images. These algorithms, widely 
used in the literature [7-9], have been applied to various 
types of satellite images (Landsat, MODIS, and Sentinel-
2) for mapping land use (LU). In parallel with supervised 
classification methods, authors have used optical indices 
derived from satellite images, such as the Normalized 

Difference Vegetation Index (NDVI), the Soil Adjusted 
Vegetation Index (SAVI), and the Enhanced Vegetation 
Index (EVI) to distinguish irrigated crops and other LU 
classes under diverse environmental conditions and at 
varying scales [10-16]. 

The availability of satellite images provided by space 
agencies (National Aeronautics and Space 
Administration: NASA, European Space Agency: ESA, 
etc.) and the development of tools and image processing 
algorithms have led to an ongoing increase in 
publications based on multi-source and multi-date image 
processing [17-24]. While Landsat images are 
considered among the most used in the field of remote 
sensing [25], the launch of Sentinel-2 satellite images 
with high spatial resolution (10 m) and temporal 
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resolution (every five days) has provided a feasible 
solution and opened new opportunities for monitoring 
agricultural lands [26] and LU dynamics. In this context, 
[27] has demonstrated that spatial RS data has become 
indispensable for monitoring ecosystems at both global 
and local scales. The increasing number of studies 
focusing on LU studies illustrates this finding [28-31]. 
Currently, mapping LU from satellite images is a 
significant component of scientific research. Moreover, 
the Global Climate Observing System program (GCOS) 
classifies this theme among essential climate variables 
[32]. 

The results obtained across various environmental 
conditions and spatiotemporal scales demonstrate the 
effectiveness of satellite data and image processing 
methods. Furthermore, studies related to LU suggest a 
notable increase in agricultural land at the expense of 
forests and natural meadows [33,34]. These 
modifications in land surfaces contribute to 
environmental degradation and the intensification of 
hydrological deficits. This issue is expected to worsen 
with climate change and the increasing demand for 
irrigation water in the coming years. In this context, the 
FAO (Food and Agriculture Organization) estimates that 
80% of food requirements in 2025 will be covered by 
irrigated agriculture [35,36]. Given this situation, 
mapping and quantifying irrigated agricultural surfaces 
from satellite images at various scales have become 
significant challenges, as these images form the 
foundation for establishing a sustainable water resource 
management policy. However, extracting information 

related to irrigated surfaces and crops from satellite 
images requires the implementation of a robust 
methodology. In this context, the current study aims to 
map irrigated crops within the Guigou depression (GD). 
Specifically, the main objectives of this research are: 1) 
identifying the favorable period for distinguishing 
irrigated crops from other LU classes based on fieldwork 
and SR analysis. 2) Spatialisation and quantification of 
irrigated crops from Landsat 8 satellite imagery using the 
Support Vector Machine (SVM) classification algorithm. 
 

2. Materials and methods 
 

2.1. Study area 
 

The GD (Figure 1) is situated in the Tabular Middle 
Atlas (TMA). It extends within the upper Sebou 
watershed, covering an area of approximately 190 km². 
Faulted limestone formations overlaid with basaltic 
flows dominate the study area [37]. This hydrogeological 
context is conducive to water infiltration and the 
presence of underground aquifers. The soils exhibit 
varying depths depending on the locations. At the bottom 
of the depression, soils resulting from slope erosion are 
relatively deep, while at the margins, the soils are 
shallower. Surface runoff is rare and mainly linked to 
karstic springs [38]. The elevations range from 1495 
meters at the urban center of Guigou to 2310 meters at 
the North Middle Atlas Accident. The climate is semi-arid, 
characterized by a dry summer and a rainy or snowy 
winter. 

 
Figure 1. Study area location map 

 
Situated within the TMA, the GD was a grazing land 

where transhumance was practiced by local herders and 
neighboring regions [39,40]. Economic activity was 
centered around transhumant livestock, with a limited 

area dedicated to rainfed and irrigated crops. The 
irrigation of the fluvial terraces along the wadis and 
downstream of springs was carried out through a 
traditional network derived from the Guigou wadi and its 
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sources [41]. With population growth, state 
interventions, and consecutive dry years, this area has 
undergone significant transformations over the last 
decades. It is primarily marked by an extension of 
irrigated crops (potatoes, onions, carrots, etc.) to the 
detriment of rainfed agricultural land and pasturelands 
[42-44]. 

The agricultural parcels in the GD vary in size. The 
classification of parcels based on their size (Figure 2) 
reveals a significant predominance of small-sized parcels 
[≤ 1 and between 1 and 2 hectares], which represent 
approximately 72% of the study area. Medium-sized 
parcels [between 2 and 4 hectares] account for roughly 
20% of the total area of the GD. Agricultural parcels 
exceeding 4 hectares cover only 8% of the study area. 
The farmers have recently developed these large-sized 
parcels situated at the peripheries of the older ones. The 
study of agricultural parcels has revealed land 
fragmentation in the study area. Furthermore, 
information relating to parcel characteristics is crucial 
for studying farmland surfaces. 
 

 
Figure 2. Distribution of agricultural parcels in the GD 
 

2.2. Fieldwork 
 

In August 2018, we conducted fieldwork to identify 
different land use (LU) classes. The types of irrigated 
crops in the study area were determined using a high-
resolution map. The samples of irrigated crops observed 
and geolocated as polygons across the study area are 
compared with L8SI. This approach allowed us to 
precisely determine the characteristics of each type of 
crop and obtain detailed information about their spectral 
variations. Furthermore, the exhaustive characterization 
of irrigated crops in the GD, achieved through 
comparison between field-collected samples and those 
obtained from satellite imagery, facilitated their 
distinction from other LU classes (bare lands and 
buildings). Thus, we used the collected samples to 
monitor SR, classify the satellite image, and validate the 
obtained results. The crossing of field data with the false-
color satellite image (Figure 3) led to the development of 
a LU typology in the GD in August 2018. At this time of 
the year, there is a distinct separability between the 

spectral signatures of irrigated crops and other LU 
classes. All irrigated crops exhibit specific and uniform 
responses, reflecting the coverage of active vegetation. In 
contrast, rainfed croplands post-harvest, bare lands 
(basaltic and limestone terrains), and habitats are visible 
in the satellite image and characterized by low spectral 
reflectance (SR). 

 

 
Figure 3. LU samples in the study area; a comparison 
between field and satellite image. a) irrigated crops (the 
light red color represents potatoes, while the dark red 
color corresponds to onions), b) rainfed croplands after 
harvest, c) basaltic terrains, d) limestone terrains. 
 

2.3. Satellite data 
 

In this study, Landsat 8 satellite images (L8SI) are the 
basis for monitoring SR. These images have been widely 
employed in research dedicated to mapping and tracking 
the evolution of land surfaces [27,45,46]. Landsat 8 OLI 
(Operational Land Imager) and TIRS (Thermal Infrared 
Sensor) images consist of nine spectral bands (1 to 7 and 
9) with a spatial resolution of 30 meters. The 
panchromatic band (band 8), with a resolution of 15 
meters, is used to enhance the spatial resolution of the 
spectral bands from 30 meters to 15 meters. The thermal 
bands (10 and 11) with a spatial resolution of 100 meters 
are practical for studying surface temperature. For SR 
monitoring, we applied preprocessing and processing to 
seven spectral bands. These mainly include bands in the 
visible (Blue, Green, and Red), Near Infrared (NIR), 
shortwave infrared 1 (SWIR 1), and shortwave infrared 
2 (SWIR 2) ranges. The L8SI used in this study span from 
January to December 2018 (Table 1). 
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2.3.1. Preprocessing of Landsat 8 OLI images 
 

RS data provided by the U.S. Geological Survey (USGS) 
require pre-processing to facilitate automatic 
classification and visual interpretation. Before their use, 
satellite images oblige radiometric and atmospheric pre-
processing. Radiometric correction of satellite images 
allows the conversion of raw pixel values (digital 
numbers) into TOA (Top-of-Atmosphere) reflectance. 
Baghdadi and Zribi, [47] demonstrated that converting 
pixel values to reflectance is more effective for 
comparing satellite data. The conversion of pixel values 
to reflectance is performed according to the guidelines 
recommended by the USGS. 

 

Table 1. Landsat 8 satellite images used in this study 
Acquisition date: 
2018 

Sensor 
Path/ 
Row 

Spatial 
resolution 

January 04 OLI 201/037 30 m 
February 14 OLI 200/036 30 m 
March 09 OLI 201/037 30 m 
April 19 OLI 200/037 30 m 
May 12 OLI 201/037 30 m 
Jun 22 OLI 200/037 30 m 
July 08 OLI 200/036 30 m 
August 09 OLI 200/037 30 m 
September 17 OLI 201/037 30 m 
October 17 OLI 200/037 30 m 
November 04 OLI 201/037 30 m 
December 06 OLI 201/037 30 m 

Data source: All data are available the on: 

https://earthexplorer.usgs.gov 
 

The algorithm proposed by the USGS combines the 
spectral bands and the metadata file (MTL file) provided 
with the level 1 satellite image. The algorithm 
recommended by the USGS is integrated into the semi-
automatic classification extension (SCP) developed by 
Congedo and installed in the QGIS software. The SCP 
plugin enables various functions such as downloading, 
pre-processing, and processing optical satellite images. 
This powerful package for QGIS [48] has been used in the 
domain of RS [49-52]. In parallel with radiometric 
correction, we performed atmospheric correction to 
eliminate atmospheric effects [53] based on the DOS 1 
(Dark Object Subtract 1) model, which is an atmospheric 
model relying on image properties. 

 

2.4. Classification Process 
 

2.4.1. Classification Method 
 

LU classification from satellite images relies on 
machine learning algorithms (Support Vector Machine, 
Random Forest, Maximum Likelihood, etc.) and the 
calculation of spectral indices (NDVI, EVI, SAVI, NDWI, 
etc.). The present work focuses on applying the Support 
Vector Machine (SVM) supervised classification 
algorithm commonly used by researchers [9,12,54-56]. 
This non-parametric algorithm has become very popular 
in remote sensing over the past decades due to its high 
accuracy in classification results, even when using a 

small number of training samples [12]. For the SVM 
classifier, the default kernel function is the Radial Basis 
Function (RBF) kernel. The RBF kernel is widely used 
[12,55,57,58] to capture complex nonlinear relationships 
between data points [58]. Thus, SVM with RBF kernel is 
one of the best classification algorithms [59]. The 
performance of the SVM with RBF kernel depends on the 
choice of parameters C and γ [60]. In general, if the values 
of C and gamma (γ) are small, the model tends to be 
underfitted, whereas if both parameters are high, it tends 
to be overfitted [61,62]. 

Hashim et al. [63] applied the non-optimized SVM 
parameters to map LU. In this study, we used the default 
RBF kernel for the SVM and the hyperparameters γ and C 
were set to 1.0 and scale, respectively (non-optimized C 
and γ parameters). The default hyperparameters C and γ 
were chosen in this work to avoid the risk of overfitting 
and underfitting the SVM model. Furthermore, 
discussing the significance of the values of C and γ is 
beyond the scope of this article. However, detailed 
information on the importance of the γ and C 
hyperparameters is available in [12,61]. 

 

2.4.2. Training samples and validation data 
 

The SVM classification algorithm was used to identify 
LU classes using reference data collected in the field in 
2018. The classification samples are distributed across 
the entire study area, with varying numbers from one 
class to another (Table 2). For validation purposes, we 
assigned 500 points to each LU class. 
 

Table 2. Number of samples used for training 
 

Classes 
Training samples 

(polygons) 
Irrigated 
crops 

Potatoes 24 
Onions 23 
Carrots 24 
Bare lands 25 
Buildings 23 

Major LU 
classes 

Irrigated areas 40 
Bare lands 26 
Buildings 23 

 

The proposed methodology starts with fieldwork 
and progresses through multiple stages, culminating in 
the validation stage (Figure 4). The assessment of the 
classification results was based on samples collected in 
the field. The confusion matrix was calculated using the 
classification results and field data. Four evaluation 
metrics were derived from the confusion matrix: the F1 
score, overall accuracy (OA), User Accuracy (UA), and 
Producer Accuracy (PA). These parameters, calculated 
using the R-statistical software (caret package), allow us 
to measure the agreement between the field-collected 
samples and those obtained from the classification. The 
accuracy assessment of classification in RS has been 
recognized as a valuable tool for assessing the reliability 
of obtained results [22,64,65]. Additionally, evaluating 
the accuracy of classified images against reference data 
enables the assessment of the classification algorithm's 
effectiveness.
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Figure 4. Flowchart of the proposed method in this study. OA: Overall Accuracy, UA: User Accuracy, PA: 
Producer Accuracy 

 

3. Results and discussion 
 

3.1. Determination of the favorable period for 
studying irrigated crops 
 

To determine the suitable dates/periods for studying 
irrigated crops in the GD, we based on data collected 
during fieldwork in August 2018 and the analysis of SR 
from L8SI (from January to December 2018). Thus, SR 
was used to monitor the progression of phenological 
stages of irrigated crops. This approach reinforces the 
selection of a favorable period for studying this type of 
cultivation. Indeed, this study focuses on detecting 
irrigated crops as a crucial element for managing water 
resources. 
 

3.1.1. Agricultural calendar 
 

In the depression of Guigou, due to varied climatic 
conditions, farmers cultivate different types of crops 
throughout the year. These crops are categorized into 
two main types: rainfed crops and irrigated crops. Wheat, 
barley, oats, and rye are rainfed crops harvested between 

mid-May and mid-July, while irrigated crops such as 
potatoes, carrots, and onions are harvested from 
September to November. The sowing and harvesting 
dates of crops are presented in Figure 5, illustrating the 
agricultural calendar. This calendar depicts the main 
crops in the study area and their evolution throughout 
the year, from sowing to harvesting. It also serves to 
determine the legend of LU maps. The crop calendar 
illustrates the diversity of crops and their seasonal 
variations. For example, the phenological stage of wheat 
begins in mid-October (sowing) and extends until mid-
May (harvesting). For potatoes, the phenological period 
starts from mid-April (sowing) to the end of August 
(harvesting). The agricultural calendar highlights that 
August is the most suitable month for detecting irrigated 
crops and April for rainfed crops. However, the study of 
rainfed crops falls outside the objectives of this article. 
Generally, the irrigation period in the study area begins 
in April, but the intensification of irrigation increases 
remarkably in July and August, characterized by a 
significant rise in temperature. Thus, this period 
coincides with the maturation stage of irrigated crops. 

 
Figure 5. Agricultural calendar of irrigated and rainfed crops in the GD. In yellow: the favorable period for 
studying rainfed crops; in green: the optimal period for studying irrigated crops (fieldwork). 

 
3.1.2. Spectral reflectance of irrigated crops 
 

The analysis of SR has been the subject of several 
studies focusing on the spatiotemporal evolution of 
crops, forests, and wetlands [3,53,66,67]. In this work, 
the study of SR and field data allowed for identifying the 
favorable month for studying irrigated crops and 
selecting useful bands to distinguish LU classes from 

satellite images. The results obtained from the statistical 
analysis of SR (Figure 6) show its variation throughout 
the year and based on spectral bands. Indeed, August is 
the most acceptable for studying irrigated crops 
(potatoes, carrots, and onions). In August, the SR of 
irrigated crops showed the highest separability in the 
near-infrared (NIR). These results indicate that NIR is the 
most suitable for distinguishing changes in the 
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phenological stages of irrigated crops throughout the 
year. Although August is crucial for studying the three 
crops, September, October, and November are suitable 
for mapping carrots. During this period, carrots 
demonstrate high reflectance in the NIR.  

Furthermore, there is a decrease in spectral signature 
in the bands of the visible spectrum (Blue, Green, and 
Red) and the bands of the Shortwave Infrared bands 
(SWIR 1 and SWIR 2). According to López-Serrano et al. 
[53], the spectral signature of vegetation shows high 
reflectance in the NIR. Monitoring the variations in SR 

throughout the year across different spectral bands 
allows distinguishing between irrigated crops and other 
LU classes. For example, bare lands consistently display 
a distinct spectral signature, while agricultural areas may 
exhibit seasonal variations linked to sowing and 
harvesting cycles. Hence, the analysis of SR has played a 
crucial role in determining the date and spectral band 
that allows the discrimination of irrigated agricultural 
lands from other LU classes. However, a detailed study of 
each type of yield (potatoes, onions, carrots) is a complex 
task due to the proximity of SR values in the NIR. 

 

 
Figure 6. The spectral signature of irrigated crops during different phenological stages 

 

Contrary to irrigated crops that exhibit a specific 
response in the NIR, the SR of bare land shows a notable 
decrease in spectral signature from June and 
demonstrates a similar response in the NIR. These values 
indicate limited or absent vegetation cover on these 
surfaces. In contrast, agricultural areas show seasonal 
variations, with peaks in the SR during cultivation and 
active vegetation periods. The combination of SR and 
fieldwork indicates that August is the most favorable 
month for distinguishing irrigated crops from other LU 
classes in the GD. Figure 7 depicts the distribution of SR 
in the NIR of irrigated crops. While there is clear 
separability between onions and other crops, the 
similarity in spectral signature values between potatoes 
and carrots makes the classification of the two types of 
crops very challenging. Additionally, the land 
fragmentation and the dominance of small-sized parcels 
(less than 2 hectares) that cover approximately 70% of 
the study area complicates the classification. 

 
Figure 7. Illustration of the separability of irrigated 
crops in the GD in August 2018 using SR in the NIR 
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3. 2. Classification of irrigated crops 
 

After selecting the satellite images suitable for 
studying irrigated crops in the GD, we conducted a 
supervised classification using samples collected from 
the field. The map (Figure 8) obtained from the 
classification of the satellite image of August 9, 2018, 
without clouds, illustrates the spatial distribution of 

irrigated crops. The observation of the map indicates a 
notable dominance of onions with an area of 3254 
hectares, followed by potatoes covering an area of 456 
hectares and carrots with 356 hectares. The remaining 
area is distributed between bare lands (basaltic and 
limestone terrains and rainfed croplands after harvest) 
and buildings. 

 
Figure 8. Mapping of irrigated crops, buildings and bare lands in the GD 

 

 
Figure 9. Confusion matrix of irrigated crops, 
buildings and bare lands 

The classification results are subjected to a validation 
test based on field-derived data. The in-situ observations 
indicate that onions are well-classified. Potatoes and 
carrots present a low classification accuracy. 
Concurrently, we calculated the confusion matrix to 
assess the agreement between field samples and those of 
the classified image (Figure 9). The comparison of the 
two types of data indicates a strong agreement between 
the training data and the classification, with an accuracy 
of 0.87 (87%). Bare lands, habitats, and onions are well-
classified with low classification errors. The F1 Score, 
Producer's Accuracy (PA), and User's Accuracy (UA) for 
these three classes exceed 0.88 (88%) (Table 3). Potatoes 
and carrots show lower accuracy, below 0.8 (80%), in 
contrast to other LU classes. The confusion matrix 
highlights that the two classes are not well-distinguished, 
with classification errors exceeding 20% of samples. The 
F1 Score, PA, and UA for the Potatoes and carrots are 
below 0.8 (80%). In the study area, the low classification 
accuracy of irrigated crops, particularly potatoes and 
carrots, is linked to the low separability of the SR of these 
two crop types. Therefore, the fragmentation of 
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agricultural parcels (parcels ≤ 1 and between 1 and 2 
hectares constitute 72% of the study area) contributes to 
the reduction in classification accuracy. However, to 
correct classification errors, we can use data related to 
the variation in SR throughout the year. For potatoes, the 
decrease in SR values begins in September. For carrots, 
there is an increase in spectral reflectance values 
observed from September to November (Figure 6). The 
utilization of this data serves to distinguish potatoes 
from onions, consequently enhancing classification 
accuracy. Thus, this study proposes an alternative 
analysis scale based on the classification of major LU 
classes (irrigated surfaces, bare lands, and habitats). 
 

Table 3. Per-class F1 Score, UA and PA of irrigated crops, 
buildings and bare lands 

Classes F1 Score UA PA 

Potatoes 0.76 0.78 0.74 

Onions 0 .95 0.91 0.99 

Carrots 0.75 0,76 0.73 

Buildings 0.93 0.98 0.89 

Bare lands 0.94 0.90 0.98 

 

The map (Figure 10) depicts the classification results 
of major LU classes in the GD. Three principal classes 
were distinguished: irrigated surfaces, bare lands, and 
habitats. The comparison of the classified map with in 

situ observations reveals a very high classification 
accuracy. Thus, the statistical validation (Figure 11) 
indicates a strong correspondence between the classified 
image and the ground truth, with an overall accuracy of 
0.97 (97%). The samples used in the classification 
indicate that the three LU classes (irrigated surfaces, 
bare lands, and buildings) are well classified. The errors 
depicted in Figure 11 are low, with 40 samples for bare 
lands and 12 samples for buildings. The irrigated 
agricultural surfaces demonstrate high separability 
compared to other LU classes. The F1 Score, PA, and UA 
exceed 0.9 for all three classes (Table 4), but irrigated 
areas indicate the highest precision (0.99, 1, and 0.99 for 
F1 Score, PA, and UA, respectively). 

The validation of the maps (Figures 8 and 10), derived 
from the analysis of the satellite image taken on August 
9, 2018, reveals that the classification accuracy varies 
among different LU classes. Initially, we classified crop 
types and other LU classes in the study area. The results 
indicate a good classification accuracy for all classes, with 
an accuracy of 0.87 (87%). These metrics demonstrate 
the reliability of the classification process, demonstrating 
a high level of agreement between the predicted land use 
classes and the ground truth data. However, potatoes and 
carrots exhibit a precision lower than 0.8 (80%). The F1 
Score, PA, and UA of crops illustrate this finding. The 
confusion between potatoes and carrots is related to the 
similarity of SR values for the crops and the dominance 
of small-sized parcels.

 
Figure 10. Spatial distribution of major LU classes in the GD
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Figure 11.  Confusion matrix of major LU classes 

 

Table 4. Per-class F1 Score, UA and PA of major LU 
classes 

Classes F1 Score UA PA 

Irrigated areas 0.99 0.99 1.00 

Bare lands 0.95 0.98 0.92 

Buildings 0.95 0.92 0.98 

 

To improve the classification accuracy, processing an 
image from other months characterized by an increase in 
SR (September, October, and November) can be used, 
particularly for carrots. Secondly, the major LU classes 
were classified. The results obtained indicate a high 
classification accuracy. Based on the level of 
classification precision, we observe that the combination 
of SR and fieldwork provides a high potential for 
distinguishing irrigated agricultural lands from other LU 
classes. Overall, the high values of classification accuracy 
indicators (FI Score, PA, UA, and ground truth) 
demonstrate the effectiveness and reliability of the 
methodology, which relies on data from multiple sources. 
The methodological steps developed in this study 
provide a robust approach that authors in various 
regions can employ to identify optimal periods for 
studying irrigated agricultural surfaces. 
 

3.3. Discussion 
 

The study focuses on determining favorable periods 
for studying irrigated crops in the GD using fieldwork 
data and the analysis of SR from L8SI. The SR analysis and 
field data indicate that August is the most favorable 
month for identifying irrigated crops in the GD. The 
classification results of the different crop types show a 
significant confusion between potatoes and carrots. 
However, the classification of major LU classes 
demonstrates high accuracy, with an accuracy exceeding 
0.95 (95%). Despite lower precision in classifying 
individual crops, the proposed methodology proves 
reliable for identifying optimal periods for studying 
irrigated areas. 

While satellite images provide a valuable resource for 
studying land surfaces, several challenges are associated 
with processing this data. The analysis of satellite images 
to extract information requires extensive fieldwork. This 
fieldwork is crucial to identify different LU classes and 
gather training samples for the classification and 
validation processes. For recent satellite images, 
fieldwork provides essential data on LU. However, 
classifying older images for a diachronic study demands 
a better understanding of the spectral characteristics of 
different LU classes based on recent satellite images. 
However, extracting data from satellite images requires 
monitoring the variation in SR throughout the year to 
select the favorable period and spectral bands for 
studying different LU classes. The information derived 
from analyzing SR can used to correct classification 
errors. 
 

 
Figure 12. Samples of irrigated crops in the GD; a 
comparison between in situ data and Landsat 8 satellite 
image (August 9, 2018) in false color. a) Onions, b) 
Potatoes, c) Carrots. The light red color represents 
potatoes and carrots, while the dark red color 
corresponds to onions. 
 

 The proximity of SR values in the NIR between crop 
types, such as potatoes and carrots, presents a challenge 
for separability (Figure 12). This proximity makes it 
difficult to distinguish between these crop types with 
high precision. To address this problem, we proposed 
considering temporal variations in SR throughout the 
year. Although August is the favorable month for 
mapping irrigated crops, the study suggests the potential 
use of images from other months, such as September, 
October, and November, to improve classification 
accuracy, especially for carrots. Thus, the fragmentation 
of agricultural parcels can contribute to a reduction in 
classification precision. In the GD, small-sized parcels, 
constituting approximately 72% of agricultural land, 
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contribute to reduced classification accuracy and 
complicate the precise identification of irrigated crops. 
While this work focuses explicitly on irrigated crops, the 
methodology developed can be used to study rainfed 
crops in diverse environmental conditions. Since the 
current study concentrates on irrigated crops, future 
research could include a detailed analysis of irrigated 
and rainfed crops in areas marked by the dominance of 
small-sized parcels and regions characterized by large-
sized parcels. Additionally, comparing supervised 
classification algorithms (Support Vector Machine, 
Random Forest, Maximum Likelihood) to assess the 
accuracy of each algorithm in separating irrigated and 
rainfed crops from other LU classes would be an 
intriguing avenue for further research. 

 

4. Conclusion 
 

The studies focused on satellite image processing 
have recorded a remarkable increase in recent decades, 
reflecting the growing importance and utilization of such 
data in various fields. The multiplication of publications 
has been facilitated by free access to multi-source images 
(Landsat, MODIS, and Sentinel), the development of 
machine learning algorithms, and the emergence of 
powerful image processing tools. The studies carried out 
in this context are numerous, and the results obtained in 
various countries around the globe demonstrate the high 
potential of optical satellite images in mapping, 
monitoring, and quantifying LU at different scales. In this 
regard, RS provides valuable data to address specific 
environmental problems, especially in managing natural 
resources (water resources, forests, etc.). However, 
extracting information from satellite images requires 
following a robust methodology. In several locations 
across the globe, the processing of satellite images for 
extracting LU classes has been based on the analysis of 
SR. The results obtained in different locations worldwide 
indicate that these criteria represent a high potential for 
accurately studying the Earth's surface. Amani et al. [66] 
demonstrated the capacity of SR in detecting wetland 
areas in Canada. The optimal selection of spectral bands 
for Investigating these areas was illustrated by the high 
level of accuracy in the classification results, with an 
average overall accuracy of 86%. In northern China, the 
employment of spectral and temporal features of satellite 
images by Wang et al. [68] worked perfectly to map and 
distinguish forest species, with an accuracy exceeding 
90%. 

This study proposes an approach using fieldwork 
and SR analysis to identify optimal dates and bands for 
studying irrigated crops in the GD. SR analysis 
highlighted that the NIR band is the most suitable for 
distinguishing irrigated crops from other LU classes. 
Consequently, we observed that August is optimal for 
studying irrigated crops based on field data and SR. The 
results obtained from the processing of satellite images 
indicate that the classification accuracy varies depending 
on the legend selected (irrigated crops and major LU 
classes). The high or low agreement between in situ data 
and classification is linked to the separability of the SR of 
crops, the size of agricultural parcels, and the criteria 
used for selecting the legend. This study has 

demonstrated that the methodology followed has 
resulted in the mapping of irrigated crops in the GD. In 
parallel with the criteria chosen in this study for 
detecting irrigated crops, incorporating vegetation 
indices such as NDVI and EVI can improve the 
classification accuracy of satellite images. Finally, the 
quantification of irrigated crops is an essential element 
for efficient water resources management. 
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